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ABSTRACT

The nonlinear dynamics of circularly polarized dispersive Alfvén wave (AW) envelopes coupled to the driven ion-sound waves of plasma slow
response is studied in a uniform magnetoplasma. By restricting the wave dynamics to a few number of harmonic modes, a low-dimensional
dynamical model is proposed to describe the nonlinear wave–wave interactions. It is found that two subintervals of the wave number of
modulation k of AW envelope exist, namely, (3/4)kc < k < kc and 0 < k < (3/4)kc, where kc is the critical value of k below which the
modulational instability (MI) occurs. In the former, where the MI growth rate is low, the periodic and/or quasi-periodic states are shown
to occur, whereas the latter, where the MI growth is high, brings about the chaotic states. The existence of these states is established by the
analyses of Lyapunov exponent spectra together with the bifurcation diagram and phase-space portraits of dynamical variables. Furthermore,
the complexities of chaotic phase spaces in the nonlinear motion are measured by the estimations of the correlation dimension as well as the
approximate entropy and compared with those for the known Hénon map and the Lorenz system in which a good qualitative agreement is
noted. The chaotic motion, thus, predicted in a low-dimensional model can be a prerequisite for the onset of Alfvénic wave turbulence to be
observed in a higher dimensional model that is relevant in the Earth’s ionosphere and magnetosphere.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0138866

The generation of envelope solitons in the nonlinear interactions
of high-frequency wave electric field and low-frequency plasma
density perturbations has been recognized as one of the most
important features in the context of plasma heating, transport of
plasma particles, as well as wave turbulence in modern physics.
One particular class of such solitons is the Alfvén solitons that
are circularly polarized high-frequency dispersive waves trapped
by the plasma density troughs of low-frequency perturbations.
This work proposes a new low-dimensional dynamical model
to govern the nonlinear interactions of these dispersive Alfvén
waves (DAWs) with low-frequency plasma density fluctuations
and shows how the nonlinear dynamics can transit from peri-
odic to chaotic states. The complexity of such chaotic states is
also measured by means of the correlation dimension (CD) and
the approximate entropy and compared with those for the known
Hénon map and the Lorenz system. The existence of chaos in the
evolution of Alfvénic wave envelopes can be a good indication
for the onset of Alfvénic wave turbulence that is relevant in the
Earth’s ionosphere and magnetosphere.

I. INTRODUCTION

Alfvén waves are typical magnetohydrodynamic (MHD) waves
that travel along the magnetic field lines and can be excited in any
electrically conducting fluid permeated by a magnetic field. Such
waves can be dispersive in warm electron–ion magnetoplasmas due
to the effects of finite ion Larmor radius and the electron pres-
sure gradient force. However, in cold plasmas, they may become
dispersive due to finite values of the wave frequency (in compar-
ison with the ion-cyclotron frequency) and the electron inertial
force.1 Since the theoretical description of their existence by Alfvén
in 19422 and experimental verification by Lundquist in 1949,3 the
Alfvén waves (especially with large amplitude) have been known
to play significant roles in transporting energy and momentum in
many geophysical and astrophysical MHD flows including the solar
corona and the solar wind. They have also been observed in the
Earth’s magnetosphere,4 in interplanetary plasmas5 and in the solar
photosphere6 and proposed as the origin of geomagnetic jerks.7 Fur-
thermore, the dispersive Alfvén waves (DAWs) can have a wide
range of applications in laboratory and space plasmas.8,9
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Large amplitude Alfvén waves interacting with plasmas can
give rise to different nonlinear effects, including the parametric
decay of three-wave interactions,10 stimulated Raman and Bril-
louin scattering,11 modulational instability (MI) of wave envelopes,12

plasma background density modification due to the Alfvén wave
ponderomotive force, the Alfvén solitons,13 as well as the for-
mation of Alfvén vortices and related phenomena14,15 that have
been observed in the Earth’s ionosphere and magnetosphere. For
some other important nonlinear effects involving Alfvén waves in
plasmas, readers are referred to the review work of Shukla and
Stenflo.16 Furthermore, the formation of envelope solitons associ-
ated with the modulational instability due to the nonlinear inter-
action of high-frequency wave electric field and low-frequency
ion density perturbations has been known to be one of the most
important features in the context of chaos and wave turbulence
in plasmas.17,18 When the electric field intensity is so high that
the wave number of modulation exceeds its threshold value, the
envelopes are essentially trapped by the density cavities of plasma
slow response, and the interactions result in chaos. As this chaotic
process develops in a low-dimensional dynamical system, the rate
of transfer (or redistribution) of energy from lower to higher har-
monic modes (from large to small spatial length scales) becomes
faster, leading to strong wave turbulence. Such scenarios have been
reported in different contexts by means of Zakharov-like equations
in plasmas.17–20

The nonlinear coupling of circularly polarized dispersive
Alfvén waves and ion density perturbations associated with plasma
slow motion has been studied by Shukla et al.8 in a uniform mag-
netoplasma. They proposed a set of coupled nonlinear equations
for the wave electric field and the plasma density perturbation,
which admits a localized DAW envelope accompanied by a plasma
density depression. However, the theory of nonlinear wave–wave
interactions associated with the DAWs has not been studied yet.
The purpose of the present work is to reconsider this model’s equa-
tions and to study the dynamical features of nonlinear three-wave
interactions numerically in a low-dimensional dynamical model.
We show that the transition from order to chaos is indeed pos-
sible when the wave number of modulation is within the domain
of the excitation of three-wave modes. The existence of periodic,
quasiperiodic, and chaotic states is confirmed by inspecting the
Lyapunov exponent spectra, the bifurcation diagram, and phase-
space portraits of dynamical variables. The complexities of chaotic
phase spaces are also examined by the estimations of correlation
dimension (CD) and the approximate entropy (ApEn), and the
obtained results are compared with those for the Hénon map and
the Lorenz system. Good qualitative agreements of the results are
noticed.

This manuscript is organized as follows: In Sec. II, the modula-
tional instability of AW envelopes is studied and the construction
of a low-dimensional dynamical model from a higher dimen-
sional system is shown. The basic dynamical properties of the
low-dimensional system is studied and the existence of periodic,
quasi-periodic, or chaotic states are shown in Sec. III. In Sec. IV, the
complexities of chaotic phase spaces are measured and compared
with those for the Lorenz system and Hénon map. Finally, the results
are concluded in Sec. V.

II. LOW-DIMENSIONAL MODEL

The nonlinear interactions of circularly polarized dispersive
Alfvén wave envelopes propagating along the constant magnetic
field B0 = B0ẑ and the slowly varying electron/ion density fluctu-
ations that are driven by the Alfvén wave ponderomotive force can
be described by the following set of coupled equations:8,21

(

∂

∂t
+ VA

∂

∂z

)

E⊥ − V2
A

2n0

∂
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(n1E⊥)± i
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∂z2
|E2
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where E⊥ is the perpendicular (to ẑ) component of the wave elec-
tric field, n1 is the plasma number density perturbation (with n0

denoting the equilibrium value), VA = B0/
√

4πn0mi is the Alfvén
velocity, and ωci = eB0/cmi is the ion cyclotron frequency with e
denoting the elementary charge, c is the speed of light in vacuum,
and mi is the ion mass. Also, Cs =

√
Te/mi is the ion-sound speed,

with Te denoting the electron thermal energy. For the description of
the linear theory of circularly polarized dispersive Alfvén waves and
the derivations of the nonlinear coupled Eqs. (1) and (2), readers are
referred to the work of Shukla et al.8

By defining the dimensionless quantities according to
t → tωci, z → zωci/Cs, n → n1/n0, and E → cE⊥/CsB0, Eqs. (1)
and (2) can be reproduced as

∂2n

∂t2
− ∂2n

∂z2
= −α2 ∂

2

∂z2
|E|2, (3)

∂E

∂t
+ β

∂E

∂z
− β

2

∂

∂z
(nE)+ iγ

∂2E

∂z2
= 0, (4)

where α = VA/c, β = VA/Cs, and γ = ±β2/2. Here, the ± sign in
γ corresponds to the right- and left-circularly polarized AWs.

Looking for the modulation of the AW amplitude and thereby
making the ansatz,

E(z, t) = E1(z, t) exp[iθ(z, t)],

n(z, t) = ñ(z, t) exp
(

ikz − iωt
)

+ c.c.,

E1(z, t) = E0 + Ẽ exp
(

ikz − iωt
)

+ c.c.,

θ(z, t) = θ0 + θ̃ exp
(

ikz − iωt
)

+ c.c.,

(5)

where E1 and θ are slowly varying functions of z and t, and Ẽ � E0,

θ̃ � θ0, we obtain from Eqs. (3) and (4) the following linear dis-
persion relation for the modulated DAW envelope (for details, see
Appendix A),

(

ω2 − k2
)

[

(

ω − βk
)2 − γ 2k4

]

+ α2βγ k5|E0|2 = 0. (6)

For the modulational instability, we assume ω ≈ βk + i0 with
βk � 0. The instability growth rate is then obtained as

0 =
√

γ k3

(

βα2|E0|2
β2 − 1

− γ k

)

. (7)
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Thus, the modulational instability sets in for 0 < k < kc, where
kc ≡ 2α2|E0|2/β|

(

β2 − 1
)

| is the critical wave number with β > 1,
and the maximum growth rate is attained at k = (3/4)kc. From the
expression of 0 we find that the growth rate increases in the inter-
val 0 . k . (3/4)kc, reaches a maximum at k = (3/4)kc, and then
decreases with k with a cutoff at k = kc. However, if the electric
field intensity is so high that the MI threshold exceeds the decay
instability threshold, the DAWs may be trapped by the ion-sound
density perturbations. In this case, the interaction between the cir-
cularly polarized DAWs and the ion-sound waves may result in a
turbulence in which the transfer or redistribution of wave energy
among different modes can take place.17,20,22 On the other hand,
in the adiabatic limit, i.e., the quasi-stationary response of density
fluctuations, the second order time derivative in Eq. (3) can be dis-
regarded. The resulting equation is then the derivative NLS (DNLS)
equation given by

(

∂

∂t
+ β

∂

∂z

)

E − 1

2
βα2 ∂

∂z

(

|E|2E
)

+ iγ
∂2E

∂z2
= 0. (8)

Equation (8) is clearly integrable23,24 and, hence, nonchaotic. So, it
can have a localized solution for the wave electric field envelopes.

Equations (3) and (4) are, in general, multidimensional and can
describe the evolution of an infinite number of wave modes. How-
ever, a few number modes may be assumed to participate actively
in the nonlinear wave–wave interactions. Such cases are not only
common in the Alfvénic wave turbulence but also occur in the para-
metric instabilities of high- and low-frequency wave interactions
close to the instability threshold. In this situation, a low-dimensional
model with a few truncated modes is well applicable to study the
basic features of the full wave dynamics of Eqs. (3) and (4). Here,
one must note that the specific details of the low-dimensional model
strongly depend on the range of the wave number of modulation
k. So, considering the nonlinear dynamics among a few number of
wave modes, we expand the electric field envelope E(z, t) and the
density perturbation n(z, t) as

E(z, t) =
+M/2
∑

m=−M/2

Em(t)e
imkz =

+M/2
∑

m=−M/2

ρm(t)e
θm(t)eimkz

= E0(t)+ E−1(t)e
−ikz + E1(t)e

ikz, (9)

n(z, t) =
+M/2
∑

m=−M/2

nm(t)e
imkz = n0(t)+ n1(t)e

ikz + n−1(t)e
−ikz, (10)

where M = [k−1] denotes the number of modes to be selected in the
interactions, E−m = Em, and n−m = nm. For three-wave interactions,
we choose M = 2 and following the same approach as in Refs. 18
and 22, we obtain from Eqs. (3) and (4) the following set of reduced
equations:

n̈1 − k2n1 = α2k2n0 sinψ cosφ, (11)

ψ̇ = βkn1 sinφ, (12)

φ̇ = k(β − γ k)− 1

2
βkn1 tan

ψ

2
cosφ, (13)

where the dot denotes differentiation with respect to t, φ = θ0 − θ1,
ψ = 2w, and n0 = |E−1|2 + |E1|2 + |E0|2 is the conserved plasmon
number. The detailed derivations of Eqs. (11)–(13) are given in
Appendix B. The system of Eqs. (11) to (13) can be recast as an
autonomous system,

ẋ1 = β0x2 sin x4,

ẋ2 = x3,

ẋ3 = −k2x2 + α2
0 sin x1 cos x4,

ẋ4 = γ0 − 1

2
β0x2 tan

x1

2
cos x4,

(14)

where β0 = βk, α0 = αk
√

n0, and γ0 = k(β − γ k) of which the key
parameters are α, β , and k. Also, for the sake of convenience, we have
redefined the variables as ψ = x1, n1 = x2, ṅ1 = x3, and φ = x4.

III. DYNAMICAL PROPERTIES

In this section, we numerically study the linear stability analysis
of Eq. (14) and look for different parameter regimes for the exis-
tence of periodic, quasiperiodic, and chaotic states on the basis of
Lyapunov exponent spectra, bifurcation diagram, and phase-space
portraits.

A. Equilibrium points and eigenvalues

As a starting point, we calculate the equilibrium points by
equating the right-hand sides of Eq. (14) to zero and finding
solutions for x1, x2, x3, x4 as (x10, x20, 0, nπ), where x10 = 4nπ

± 2 sin−1
(

±
√

γ0k2/α2
0β0

)

and x20 = ±(−1)n
(

2k/β0

)

√

(

β − γ k
) (

α2n0β − β + γ k
)

with n being zero or an integer.

Thus, there are primarily four types of equilibrium points, namely,
P1 ≡

(

x+
10, x+

20, 0, nπ
)

, P2 ≡
(

x−
10, x−

20, 0, nπ
)

, P3 ≡
(

x+
10, x−

20, 0,

nπ
)

, and P4 ≡
(

x−
10, x+

20, 0, nπ
)

, where x±
10 (x

±
20) are the values cor-

responding to the ± signs in x10 (x20) (for details, see Appendix C).
[Here, we are not considering any sign convention in γ applicable
to right- or left-circularly polarized AWs.] We note that (0, 0, 0, 0)
is not an equilibrium point since for (0, 0, 0, 0) to be an equilibrium
point, one must have k ∼ 2/β , which may not satisfy the restric-
tion k < kc for some typical parameter regimes with α � 1, E0 > 1,
and β > 1. Furthermore, for real values of x10 and x20, one must
have α2n0 . 1 and (2/β)

(

1 − α2n0

)

. k . (2/β). Next, applying
the transformation around the equilibrium point, i.e., x′

1 = x1 − x10,
x′

2 = x2 − x20, x′
3 = x3 − x30, and x′

4 = x4 − x40, we obtain a lin-
earized system of the form: dX′/dt = JX′, where J is the Jacobian
matrix and X′ = (x′

1, x′
2, x′

3, x′
4). The eigenvalues (λ) corresponding

to each of these equilibrium points can be obtained from the relation
JX′ = λX′ and then the stability of the system (14) can be studied
by the nature of these eigenvalues. The Jacobian matrix J is given by
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J =











0 β0 sin x4 0 β0x2 cos x4

0 0 1 0

α2
0 cos x1 cos x4 −k2 0 −α2

0 sin x1 sin x4

− 1
4
β0x2 sec2 (

x1
2
) cos x4 − 1

2
β0 tan

(

x1
2

)

cos x4 0 1
2
β0x2 tan

(

x1
2

)

sin x4











, (15)

which at the equilibrium point (x10, x20, 0, nπ) reduces to

J =











0 0 0 (−1)nβ0x20

0 0 1 0

(−1)nα2
0 cos x10 −k2 0 0

(−1)n+1 1
4
β0x20 sec2 (

x10
2
) (−1)n+1 1

2
β0 tan ( x10

2
) 0 0











, (16)

where n is either zero or an integer. The characteristic equation for
the matrix J [Eq. (16)] is

λ4 +
[

k2 + 1

4
β2

0 x2
20 sec2

(x10

2

)

]

λ2 + δ = 0, (17)

where

δ = β0x20

[

1

2
(−1)nα2

0β0 cos (x10) tan
(x10

2

)

+ k2

4
β0x20 sec2

(x10

2

)

]

.

(18)

We numerically examine the roots of Eq. (17) within the
domain (2/β)

(

1 − α2n0

)

. k . (2/β) for some fixed values of the
other parameters, namely, β = 8, α = 0.15, and n0 = 10. Note that
the qualitative features will remain the same for some other set of
parameter values fulfilling the restrictions for α, n0, and k stated

before. Since we are interested in the real parts of the eigenvalues
corresponding to the equilibrium points (x10, x20, 0, nπ), without
loss of generality, we assume that n = 0. The real parts of the eigen-
values corresponding to P1 and P3 are displayed in the subplots
(a) and (b) of Fig. 1. Note that the real eigenvalues corresponding
to P2 and P4 will remain the same as for P1 and P3 respectively. Also,
of four eigenvalues, only two distinct are shown for P1 and P3. It is
noted that depending on the ranges of values of k, the eigenvalues
can assume zero, negative and positive values, indicating that the
system can be stable (when <λ is zero or negative) or unstable (when
<λ > 0) about the equilibrium points. From the subplots (a) and
(b), it is also seen that a critical value of k exists near k = 0.22, below
or above which the system’s stability may break down before it again
reaches a steady state with a zero or a negative eigenvalue. Since we
have seen that the modulational instability of DAWs takes place in
0 < k < kc, the domain of k in subplot (b) may provide an initial

FIG. 1. The real parts of the eigenvalues (λ) corresponding to P1 [subplot (a)] and P3 [subplot (b)] are shown against the parameter k. The fixed parameter values are
β = 8, α = 0.15, and n0 = 10. The bifurcations indicate that the system [Eq. (14)] can be stable with <λ < 0 or unstable with <λ > 0 around the fixed point P1 or P3 in
a finite domain of k.
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guess for the existence of chaos and periodicity in the wave–wave
interactions.

B. Lyapunov exponents, bifurcation diagram, and

phase-space portraits

Having predicted the stable and unstable regions of the dynam-
ical system (14) in the domains of the wave number of modulation
k as in Sec. III, we proceed to establish the ranges of values of the
parameters k, α, and β in which the periodic, quasiperiodic, or
chaotic states of plasma waves can exist. To this end, we first cal-
culate the Lyapunov exponents 3i, i = 1, 2, 3, 4, for the dynamical
system [Eq. (14)], to be written in the form ẋi = fi(X), with the initial
condition: X(0) = [x1(0), x2(0), x3(0), x4(0)]. We are interested in
the evolution of attractors and depending on the initial condition,
these attractors will be associated with different sets of exponents.

The latter, however, describe the behaviors of X(t) in the tangent
space of the phase space and are defined by the Jacobian matrix
given by

Jij(t) = dfi

dxj

∣

∣

∣

∣

X(t)

. (19)

The evolution of the tangent vectors can then be defined by the
matrix A via the following relation:

Ȧ = JA, (20)

together with the initial condition Aij(0) = δij. Here, δij is the Kro-
necker delta and the matrix A characterizes how a small change of
separation distance between two trajectories in phase space devel-
ops from the starting point X(0) to the final point X(t). Nonetheless,
matrix A is given by

A(t) =











0 β0 sin x4 0 px2 cos x4

0 0 1 0

−α2
0 cos x1 cos x4 −k2 0 −α2

0 sin x1 sin x4

− 1
4
β0x2 sec2(x1/2) cos x4 − 1

2
β0 tan(x1/2) cos x4 0 − 1

2
x2 tan(x1/2) sin x4











. (21)

The Lyapunov exponents 3i are, thus, obtained as the eigenvalues
of the following matrix:

3 = lim
t→∞

1

2t
log

[

A(t)AT(t)
]

, (22)

where AT denotes the transposed matrix of A. Given an initial condi-
tion X(0), the separation distance between two trajectories in phase
space or the change of particle’s orbit can be obtained by Liou-
ville’s formula: δX(t) = tr (J(t)) |A(t)|, where |A(t)| ≡ det A(t) and
det A(0) = 1 > 0. Thus, for the dynamical system (14), one obtains

det A(t) = exp
(

∫ t

0
tr (J(t)) dt

)

= 1 > 0. It follows that at least one

3i > 0, implying the existence of a chaotic state in a given time
interval [0, t].

Before proceeding further to the analyses of Lyapunov expo-
nent spectra and the bifurcation diagram together with the phase-
space portraits, we recapitulate that the MI of Alfvén wave envelopes
sets in for 0 < k < kc. The growth rate of instability tends to become
higher in the interval 0 < k < (3/4)kc and lower in (3/4)kc < k
< kc with a cut-off at k = kc at which the pitchfork bifurcation
occurs. It follows that the nonlinear dynamics of wave–wave inter-
actions is subsonic in the interval (3/4)kc < k < kc. However, as k
decreases from (3/4)kc, many more unstable wave modes can be
excited due to a selection of modes with M = [k−1] and the dynam-
ics may no longer be subsonic. In this situation, a description of
nonlinear interactions with three wave modes may be relatively cor-
rect. Thus, one may assume that one (|m| = 1) Alfvén wave mode
is unstable (i.e., the Alfvén waves with |m| > 1 are stable) and two
driven ion-sound waves of plasma slow response (already excited
by the unstable Alfvén mode) remain as they are. This leads to
the autonomous system (14). We will investigate how the system

behaves as the values of k is successively increased from (3/4)kc to
kc in the subsonic region and as k reduces from (3/4)kc to a value so
that the three-wave interaction model remains valid (since smaller
the values of k, larger is the number of modes M).

In what follows, we calculate the maximum Lyapunov expo-
nent λmax

i for Eq. (14) using the algorithm as stated above in
a finite domain of k, i.e., 0 < k < kc < 1 and numerically solve
Eq. (14) using the fourth order Runge–Kutta scheme with a time step
dt = 10−3 to obtain the bifurcation diagram of a state variable x1 and
phase-space portraits with the same set of fixed parameter values
β = 8, α = 0.15, and n0 = 10 as in Fig. 1. The results are displayed
in Figs. 2 and 3. It is noted that, similar to subplot (b) of Fig. 1,
two sub-intervals of k exist, namely, 0.2 . k . k1 ≈ 0.42 and k1 < k
. 1. In the former λmax

i > 0, while in the latter, it is close to zero,
implying that the system may exhibit chaotic states in 0.2 . k . k1

and quasiperiodic and/or limit cycles in the other sub-interval [see
subplot (a) of Fig. 2]. Physically, since lower (higher) values of
k (< k1) correspond to a large (small) number of wave modes ([k−1])
to participate in the nonlinear wave dynamics, the wave–wave inter-
actions may result into chaos (limit cycles or steady states) by the
influence of the nonlinearity associated with the Alfvén wave pon-
deromotive force (proportional to α) and the nonlinear interactions
between the fields (proportional to β). These features can also be
verified from the bifurcation diagram of a state variable, e.g., x1

with respect to the parameter k [see subplot (b) of Fig. 2]. Here, it
is seen that as the value of k increases within the domain, a tran-
sition from chaotic (dense region) to a periodic or steady (straight
line) state can occur. However, the values of k smaller than k = 0.2
may not be admissible as those corresponding to a larger num-
ber of wave modes and their interactions cannot be described by
the low-dimensional system (14) but by the full system of Eqs. (3)
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FIG. 2. The maximum Lyapunov exponent [subplot (a)] and the bifurcation diagram [subplot (b)] are shown against the wave number k. The fixed parameter values are the
same as in Fig. 1.

FIG. 3. Different phase-space portraits, formed in the dynamical evolution of Eq. (14), are shown for different values of the wave number of modulation k: (a) k = 0.21,
(b) k = 0.42, (c) k = 0.45, and (d) k = 0.51. Subplots (a) and (b) show the chaotic states while subplots (c) and (d) exhibit the quasi-periodic and periodic states, respectively.
The fixed parameter values are the same as in Fig. 1, i.e., β = 8, α = 0.15, and n0 = 10.
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and (4). An investigation of the latter is, however, out of scope of the
present work.

In order to further verify the dynamical features so predicted
for ranges of values of k and for illustration purpose, different phase-
space portraits are also obtained by solving Eq. (14) numerically.
From Fig. 3, it is evident that as the values of k increase from smaller
[subplots (a) and (b)] to larger ones [subplots (c) and (d)], the
chaotic states of AWs transit into quasiperiodic [subplot (c)] and
periodic [subplot (d)] states. These features are in agreement with
the Lyapunov exponent and the bifurcation diagram shown in Fig. 2.

Thus, it is noted that the nonlinear interaction of a few wave
modes of dispersive Alfvén waves and low-frequency plasma density
perturbations can exhibit periodic, quasi-periodic, and chaotic states
in finite domains of the wave number of modulation due to the finite
effects of the nonlinearities associated with the wave electric field
driven ponderomotive force and the interactions of the electric field
and the plasma density fluctuations. The existence of these states is
established by the analyses of Lyapunov exponents, the bifurcation
diagram, and the phase-space portraits.

IV. CHARACTERIZATION OF CHAOS: MEASURE OF

CHAOS COMPLEXITY

In this section, we study the complexity of the dynamics of
wave–wave interactions and thereby measure quantitatively the
characteristics of chaotic behaviors of the state variables relating to
plasma density or wave electric field perturbations. Although sev-
eral formulas have been developed in the literature to characterize
chaos, we focus mainly on the measures of embedding dimen-
sion estimation,25 correlation dimension,26 and the approximate
entropy.27–29

A. Estimation of embedding parameters

Many well known and efficient techniques, e.g., Recurrence
quantification technique for the analysis of nonlinear time series
require the construction of phase-space profiles of the time series
since those techniques are applicable to the phase-space profiles but
not to the time series themselves. The method of embedding dimen-
sion estimation is one such which also requires the reconstruction of
successive phase spaces of chaotic processes with the effects of time
delay.

1. Phase-space reconstruction

Reconstruction of phase space has become useful to extract
information of a chaotic time series in nonlinear dynamical sys-
tems. Let X = [x(1), x(2), . . . , x(n)]T represent a uniformly sampled
univariate time signal, i.e., an observed sequence of the chaotic
state variable x(t) (which may be any one of x1, x2, x3, and x4)
with t = 1, 2, . . . , n. Then, to reconstruct a phase space by embed-
ding the dimension m, we construct a time series Y(t) of length m
(i.e., m-dimensional points) from the original time series X(t) by
considering an appropriate time delay τ as

Y(t) = {X(t), X(t + τ), . . . , X[t + (m − 1)τ ]}T , (23)

where t = 1, 2, . . . , n − (m − 1)τ and τ is a positive integer.
Thus, the phase spaces of M = n − (m − 1)τ state variables are

reconstructed. Generalizing this result, one can reconstruct the
phase spaces for multivariate time signals. So, in order to perform
the phase-space reconstruction, one must know the two embedding
parameters, namely, the time delay parameter τ , which is the lag at
which the time series has to be plotted against itself, and the embed-
ding dimension parameter m, where m − 1 is the number of times
that the time series has to be plotted against itself using the delay
τ . Having known these two parameters, one can then reconstruct
an approximate phase space of the original one from a given time
series. In Secs. IV A 2 and IV A 3, we estimate these two parameters
by the methods of computing the two functions, namely, the average
mutual information (AMI) and the false nearest neighbors (FNNs)25

in which the first local minima (or the points of cut-off) of these
functions can be estimated as the time delay and the embedding
dimension, respectively.

2. Average mutual information (AMI): Estimation of

time delay

In AMI, the mutual information is computed between the orig-
inal time series of a state variable X(t) and a time shifted version
of the same time series, i.e., X(t + τ). This average or auto mutual
information can be considered as a nonlinear generalization of the
autocorrelation function given by

I [X(t), X(t + τ)] =
∑

i,j

pij(τ ) log

(

pij(τ )

pipj

)

, (24)

where pi is the probability that X(t) is in the ith rectangle of the his-
togram to be constructed from the data points of X(t) and pij is the
probability that X(t) is in the ith rectangle and X(t + τ) in the jth
rectangle.

3. False nearest neighbors (FNNs): Estimation of

embedding dimension

Typically, the embedding dimension m for phase-space recon-
struction is estimated by inspecting the change in distance between
two nearest points in phase space as one gradually embeds the
original time series X(t) into higher dimensional ones Y(t). The
use of FNN, as prescribed by Kennel et al.,30 is based on the fol-
lowing logic: Initially, we have the one-dimensional time series
X(t), t = 1, 2, . . . , n and the distance between two of its neighbor-
ing points are noted. Then, we embed X(t) into two dimensions
Y(t) = {X(t), X(t + τ)} with some time delay τ and examine
whether there is any considerable change in the distance between
any two neighboring data points of Y(t). If so, these data points are
said to be false neighbors, and the data points need to be embed-
ded further. Otherwise, if the change is not significant, the data
points are called true neighbors and the embedding retains the shape
of the phase-space attractor, implying that the present embedding
dimension is sufficient. This process of successively increasing the
embedding dimension m can be continued until the number of FNN
reduces to zero, or the subsequent embedding does not alter the
number of FNNs, or the number of FNNs starts to increase again. A
working algorithm for calculating FNN for our system can be stated
below.
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1. Identify the nearest point in the Euclidean sense to a given point
of the time delay coordinates. That is, for a given time series
Y(t) = {X(t), X(t + τ), . . . , X[t + (m − 1)τ ]}T, find a point Yi

in the data set such that the distance m = ‖Yi − Yj‖2 is min-
imized, where Yi and Yj denote the nearest neighboring data
points of Y(t).

2. Determine whether the following expression is true or false:

|Xi − Xj|
‖Yi − Yj‖

≤ Distance threshold (R), (25)

where Xi and Xj denote the nearest neighboring data points of
X(t). If the condition in Eq. (25) is satisfied, then the neigh-
bors are true nearest neighbors, otherwise they are false nearest
neighbors.

3. Perform step 2 for all points i in the data set and calculate
the percentage of points in the data set that have false nearest
neighbors.

4. Increase embedding the dimension until the percentage of false
nearest neighbors drops to zero or an admissible small number.

Following Ref. 25 and using MATLAB, we estimate the embed-
ding parameters, namely, the time lag τ and the embedding dimen-
sion m for the four-dimensional time series (x1, x2, x3, x4) formed
by all four variables of system (14). The results are shown in Fig. 4.
From subplot (a), we find that all the auto mutual information
(AMI) curves, obtained for different time series, cut the threshold
line at different values of τ . It is seen that for these curves, the
AMI first drops below the threshold value (1/e) after the time lags
τ = 4.25, 5.75, 13.1, and 19.66, and we have considered the maxi-
mum time delay as τ = 25. Thus, a mean value of τ for each dimen-
sion can be obtained as τ = (4.25 + 5.75 + 13.1 + 19.66)/4 = 10.7
for which we obtain an estimate for τ as τ = 11. On the other
hand, subplot (b) displays the FNN function against the embedding
dimension m. It is clear that the available four-dimensional time
series is sufficient and no further time-delayed embedding of dimen-
sion is required. Next, having estimated the time delay τ = 11 and
the embedding dimension m > 2, a reconstruction of phase space is
shown in Fig. 5 for all the variables x1, x2, x3, and x4 of Eq. (14). Here,
the time series for the variables are plotted against each other with
the time lag τ = 11. It is seen that the resulting phase space with the
time lag is approximately the same as the original one.

B. Correlation dimension estimation

One of the most important measures of the complexity of
chaotic attractors is the correlation (or fractal) dimension. It has
been shown by many researchers that the correlation dimension
is more pertinent to experimental data than the capacity dimen-
sion as it simply calibrates the geometrical structure of an attractor
and is insufficient for higher dimensional systems. Moreover, the
correlation dimension is a (or close to the) lower bound on the
Hausdorff fractal dimension, which is infinite for noise; positive and
finite for a deterministic system; integer for integrable systems; and
non-integer for a chaotic deterministic system. The derivation of
the correlation dimension also requires the reconstruction of vectors

from the time series X(t), i.e.,

Y1(t) = {X(t), X(t + τ), . . . , X[t + (m − 1)τ ]}T ,

Y2(t) =
{

X(t + p), . . . , X[t + p + (m − 1)τ ]
}T

,

...

YM(t) =
{

X(t + Mp), . . . , X[t + Mp + (m − 1)τ ]
}T

,

(26)

where p (a positive integer) and τ , respectively, stand for the inter-
vector and intra-vector spacing.

After the reconstruction of phase space of a chaotic signal X(t)
with M vectors and computing the correlated vector pairs, its pro-
portion in all possible pairs in M2 is the correlation integral C(l)
given by

C(l) = lim
M→∞





2

M2

M−k
∑

i=1

M
∑

j=i+k

2
(

l − |X(i)− X(j)|
)



 , (27)

where X(i) and X(j) are the position vectors of pints on an attractor,
l is the distance under inspection, k is the summation offset used to
prevent proximate vectors being counted, and2(x) is the Heaviside
step function defined by

2(x) =
{

0, x ≤ 0,
1, x > 0.

(28)

The correlation dimension d is then calculated from the correlation
integral as

d = lim
l→0

log C(l)

log l
. (29)

Next, using Eq. (29), we plot a graph of log C(l) vs log l for the
time series X(t) of the dynamical system (14) with a fixed embed-
ding dimension m = 4 and time delay τ = 11. The system is turned
to be higher dimensional by the method described above. As a com-
parison, we have also obtained graphs of the correlation integrals
for the Hénon map with the embedding dimension m = 2 and the
Lorenz system with m = 3. The results are displayed in Fig. 6. The
fixed parameter values considered here are the same as in Fig. 1, i.e.,
α = 0.15, β = 8, and n0 = 10. The slopes of the straight-line
portions (obtained using the least-square curve fitting) of the
graphs represent the correlation dimensions. For the present sys-
tem [Eq. (14)], the results as in subplot (a) appear similar to those
for the Hénon map [subplot (b)] and the Lorenz system [sub-
plot (c)]. However, the correlation dimension obtained for our sys-
tem is d = 1.0776, while for the Hénon map and the Lorenz system,
they are d = 1.25 and d = 2.06, respectively. It follows that system
(14) is chaotic and possesses a strange attractor characterized by
d = 1.0776.

In Fig. 7, we plot log C(l) vs log l for increasing values of the
embedding dimension, namely, m = 8, 12, 16, and 20. The time
series is taken to have consisted of 10 000 points separated by the
time lag τ = 11. One can then obtain the correlation dimensions as
d = 1.0777, 1.0781, 1.0788, respectively. Thus, a series of straight
lines indeed exist with slopes d ≈ 1.07 ± 0.01 and log C(l)/ log l is
nearly a constant value for large m.
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FIG. 4. The graphical output(s) of the average mutual information (AMI) function [subplot (a)] and percentage of false nearest neighborhoods (FNN) function [subplot (b)] are
shown against the time lag τ and the embedding dimensionm, respectively, for the four-dimensional time series taken from Eq. (14). In the upper panel, the default threshold
value (1/e) is shown by the horizontal line. The dashed line in the lower panel shows an immediate drop-off in the percentage of false nearest neighbors to zero, indicating
that no additional embedding is necessary for the time series.

In what follows, we calculate the correlation dimension (d) and
the Hausdroff fractal dimension (D) (for details, see, e.g., Ref. 31) of
a time series of Eq. (14) with different values of the control param-
eter k and the embedding dimension m. The results are compared
with those of the Hénon map and the Lorenz system. A summary
of the results is presented in Table I. It is noted that even with
an increasing value of the embedding dimension and a change in
the value of parameter k, the correlation dimension d converges to

a constant value. The bounds for the Hausdroff dimension of the
chaotic time series are also calculated. It is seen that the correlation
dimension lies within the bounds of the Hausdroff dimension.

C. Approximate entropy (ApEn)

Although a number of techniques are used to measure the
complexity of a chaotic system, not all are applicable to limited,
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FIG. 5. Reconstruction of phase space with the time lag, τ = 11 and embedding dimension, m = 4 from the chaotic time series of Eq. (14).

FIG. 6. Plots of the log-correlation integral [logC(l)] vs the log-correlation dimension (log l) are shown for (a) the present model [Eq. (14)], (b) for the Hénon map, and
(c) for the Lorenz system. The correlation dimensions obtained for the subplots (a)–(c) are d = 1.0776, 1.25, and 2.06, respectively.
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FIG. 7. Plot of the log-correlation integral [logC(l)] vs the log-correlation dimension (log l) with different embedding dimensions: m = 4, 8, 12, 16, 20, and 10 000
observations is shown for Eq. (14). The parameter values are the same as in Fig. 1, i.e., β = 8, α = 0.15, and n0 = 10 together with k = 0.35.

noisy, and stochastically derived time series. For example, the Kol-
mogorov–Sinai (KS) entropy works well for real dynamical sys-
tems but not for systems with noise.29 Also, the finite correlation
dimension value discussed before cannot guarantee that the system

under consideration is deterministic. Furthermore, the Pincus tech-
nique fails for systems dealing with stochastic components. In this
situation, the Approximate Entropy (ApEn) is more applicable to
measure the system’s complexity compared to others in which the

TABLE I. Estimations for the correlation dimension (d) and the Hausdroff fractal dimension (D) are shown for the present model, the Hénon map, and the Lorenz system with

different values of m and the control parameter k and with a fixed 10 000 observations.

Correlation dimension(d) for different values of k and m

d d d d d
Model Control parameter (m = 4) (m = 8) (m = 12) (m = 16) (m = 20) Hausdorff fractal dimension (D)

Our dynamical model k = 0.13 1.077 6 1.077 7 1.078 1 1.078 8 1.081 1 1.0646 ± 0.013 997
k = 0.23 1.045 3 1.046 5 1.047 3 1.048 3 1.053 5
k = 0.28 1.071 8 1.072 4 1.073 3 1.074 0 1.074 7
k = 0.33 1.072 0 1.070 5 1.069 4 1.068 6 1.076 7
k = 0.38 1.072 1 1.070 6 1.069 6 1.068 4 1.067 7
k = 0.5 1.000 69 1.000 68 1.000 65 1.000 63 1.000 61 1.000 47 ± 0.000 682 62

Henon map a = 1.4 1.254 1 1.485 0 1.644 5 2.088 1 3.184 5 1.260 303 ± 0.003
a = 1.3 1.251 0 1.451 6 1.656 5 2.183 4 2.629 4
a = 1.25 1.250 6 1.461 5 1.675 6 2.122 5 2.625 2
a = 1.2 1.250 1 1.458 9 1.694 6 2.104 5 2.605 2
a = 1.15 1.240 8 1.456 8 1.672 5 2.076 8 2.646 6
a = 1.1 1.265 9 1.458 8 1.676 7 2.047 94 2.624 6

Lorenz system ρ= 28 2.086 6 2.776 3 3.012 1 3.124 6 3.362 3 2.06 ± 0.01
ρ= 26 2.167 0 2.376 7 2.567 9 2.684 4 2.856 3
ρ= 24 1.828 8 2.022 3 1.951 6 2.123 5 2.487 4
ρ= 22 2.199 9 2.041 3 1.960 8 2.091 5 2.459 9
ρ= 20 0.010 47 0.077 9 0.047 8 0.014 8 0.004 8 2.0002 ± 0.000 480 23
ρ= 15 0.007 9 0.007 6 0.007 5 0.007 2 0.007 1
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FIG. 8. Approximate entropy (ApEn) is shown against the parameter k for Eq. (14) with m = 4, l = 0.1, and N = 5000. The other parameter values are the same as in
Fig. 1, i.e., β = 8, α = 0.15, and n0 = 10.

statistical precision is compromised.29 The ApEn estimates uni-
formly sampled time-domain signals through phase-space recon-
struction and then measures the amount of regularity and unpre-
dictability of fluctuations in a time series. For an N given data points
together with the embedding dimension m and the correlation
integral C(l), the ApEn is defined by

ApEn(m, l, N) = 8m(l)−8m+1(l), (30)

where

8m(l) =
∑N−m+1

i=1 log Cm
i (l)

N − m + 1
. (31)

We have calculated the ApEn against the controlling parameter
k (the other parameter values are the same as Fig. 1, i.e., β = 8,
α = 0.15, and n0 = 10) and for a given set of values, namely, m = 4
and l = 0.1 together with 5000 data points. The results are shown
graphically in Fig. 8. It is noted that while the ApEn assumes high
values in the subdomain 0.275 . k . 0.4 in which the Lyapunov
exponent is found to be positive (cf. Figure 2) its values are low in the
rest of the domain where the Lyapunov exponents are close to zero.
Thus, low values of ApEn predict that the system is steady, tedious,
and predictive, while high values imply the independence between
the data, a low number of repeated patterns, and randomness.

V. CONCLUSION

We have investigated the dynamical properties of dispersive
Alvén waves coupled to plasma slow response of electron and ion
density perturbations in a uniform magnetoplasma. By restricting
the nonlinear wave–wave interactions to a few numbers of active
wave modes, a low-dimensional autonomous system is constructed,

which is shown to exhibit periodic, quasiperiodic, and chaotic states
by means of the analyses of Lyapunov exponent spectra, bifur-
cation diagram, and phase-space portraits. The low-dimensional
autonomous system can be a good approximation for the nonlin-
ear interaction of Alfvén waves coupled to driven ion-sound waves
associated with plasma slow response of density fluctuations in the
stable or plane wave region (3/4)kc < k < kc < 1. In the latter, the
modulational instability growth rate of Alvén wave envelopes is low.
The model can be relatively accurate in the region 0.2 . k < (3/4)kc

(in which the condition for the subsonic region is relaxed and the
instability growth rate is relatively high) where the low-dimensional
model exhibits chaos for given values of the pump electric field E0

as well as the parameters α, β , and n0, associated with the relative
speeds of the Alvén waves compared to the speed of light in vac-
uum and the ion-sound speed, and the conserved plasmon number,
respectively. However, for values of k < 0.2, the low-dimensional
model will no longer be valid for the description of wave–wave inter-
actions as smaller values of k correspond to the excitation of a large
number of unstable modes.

The complexity of chaotic phase-space structures of chaotic
time series is also measured quantitatively by means of the corre-
lation dimension and the approximate entropy through the recon-
struction of phase spaces and estimation of embedding parameters,
namely, the time lag and the embedding dimension. It is found that
even with an increasing value of the embedding dimension and with
a slightly different set of values of the parameters α, β , n0, and k, the
correlation dimension converges to a constant value. The bounds
for the Hausdroff fractal dimension of the chaotic time series are also
calculated to show that the correlation dimension lies in between the
bounds. Furthermore, the results are shown to be a good qualitative
agreement with those for the Hénon map and the Lorenz system.
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To conclude, the existence of chaos and its complexity in the
low-dimensional interaction model can be a good signature for the
emergence of spatiotemporal chaos in the full system of Eqs. (1)
and (2) where the participation of many more wave modes (more
than three) in the nonlinear interactions can be possible. Such
chaotic aspects of Alvén waves can be relevant for the onset of tur-
bulence due to the flow of energy from lower to higher harmonic
modes (i.e., with large to small spatial length scales) in the Earth’s
ionosphere and magnetosphere.
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APPENDIX A: DERIVATION OF THE DISPERSION

RELATION [Eq. (6)]

Here, we give some relevant details for the derivation of the dis-
persion relation (6) for the modulated DAW envelope. We rewrite
Eqs. (3) and (4) as

∂2n

∂t2
− ∂2n

∂z2
= −α2 ∂

2

∂z2
|E|2, (A1)

∂E

∂t
+ β

∂E

∂z
− β

2

∂

∂z
(nE)+ iγ

∂2E

∂z2
= 0. (A2)

We assume the wave electric field envelope to be of the form
E = Ẽeiθ(z,t) and the density perturbation as n = ñ(z, t). Then,
Eqs. (A1) and (A2) reduce to

∂2ñ

∂t2
− ∂2ñ

∂z2
= −α2 ∂

2

∂z2
|Ẽ|2, (A3)

∂Ẽ

∂t
+ iẼ

∂θ

∂t
+ β

(

∂Ẽ

∂z
+ iẼ

∂θ

∂t

)

− β

2

[

∂

∂z
(ñẼ)+ iẼñ

∂θ

∂z

]

+ iγ

[

∂2Ẽ

∂z2
+ 2i

∂Ẽ

∂z

∂θ

∂z
+ iẼ

∂2θ

∂z2
− Ẽ

(

∂θ

∂z

)2
]

= 0. (A4)

Separating the real and imaginary parts of Eq. (A4), we get

∂Ẽ

∂t
+ β

∂Ẽ

∂z
− β

2

∂

∂z
(ñẼ)− γ

(

Ẽ
∂2θ

∂z2
+ 2

∂Ẽ

∂z

∂θ

∂z

)

= 0, (A5)

Ẽ
∂θ

∂t
+ βẼ

∂θ

∂z
− β

2
Ẽñ
∂θ

∂z
+ γ

[

∂2Ẽ

∂z2
− Ẽ

(

∂θ

∂z

)2
]

= 0. (A6)

Looking for the modulation of the Alfvén wave envelope, we make
the following ansatz:

Ẽ(z, t) = E0 + E1 cos (kz − ωt)+ E2 sin (kz − ωt),

ñ(z, t) = n1 cos (kz − ωt)+ n2 sin (kz − ωt),

θ(z, t) = θ0 + θ1 cos (kz − ωt)+ θ2 sin (kz − ωt),

(A7)

where E0, E1, E2, n1, n2, θ0, θ1, and θ2 are real constants.
Substituting Eq. (A7) into Eqs. (A3), (A5), and (A6) and lin-

earizing (retaining only the first harmonic terms), we get
[

(ω2 − k2)n1 + 2α2k2E0E1

]

cos (kz − ωt)

+
[

(ω2 − k2)n2 + 2α2k2E0E2

]

sin (kz − ωt) = 0, (A8)

[

(ω − βk)E2 + β

2
E0kn2 − γE0k

2θ1

]

cos (kz − ωt)

−
[

(ω − βk)E1 + β

2
E0kn1 + γE0k

2θ2

]

sin (kz − ωt) = 0,

(A9)

[(ω − βk)E0θ2 + γ k2E1] cos (kz − ωt)

− [(ω − βk)E0θ1 − γ k2E2] sin (kz − ωt) = 0. (A10)

Equating the coefficients of different harmonics proportional to
cos (kz − ωt) and sin (kz − ωt) to zero, we successively obtain

(ω2 − k2)n1 + 2α2k2E0E1 = 0, (A11)

(ω2 − k2)n2 + 2α2k2E0E2 = 0, (A12)

(ω − βk)E2 + β

2
E0kn2 − γE0k

2θ1 = 0, (A13)

(ω − βk)E1 + β

2
E0kn1 + γE0k

2θ2 = 0, (A14)

(ω − βk)E0θ2 + γ k2E1 = 0, (A15)

(ω − βk)E0θ1 − γ k2E2 = 0. (A16)

Next, eliminating θ1 and θ2 from Eqs. (A13)–(A16), we get

[(ω − βk)2 − γ 2k4]E1 + β

2
(ω − βk)E0kn1 = 0, (A17)
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[(ω − βk)2 − γ 2k4]E2 + β

2
(ω − βk)E0kn2 = 0. (A18)

Furthermore, eliminating either n1 from Eqs. (A11) and (A17) or
eliminating n2 from Eqs. (A12) and (A18), and noting that E1,
E2 6= 0, we obtain

(ω2 − k2)[(ω − βk)2 − γ 2k4] − α2βk3|E0|2(ω − βk) = 0. (A19)

From Eq. (A19), it is noted that while the first term represents a
coupling between the Alfvén wave and the ion-acoustic density per-
turbation, the second term proportional to |E0|2 appears due to the
Alfvén wave driven ponderomotive force. In absence of the latter, we
have the usual acoustic mode ω = k and the following Alfvén wave
dispersion equation:

ω − βk = −γ k2, (A20)

where the negative sign (on the right-hand side) is considered in
order to satisfy Eq. (A2) for the wave eigenmode. So, treating the
term proportional to |E0|2 as the correction term in Eq. (A19)
and replacing (ω − βk) by −γ k2 therein, we obtain the following
dispersion law for the modulated Alfvén wave envelope:

(ω2 − k2)[(ω − βk)2 − γ 2k4] + α2βγ k5|E0|2 = 0. (A21)

Next, to obtain the growth rate of instability, we assume ω ≈ βk
+ i0 with βk � 0, γ k2, Thus, Eq. (A21) gives

[(β2 − 1)k2 − 02 + 2iβk0](02 + γ 2k4)− α2βγ k5|E0|2 = 0.
(A22)

Since the term proportional to i in Eq. (A22) does not give any
admissible result, we equate the real part to zero. Thus, we obtain

[(β2 − 1)k2 − 02](02 + γ 2k4)− α2βγ k5|E0|2 = 0. (A23)

Using βk � γ k2 and neglecting the terms containing higher orders
(than the second order) of0, we obtain from Eq. (A23) the following
expression for the growth rate of instability:

02 = γ k3

(

βα2|E0|2
β2 − 1

− γ k

)

. (A24)

APPENDIX B: DERIVATION OF THE

LOW-DIMENSIONAL MODEL [Eqs. (11)–(13)]

We recast Eqs. (3) and (4) as

∂2n

∂t2
− ∂2n

∂z2
= −α2 ∂

2

∂z2
|E|2, (B1)

∂E

∂t
+ β

∂E

∂z
− β

2

∂

∂z
(nE)+ iγ

∂2E

∂z2
= 0. (B2)

Next, we consider an one-dimensional spectrum for each of the wave
electric field E and the plasma density perturbation n, which describe
the general solution of Eqs. (B1) and (B2) as a superposition of a set
of normal modes, i.e.,

E(z, t) = E0(t)+ E−1(t).e
−ikz + E1(t) · eikz, (B3)

n(z, t) = n0(t)+ n1(t).e
ikz + n∗

1(t) · e−ikz, (B4)

where E−1(0) = E1(0).

Substituting these expressions for E and n into (B2) and follow-
ing the same approach as in Refs. 18 and 22, we obtain

iĖ0 = 0, (B5)

Ė1 + ikβE1 − ik2γE1 = i
kβ

2
(n0E1 + n1E0), (B6)

Ė−1 − ikβE−1 − ik2γE−1 = −i
kβ

2
(n0E−1 + n∗

1E0), (B7)

where the dot denotes the differentiation with respect to t and the
asterisk denotes the complex conjugate. Multiplying Eq. (B5) by E∗

0 ,
we obtain

i|Ė0|2 = 0. (B8)

Also, multiplying Eqs. (B6) and (B6) successively by E∗
1 and E∗

−1 and
subtracting the complex conjugate of the resulting equations from
themselves, we get

i| ˙E−1|2 = kβ

2
(n∗

1E0E
∗
−1 − n1E0E−1), (B9)

i|Ė1|2 = kβ

2
(n∗

1E0E1 − n1E0E
∗
1), (B10)

where ˙|E|2 = d
dt

|E|2. Equations (B8)–(B10) can be added to yield

|E−1|2 + |E1|2 + |E0|2 = N. (B11)

Next, we assume n1 = n∗
1 , n0 = N, the plasmon number, and intro-

duce the new variables ρ0, ρ1, θ0, and θ1 according to E0 = ρ0e
iθ0 ,

E−1 = E0 = ρ1e
iθ1 , ρ0 = √

n0 sin w, ρ1 = √
n0 cos w,ψ = 2w.

Substituting expressions (B3) and (B4) into Eq. (B1) and using
the new variables as defined above, we get

n̈1 − k2n1 = α2k2n0 sinψ cosφ. (B12)

Also, using the newly defined variables, from Eqs. (B6) and (B7), we
obtain

ψ̇ = βkn1 sinφ, (B13)

φ̇ = k(β − γ k)− 1

2
βkn1 tan

ψ

2
cosφ, (B14)

where φ = θ0 − θ1. Equations (B12)–(B14) constitute the required
low-dimensional model.

APPENDIX C: EQUILIBRIUM POINTS OF EQ. (14)

To find the equilibrium points of Eq. (14), we equate the
right-hand side expression of each of Eq. (14) to zero. Thus, we
successively obtain

β0x2 sin x4 = 0,

x3 = 0,

−k2x2 + α2
0 sin x1 cos x4 = 0,

γ0 − 1

2
β0x2 tan

x1

2
cos x4 = 0,

(C1)
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where β0 = βk, α0 = αk
√

n0, and γ0 = k(β − γ k). Since (0, 0, 0, 0)
is not an equilibrium point (as explained in Sec. III A),
we have x2 6= 0. So, the first equation of Eq. (C1) gives
sin x4 = 0, i.e., x4 = nπ . Using this value of x4 in the third
equation of Eq. (C1), one obtains x2 = (−1)n(α2

0/k
2) sin x1, since

cos(nπ) = (−1)n, n being zero or an integer. Having obtained
the values of x2 and x4, and using those in the fourth

equation of Eq. (C1), we get x1 = 4nπ ± 2 sin−1
(

√

γ0k2/α2
0β0

)

.

Thus, the equilibrium points of Eq. (14) can be obtained

as (x10, x20, 0, nπ), where x10 = 4nπ ± 2 sin−1
(

√

γ0k2/α2
0β0

)

and

x20 = ±(−1)n
(

2k/β0

)

√

(

β − γ k
) (

α2n0β − β + γ k
)

, where n is

zero or an integer.
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A B S T R A C T

We study the dynamical behaviors of a system of five coupled nonlinear equations that describes the dynamics of
acoustic-gravity waves in the atmosphere. A linear stability analysis together with the analysis of Lyapunov
exponents spectra are performed to show that the system can develop from ordered structures to chaotic states.
Numerical simulation of the system of equations reveals that an interplay between the order and chaos indeed
exists depending on whether the control parameter , associated with the density scale height of acoustic-gravity
waves, is below or above its critical value.

1. Introduction

The nonlinear dynamics of low-frequency finite amplitude acoustic-
gravity waves has been studied by a number of authors because of their
relevance in atmospheric disturbances (Stenflo, 1987, 1991, 1996;
Stenflo and Stepanyants, 1995; Jovanovic et al., 2002; Mendonca and
Stenflo, 2015; Kaladze et al., 2008). The latter appear due to various
meteorological conditions including different pressure and density
gradients, as well as the presence of shear flows (Jovanovic et al.,
2002). It has been shown that the nonlinear acoustic-gravity waves can
appear in the forms of localized solitary vortices (Stenflo, 1987;
Jovanovic et al., 2002), ordered structures (Park et al., 2016), as well as
chaos (Banerjee et al., 2001) and turbulence (Shaikh et al., 2008).

In a paper (Stenflo, 1996), Stenflo deduced a system of five coupled
equations that describes the essential features of low-frequency atmo-
spheric disturbances. His starting point was the most commonly used
model equations for two-dimensional acoustic-gravity waves of the
form (Stenflo and Stepanyants, 1995)

=D
H
1

4
,t x

2
2 (1)

=D ,t g x
2 (2)

where +x z/ /2 2 2 2 2, +D vt t , H is the density scale
height, g is the Brunt-Väisälä frequency, x z( , ) is the velocity po-
tential in which z represents the vertical direction, and x z( , ) is the
normalized density perturbation.

Substitution of the expression for the velocity, i.e.,
= +x zv ˆ ˆz x into Eqs. (1) and (2) results in

=

= +

J

J

( , ) ,

( , ) ,
t H t x

t g x

2 1
4

2

2

2

(3)

where =J f g f x g z g x f z( , ) ( / )( / ) ( / )( / ) is the Jacobian. For a
class of solutions of Eq. (3) of the form

= + +
= + +

a t k x b t k x z k
t k x t k x t z

[ ( )sin( ) ( )cos( ) ] / ,
[ ( )sin( ) ( )cos( ) ( )] ,

0 0 0 0

0 0 (4)

where k0 and 0 are constants, Stenflo (1996) derived the following set
of coupled equations for acoustic-gravity waves, given by,

+ + =
=

+ + =
+ =

+ =

a b s a
b a s b

s b b
s a a

a b

,
,

,
,

.

t

t

t g

t g

t

0 1 1

0 1 1

0 2
2

2

0 2
2

2

3 (5)

Here, the terms containing 1 and 2 appear when one considers, in
addition with the other effects, the dissipative terms proportional to

4 and 2 respectively in Eqs. (1) and (2), and the term proportional
to 3 corresponds to the damping term. Also, as in Ref. (Stenflo, 1996),

0 and g are two control parameters with
= + =Hk s˜ /(1 1/4 )0 0 0

2
1 0, = +s H k(1 1/4 )1

2
0
2 1 and =s 12 .

In this paper, we numerically study the dynamical behaviors of Eq.
(5) in absence of the dissipative and damping effects. By means of the
linear stability analysis and the Lyapunov exponent spectra, it is seen
that the nonlinear interaction of acoustic-gravity waves can result into
an ordered structure or chaos depending on whether the parameter s1,
associated with the density scale height H, is below or above its critical
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value.

2. Dynamical properties

In this section, we numerically study the dynamical properties of Eq.
(5). We focus mainly on the development of chaos as well as the ten-
dency to form ordered structures in absence of the dissipative effects
(i.e., terms proportional to 1, 2 and 3). Thus, setting = = = 01 2 3
and for convenience, redefining the variables, namely,

= = = =a u b v x y, , , and = z , Eq. (5) can be recast as

=

= +

= +

= +

= +

v s y

u s x

y vz v

x uz u

uy xv

˜ ,

˜ ,

,

,

.

du
dt
dv
dt
dx
dt g
dy
dt g
dz
dt

0 1

0 1

0
2

0
2

(6)

2.1. Linear stability analysis

In order to perform the stability analysis of system (6), we first find
its fixed points u v x y z( , , , , )0 0 0 0 0 . These can be obtained by equating the
right-hand sides of Eq. (6) to zero and finding solutions for u v x y, , , and
z. Thus, the fixed points so obtained are the origin =O (0,0,0,0,0) and

= +P (0,0,0,0, )g0
2 2 . Next, around the fixed points, we apply

the perturbations of the forms: = =u u u v v v, ,0 0
= =x x x y y y,0 0 and =z z z0 to obtain a linearized system of

perturbation equations: =d dt JX X/ , where = u v x y zX ( , , , , ) and J
is the Jacobian matrix. For each fixed point, the eigenvalues λ can be
obtained from the corresponding eigenvalue problem =J X X. The
stability of system (6) about the fixed points can then be studied by the
nature of these eigenvalues.

The Jacobian matrix corresponding to the fixed point O is given by

=J

s
s

0 ˜ 0 0
˜ 0 0 0
0 0 0

0 0 0
0 0 0 0 0

O g

g

0 1

0 1
2

0
2

0

(7)

and the corresponding eigenvalues of the matrix JO are given by = 0
and

= ± ±B B C1
2

( 4 ) ,2 1/2

(8)

where = + +B s˜ 2 g0
2

0
2

1
2 and =C s( ˜ )g1

2
0 0

2. We note that since
>C 0 and >B 0 for < <s0 11 , the values of λ in Eq. (8) are purely

imaginary, i.e., R = 0, implying that the fixed point O corresponds to a
stable center.

Next, for the stability of system (6) around the fixed point P, we
apply the similar perturbations as discussed before, i.e.,

= = = =u u v v x x y y, , , but with = +z z ( )g0
2 2 . The corre-

sponding Jacobian matrix JP and the corresponding eigenvalues λ are,
respectively, given by

=J

s
s

0 ˜ 0 0
˜ 0 0 0
0 0 0

0 0 0
0 0 0 0 0

,P

0 1

0 1

0
2

0

0
2

0
(9)

= 0 and

= ± ± +s s s s
2

[ (1 ) (1 ) (1 ) 4 ] ,0
1

2
1 1

2
1

1/2

(10)

in which we have used the expression = s˜0 1 0. From Eq. (10), we note

that the values of λ become purely imaginary for < s0 0.171 , and in
this case, the fixed point P corresponds to a stable center. However, for
values of s1 in < <s0.17 11 , λ has complex conjugate values with po-
sitive and negative real parts. Thus, it turns out that the system may be
unstable (with at least one R > 0) around the fixed point P for

< <s0.17 11 . From the above analysis it follows that the parameter s1,
which typically depends on the density scale height H for acoustic-
gravity waves, plays a crucial role for the stability and instability of
system (6) about the fixed points O and P. In fact, as the density scale
height H increases and so is s1, the system's stability tends to break
down, which can lead to the development of chaos as will be shown
later.

Fig. 1 shows the bifurcation diagram for stable and unstable regions
corresponding to the fixed points O and P. We plot λ, given by Eqs. (8)
and (10), with respect to the parameter s1 < <s(0 1)1 . The dash-dotted
line represents = 0 corresponding to the fixed point O. Also, for the
fixed point P, R = 0 in the interval < s0 0.171 . So, the system is
stable around both the fixed points in the domain < s0 0.171 . How-
ever, beyond this domain, i.e., in < <s0.17 11 , the system is shown to
be unstable around the fixed point P. In Fig. 1, the upper (solid line) and
lower (dashed line) branches are the plots of λ corresponding to the ±
sign in the square brackets in Eq. (10).

In the next subsection 2.2, we will calculate the Lyapunov ex-
ponents spectra to verify the existence of chaos with variations of the
parameters s1, 0 and g.

2.2. Lyapunov exponents

In order to calculate the Lyapunov exponents, we solve the system
of Eq. (6) with the initial condition =X u v x y z(0) ( (0), (0), (0), (0), (0)).
If system (6) is recast as =X u t v t x t y t z t( ( ), ( ), ( ), ( ), ( )), its variational
form of equation is given by

=d
dt

DX t J t DX t( ) ( ) ( ),L (11)

where D d dt/ , =DX I(0) 5 with I5 denoting the identity matrix of
order 5 and J t( )L the Jacobian matrix evaluated at the initial value
X (0), given by,

=J t

s
s

z t v t
z t u t

y t x t v t u t

( )

0 ˜ 0 0
˜ 0 0 0
0 ( ) 0 ( )

( ) 0 0 ( )
( ) ( ) ( ) ( ) 0

.L g

0 1

0 1
2

0

0
2

0

(12)

Fig. 1. Pitchfork bifurcation diagram showing the stable and unstable regions
of system (6) around the fixed points O and P. While the system is stable in the
region < s0 0.171 where = 0 or R = 0, it exhibits instability in the domain

<s0.17 11 with R > 0. The upper (solid red line) and lower (dashed blue
line) branches are corresponding to the ± sign in the square brackets of the
expression for λ [Eq. (10)]. The other parameter values are = 0.40 , = 1.01g ,
and = s˜0 1 0.
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Since DX (0) is non-singular and so is DX t( ), the solution of Eq. (11)
is given by

=
t

DX t DX tlim 1
2

ln[( )( ) ( )]
t

T
(13)

from which the Lyapunov exponents are obtained as the eigenvalues
= …i, 1, ,5i of the matrix . Given a fixed initial condition X (0) of the

dynamical system, the change of particle's orbit can be found by the
Liouville's formula: =t J t( ) tr( ( ))L t , where DX tdet ( )t ,

= = >DX Idet (0) det 1 00 5 and ‘tr’ denotes the trace of the
matrix J t( )L . Thus, for system (6) we have =DX tdet ( )

= >J t dtexp( tr( ( )) 1 0t
L0 , implying that at least one eigenvalue i is

positive, and so a chaotic orbit exists for a certain time period t[0 ].

3. Numerical analysis

We study the dynamical behaviors of solutions of system (6). To this
end, we numerically integrate Eq. (6) by using the 4-th order Runge-
Kutta scheme with a time step =t 10 3. The results are displayed in
Figs. 2–4. We note that for certain ranges of values of the parameters

0, g and s1, the system can exhibit stable solutions together with the
quasi-periodic and chaotic states. We study these behaviors in three
different cases as follows.

Stable Center: We note that for = 00 , and any values of g and s1 in
< <s0 11 , the eigenvalues corresponding to the fixed point O are zero

and purely imaginary, while those about the fixed point P are all zero.

In this case, the system exhibits stable solutions about the fixed points O
and P. The system also possesses a class of stable solutions for > 00 ,

> 0g and < s0 0.171 (cf. Sec. 2.1 and the bifurcation diagram in
Fig. 1). The corresponding time series (a) and the phase space plots (b)
are shown in Fig. 2.

Quasi-periodicity: From the linear stability analysis and the bifurca-
tion diagram (See Fig. 1) it is evident that the system tends to loose its
stability for >s 0.171 and any positive values of the frequencies 0 and

g. In fact, there are two subregions of the parameter s1: < s s0.17 1 2
and <s s 12 1 . In the former, the system exhibits quasi-periodicity
while in the latter it has chaotic behaviors. However, it is very difficult
to find a particular region of s1 in which the quasi-periodicity transits
into the chaotic states. Usually, in the quasi-periodic region, we observe
a stable torus whereas in the chaotic region, the torus structure breaks
down, giving rise to a chaotic structure. For a suitable choice of the
initial condition k k k k( , , , , )g0 1 0 1 0

2 2 , where =k 0.9 and
=k 0.81 together with the parameters = 1.50 , = 1.01g and =s 0.311

with = =s˜ 0.4650 1 0 , Fig. 3 shows that the torus structure forms at
=s 0.311 .
Chaotic property: We note that of the two fixed points O and P, the

point O always gives a stable center in every possible regions of the
parameters and the initial conditions. However, for the other fixed
point P, we have a stable center in the region of < s0 0.171 , while in
the other region < <s0.17 11 , the system exhibits either quasi-peri-
odicity or chaos. For a suitable choice of the initial condition and the
parameters, namely, k k k k( , , , , )g0 1 0 1 0

2 2 with =k 5,

Fig. 2. Stable oscillations: (a) the time series and (b) the phase-space diagram showing that the equilibrium point O corresponds to the stable center. The parameter
values are = 0.010 , =s 0.611 , = 1.01g and = =s˜ . 00 1 0 .

Fig. 3. Subplots (a) and (b) are, respectively, the time series and the phase space (torus) showing the quasi-periodicity of system (6) with parameter values = 1.50 ,
=s 0.311 , = 1.01g and = =s˜ 0.4650 1 0 .
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=k 5.81 , = 1.50 , = 1.01g , =s 0.911 , and = =s˜ 1.3650 1 0 , we show
that system (6), indeed, exhibits chaos, i.e., the torus which forms at

=s 0.311 (see Fig. 3) breaks down at a higher value of =s 0.911 (Fig. 4).
The corresponding time series (a), the phase space (b) and the Lya-
punov exponents (c) are shown in Fig. 4. Here, the appearance of at
least one positive Lyapunov exponent ensures the existence of chaos.

4. Conclusion

We have investigated the dynamical properties of five nonlinear
coupled Stenflo equations (Stenflo, 1996) that describe the evolution of
acoustic-gravity waves in atmospheric disturbances. A linear stability
analysis together with the analysis of Lyapunov exponents spectra are
carried out for different values of the control parameters. It is found
that the parameter s1, which typically depends on the density scale
height of acoustic-gravity waves, plays a vital role for the existence of
ordered structures as well as chaos of the Stenflo equations. While the
system exhibits stable solutions in the region < s0 0.171 , it can de-
scribe chaotic behaviors in the other region < <s0.17 11 . The present
results should be useful for understanding the chaotic properties of the
atmospheres of the Earth and other planets.
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A B S T R A C T   

The South Asian Association for Regional Cooperation (SAARC) plays a crucial role in fostering regional inte-
gration and cooperation among the countries of South Asia. However, the organization faces various challenges 
in achieving its objectives due to the complex and dynamic nature of the region. This study aims to assess the 
triage and efficacy of strategies employed by SAARC in pursuit of regional integrity in South Asia, using a Multi- 
Criteria Group Decision Making (MCGDM) technique. The assessment process involves several uncertainties 
which are resolved using q-rung orthopair hesitant fuzzy (q-ROHF) set. A distance measure is developed for q- 
ROHF sets and is applied to find the best strategy among six well known strategies, viz., SAARC Agreement on 
Trade in Services (SATIS), SAARC Development Fund (SDF), Establishment of South Asian University (SAU), 
SAARC Arbitration Council (SARCO), South Asian Preferential Trade Agreement (SAPTA) and South Asian Free 
Trade Area (SAFTA) through SWARA-TOPSIS based MCGDM technique. The MCGDM method is updated by 
developing several aggregation operators, viz., Archimedean q-ROHF weighted average, q-ROHF Einstein 
weighted average, q-ROHF Hamacher weighted average, q-ROHF Frank weighted average along with their 
geometric forms to combine decision makers’ individual decision. The result shows that the most effective 
strategy for the economic integration of SAARC is SDF; SATIS comes next as best strategy for economic inte-
gration of SAARC. The study reveals that SAU has least impact on the regional economic integration of SAARC. 
The achieved results reveals the age old proverb that “play on the stomach and sit on the back” – the members of 
SAARC who are by nature economically poor can afford to take initiative for a successful effective regionalization 
if it is planned to bring socio economic development of themselves.   

1. Introduction 

The eight-membered South Asian Association for Regional Cooper-
ation (SAARC) was the brainchild of the late president of Bangladesh, 
Zia-Ur-Rehman, with India, Pakistan, Bangladesh, Sri Lanka, Maldives, 
Nepal, Bhutan and Afghanistan as its members, aiming at mutual au-
tonomy and development with a peaceful, friendly and cooperative 
socio-economic environment around the region. Professor Bela Balassa 
[1] defined the five stages of economic integration and evinced that 
economic regionalization has a great impact on trade and development 
of the region. Some eminent researchers and economists [2–5] also 
claimed a positive relationship among economic integration, trade and 

development. According to Balassa [1], the final stage of economic 
integration for SAARC is SAEU (South Asian Economic Union) which is 
yet to be achieved after initiating so many strategies for it since the day 
of its initiation. Researchers from SAARC chambers of commerce and 
industry also showed that SAARC has achieved regional trade integra-
tion of one-third of its potential till date [6]. Lack of political will and 
poor infrastructure engendered some non-sensible and non-effective 
bilateral trade agreements in the region making the regionalization an 
impediment to growth in spite of facilitating it. This study wants to re-
view the strategies taken by SAARC for strengthening regional integra-
tion along with the economic development of the individual members as 
well as of the region as a whole. Instead of applying statistical and 
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econometric techniques to judge the efficacy of the SAARC strategies, 
the study uses the Multicriteria Group Decision Making (MCGDM) 
method in an imprecise environment as the determination of the efficacy 
and urgency of the strategies seems very difficult due to the existence of 
interdependent overlapping factors involved in it and contains uncertain 
data. 

It is evident that q-rung orthopair fuzzy set (q-ROFS) [7] possesses 
the greater capability of capturing uncertainties than other existing 
variants of fuzzy sets. The benefits of the use of q-ROFS is that it con-
siders the membership values and also non-membership values in a large 
domain. It must be noted that the sum of qth power of membership and 
non-membership is less than 1. 

Sometimes, DMs feel hesitant to assign suitable decision value by 
putting a single membership degree corresponding to some alternatives. 
In order to deal with such situations, in 2010, Torra [8] introduced 
hesitant fuzzy set (HFS) as a generalization of fuzzy sets [9] which 
permits the membership function to consider a set of possible values in 
[0, 1]. HFS are more effective than other traditional fuzzy set extensions 
for reflecting human perceptions and hesitancies with pessimistic and 
optimistic attitudes. 

Combining the concepts of HFS and q-ROFS, Wang et al. [10] sug-
gested q-rung orthopair hesitant fuzzy (q-ROHF) set (q-ROHFS). 
q-ROHFS becomes a powerful tool to deal with imprecision and hesi-
tancy. Based on power average (PA) operator and generalised Heronian 
mean (GHM) operator, Wang et al. [10] introduced q-ROHF weighted 
power generalised Heronian mean (q-ROHFWPGHM) and q-ROHF 
weighted power generalised geometric Heronian mean 
(q-ROHFWPGGHM) operators. More study on q-ROHF is deeply needed 
to apply it on various domains. Taking the advantages of q-ROHFSs and 
aggregation operators (AOs) [11–15] based on various t-norms and 
t-conorms (t-N&t-CNs) for data fusion process would be some significant 
works. 

In MCGDM contexts, the weight of the DMs and criteria plays a very 
important role in making reasonable decisions. The practical and theo-
retical knowledge of the DMs in different fields may not be the same. As 
a consequence, different DMs would consider different importance 
levels of criteria in assigning decision values corresponding to some 
alternatives based on such criteria. In such conditions finding the 
appropriate weight of criteria by considering the individual importance 
of criteria of all the DM’s as well as weights of the DMs is a complex 
problem. To overcome this situation Stepwise Weight Assessment Ratio 
Analysis (SWARA) method [16–18] is used. In this article, an extended 
technique is introduced for finding weights of the DMs in q-ROHF 
environment. 

Also, Technique for Order Preference by Similarity to Ideal Solution 
(TOPSIS) method [19] is a popular Multicriteria decision making 
(MCDM) technique used to select the most suitable alternative from a set 
of options. It considers both positive and negative aspects of alternatives 
and determines their relative closeness or similarity to an ideal solution. 
By incorporating multiple criteria, the TOPSIS method allows DMs to 
make informed decisions that account for various factors. 

Utilizing the benefits of the AOs and SWARA-TOPSIS method, few 
researchers [20–23] used this method to solve decision making prob-
lems in various fuzzy domains. 

A SWARA-TOPSIS based MCGDM method is developed in this article 
for selecting the specific priority of options for handling MCGDM 
problems using the capability and potentiality of the indicated opera-
tors. To establish the application potentiality of the developed method a 
case study relating to assess the triage and efficacy of strategies adopted 
by SAARC for regional integrity of south Asia has been performed. 

1.1. Literature review 

Narayan et al. [24] applied MCDM technique to find the performance 
ranking of the SAARC nations. Balassa [1] defined five stages of eco-
nomic integration in the year 1963. Sultana and Asrat [25] showed that 

South Asian Free Trade Area (SAFTA) has great potential to bring eco-
nomic development in SAARC. Mujaffar et al. [26] showed the impor-
tance of integration of SAARC and proved that the arch rivalry between 
India and Pakistan is the main reason for poor integration of SAARC. A 
fuzzy logic-based approach of strategic planning for next-generation 
SAARC was presented by Ahmad et al. [27]. In another research work, 
Kharel et al. [28] presented challenges of the implementation of 
e-governance in SAARC using fuzzy logic. In compare to other areas, 
research work for the development of SAARC by considering possibil-
istic uncertainties is very limited in the literature. 

The key contributions of this study are as follows:  

1. From the theoretical perspective, this research makes a substantial 
contribution by utilizing the parametric and adaptable Einstein, 
Hamacher, Frank operational framework in a q-ROHF context to 
process complicated data associated with decision-making.  

2. Based on Einstein, Hamacher, Frank t-N& t-CNs, various classes of 
Archimedean t-N&t-CNs (At-N&t-CNs), certain fundamental opera-
tional laws, viz., addition, multiplication, scaler multiplication and 
exponential are introduced.  

3. A series of AOs viz., q-ROHF weighted average (q-ROHFWA), 
q-ROHF weighted geometric (q-ROHFWG), q-ROHF Einstein 
weighted average (q-ROHFEWA), q-ROHF Einstein weighted geo-
metric (q-ROHFEWG), q-ROHF Hamacher weighted average 
(q-ROHFHWA), q-ROHF Hamacher weighted geometric 
(q-ROHFHWG), q-ROHF Frank weighted average (q-ROHFFWA), 
q-ROHF Frank weighted geometric (q-ROHFFWG) operator have 
been developed to aggregate uncertain data. 

4. A distance measure is introduced to calculate the proximity or sim-
ilarity between alternatives or criteria.  

5. A SWARA-TOPSIS based MCGDM method is developed for selecting 
the specific priority of options for handling MCGDM problems using 
the capability and potential of the indicated operators. 

6. From the application viewpoint, a problem related to triage and ef-
ficacy of strategies adopted by SAARC for regional integrity of south 
Asia has been performed using the developed method.  

7. The superiority of the proposed method is demonstrated through a 
comparative analysis with existing methods. 

1.2. Organization of the study 

This article is organized in such a manner that some basic definitions 
and properties are discussed in Section 2. In Section 3, Some AOs viz., 
q-ROHFWA, q-ROHFWG, q-ROHFEWA, q-ROHFEWG, q-ROHFHWA, 
q-ROHFHWG, q-ROHFFWA and q-ROHFFWG for aggregating q-ROHF 
information are presented along with their desired properties. Also, here 
a distance measure for q-ROHFS is proposed. Section 4 elegantly de-
scribes an q-ROHF-SWARA-TOPSIS MCGDM method that uses the 
developed AOs and distance measure. A case study related to assess the 
triage and efficacy of strategies adopted by SAARC for regional integrity 
of south Asia is considered to show the validity and superiority of the 
proposed method in Section 5. Also, the sensitivity analysis is investi-
gated in Section 6. A brief comparative analysis is presented in Section 7. 
Finally, conclusion and future studies are stated in Section 8. 

2. Preliminaries 

In this section, fundamental definitions related to q-ROFS [7], HFS 
[8], q-ROHFS [10] and the operations performed on q-ROHFS are 
reviewed. 

Definition 1. ([7]). Let U be a universe of discourse, a q-ROFS ̃А on U 

is known by 

А̃={(u, γА̃(u), ηА̃(u))|u ∈U },
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where γА̃: U →[0,1] and ηА̃: U →[0,1] indicates, respectively, the degree 
of membership and the degree of non-membership of the element u ∈ U 

to the set А̃, and satisfies the condition that 

0≤ γq
А̃
(u) + ηq

А̃
(u) ≤ 1,q≥ 1.

The degree of indeterminacy is given by πА̃(u) =

[1 − γq
А̃
(u) − ηq

А̃
(u)]

1/q. 
For convenience, Yager [7] called (γА̃(u), ηА̃(u)) as a q-ROFN and is 

denoted by α̃ = (γ,η). 

Definition 2. ([8]). Let X be any set. An HFS E on X can be represented 
as 

E ={〈x, hE(x)〉|x∈X}.

in which hE(x) represents a collection of possible finite values lying 
within [0, 1], signifying membership degrees for x ∈ X to the set E. 

Definition 3. ([10]). The q-ROHFS P̃ on X is expressed by 

P̃ ={〈h, ĥ
P̃
(x)〉|x∈X},

in which ĥ
P̃
(x) represents a collection of a number of possible q-ROFNs 

(γ, η). For convenience, Wang et al. [10] named 
ĥ

P̃
(x) =

⋃
(γ,η)∈ĥ

P̃
(x){(γ, η)} a q-ROHF number (q-ROHFN) and is denoted 

by ℘̃ = (μ,ν) =
⋃

(γ,η)∈(μ,ν){(γ,η)}. The indeterminacy of ℘̃ is defined by 

π℘̃ =
1
|℘̃|

∑

(γ,η)∈(μ,ν)
(1 − (γq + ηq))

1/q
.

The score function, S(℘̃) and accuracy function, A(℘̃) of any 
q-ROHFN ℘̃ = (μ, ν) to compare between two q-ROHFNs as follows: 

Definition 4. ([10]). The score function, S(℘̃) and accuracy function, 
A(℘̃) of any q-ROHFN ℘ = (μ, ν) are presented as, respectively 

S(℘
∼

) =
1
2

(

1 +
1

|℘
∼

|

∑

(γ,η)∈(μ,ν)
(γq − ηq)

)

, and A(℘ ∼) =
1

|℘ ∼|

∑

(γ,η)∈(μ,ν)
(γq + ηq),

(1)  

where |℘̃| denotes the number of elements in ℘̃. 

Definition 5. ([10]). The ordering of two q-ROHFNs ℘̃i = (μi, νi)

(i= 1, 2) are given by  

(1) If S(℘̃1) > S(℘̃2), then ℘̃1 is superior to ℘̃2, denoted by ℘̃1 ≻ ℘̃2;  
(2) If S(℘̃1) = S(℘̃2), then ℘̃1 ≻ ℘̃2 if A(℘̃1) > A(℘̃2) and if 

A(℘̃1) = A(℘̃2), then ℘̃1 ≈ ℘̃2.  

Definition 6. ([10]). Let ℘̃ = (μ, ν) be any q-ROHFN. The indetermi-
nacy of ℘̃ is defined as follows: 

π℘̃ =(1 / |℘̃|)
∑

(γ,η)∈(μ,ν)
(1 − (γq + ηq))

1/q
.

Definition 7. ([10]). Let ℘̃ = (μ, ν), ℘̃1 = (μ1, ν1) and ℘̃2 = (μ2, ν2)

represent three q-ROHFNs. Four fundamental operations are presented 
as follows:  

(1) ℘̃1 ⊕ ℘̃2 =
⋃

(γi ,ηi)∈(μi ,νi),i=1,2{((γ1
q + γ2

q − γ1
qγ2

q)
1/q

,η1η2)},  

(2) ℘̃1 ⊗ ℘̃2 =
⋃

(γi ,ηi)∈(μi ,νi),i=1,2

{(
γ1γ2, (η1

q + η2
q − η1

qη2
q)

1
q

)}
,  

(3) λ℘̃ =
⋃

(γ,η)∈(μ,ν){((1 − (1 − γq)
λ
)
1/q

,ηλ)}, (λ> 0),  

(4) ℘̃λ =
⋃

(γ,η)∈(μ,ν){(γλ, (1 − (1 − ηq)
λ
)
1/q

)}, (λ> 0). 

3. Development of At-N&t-CNs and AOs on q-ROHFNs and a 
distance measure 

In this section, several At-N&t-CNs are defined using increasing and 
decreasing generators to represent four fundamental operations of 
q-ROHFNs. Using those operations several AOs are introduced in this 
section. Also, a distance measure is defined on the q-ROHF environment. 

3.1. Different operations corresponding to generating functions 

Let ℘̃ = (μ, ν), ℘̃1 = (μ1, ν1) and ℘̃2 = (μ2, ν2) represent three 
q-ROHFNs. Several classes of operations are defined as follows:  

• Hamacher classes 

Hamacher t-N&t-CNs-based operational laws can be achieved by 
considering f(t) = log

( ρ+(1− ρ)t
t

)
, ρ> 0, as  

(1) ℘̃1⊕H℘̃2 =
⋃

(γ1,η1)∈(μ1,ν1),

(γ2,η2)∈(μ2,ν2)

{( (
γq

1+γq
2 − γq

1γq
2 − (1− ρ)γq

1γq
2

1− (1− ρ)γq
1γq

2

)1/q
,

(
ηq

1ηq
2

ρ+(1− ρ)(ηq
1+ηq

2 − ηq
1ηq

2)

)1/q
)}

;  

(2) ℘̃1⊗H℘̃2 =
⋃

(γ1, η1) ∈ (μ1, ν1),

(γ2, η2) ∈ (μ2, ν2)

{((
γq

1γq
2

ρ+(1− ρ)(γq
1+γq

2 − γq
1γq

2)

)1/q
,

(
ηq

1+ηq
2 − ηq

1ηq
2 − (1− ρ)ηq

1ηq
2

1− (1− ρ)ηq
1ηq

2

)1/q
)}

;  

(3) λ℘̃ =
⋃

(γ,η)∈(μ,ν)

{( (
(1+(ρ− 1)γq)λ

− (1− γq)λ

(1+(ρ− 1)γq)λ
+(ρ− 1)(1− γq)λ 

)1/q
,

(
ρηλq

(1+(ρ− 1)(1− ηq))λ
+(ρ− 1)ηλq

)1/q 
)}

;  

(4) ℘̃λ =
⋃

(γ,η)∈(μ,ν)

{ ((
ργλq

(1+(ρ− 1)(1− γq))λ
+(ρ− 1)γλq 

)1/q
,

(
(1+(ρ− 1)ηq)λ

− (1− ηq)λ

(1+(ρ− 1)ηq)λ
+(ρ− 1)(1− ηq)λ

)1/q
)}

. 

Algebraic and Einstein t-N&t-CNs based operational laws of 
q-ROHFNs are generated from Hamacher operation if ρ= 1 and 2 are 
considered, respectively, on those operations.  

• Frank classes 

For f(t) = log
( ζ− 1

ζt − 1

)
, the operations are defined as follows (ζ> 1 and 

λ> 0):  

(1) ℘̃1⊕F℘̃2 =
⋃

(γ1,η1) ∈ (μ1,ν1),

(γ2,η2) ∈ (μ2,ν2)

{((

1 − logζ

(

1+ (ζ1− γq
1 − 1)(ζ1− γq

2 − 1)
ζ− 1

)

)1/q
,

(

logζ

(

1+ (ζηq
1 − 1)(ζηq

2 − 1)
ζ− 1

))1/q)}

;  

(2) ℘̃1⊗F℘̃2 =
⋃

(γ1, η1) ∈ (μ1, ν1),

(γ2, η2) ∈ (μ2, ν2)

{((

logζ

(

1+ (ζγq
1 − 1)(ζγq

2 − 1)
ζ− 1

))1/q
,

(

1 − logζ

(

1 +
(ζ1− ηq

1 − 1)(ζ1− ηq
2 − 1)

ζ− 1

))1/q)}

; 
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(3) λ℘̃ =
⋃

(γ,η)∈(μ,ν)

{((
1 − logζ

(
1 +

(ζ1− γq
− 1)λ

(ζ− 1)λ− 1

))1/q
,
(

logζ

(
1 +

(ζηq
− 1)λ

(ζ− 1)λ− 1

)

)1/q
)}

;  

(4) ℘̃λ =
⋃

(γ,η)∈(μ,ν)

{((
logζ

(
1 +

(ζγq − 1)λ

(ζ− 1)λ− 1

))1/q
,
(

1 − logζ

(
1 +

(ζ1− ηq
− 1)λ

(ζ− 1)λ− 1

)

)1/q
)}

. 

3.2. Development of q-ROHF archimedean AOs 

In this subsection, q-ROHF WA and WG AOs are proposed using At- 
N&t-CNs. Following that, different forms of AOs are generated for 
various types of decreasing generators f . 

3.2.1. Archimedean operation-based q-ROHF WA (Aq-ROHFWA) 
operators 

Definition 8. Let {℘̃1, ℘̃2,…, ℘̃n} represent a set of n q-ROHFNs, and 
ω = (ω1,ω2,…,ωn)

T represents the corresponding weight vector such 
that 

∑n
i=1ωi= 1 with ωi ∈ [0,1]. Then, Aq-ROHFWA operator is defined 

as 

Aq − ROHFWA(℘̃1, ℘̃2,…, ℘̃n)=⊕A
n
i=1(ωi⊙A℘̃i),

Several properties of the above-defined Aq-ROHFWA operator are 
described below. 

Theorem 1. Let ℘̃i = (μi, νi) (i= 1,2,…, n) represent a collection of n 
q-ROHFNs. Then based on Aq-ROHFWA AO, the fused value also becomes a 
q-ROHFN such that 

Aq − ROHFWA(℘̃1, ℘̃2,…, ℘̃n)

=
⋃

(γi ,ηi)∈(μi ,νi),
i=1,2,…,n

{((

g− 1

(
∑n

i=1
ωig(γq

i )

))1/q

,

(

f − 1

(
∑n

i=1
ωif (ηq

i )

))1/q)}

(2)  

proof. Please follow Appendix A for proof of this theorem. 

3.2.2. Different forms of Aq-ROHFWA operator 
In this subsection, several classes of AOs are discussed.  

• Hamacher Operation based 

The Aq-ROHFWA operator transformed to the q-ROHF Hamacher 
WA (q-ROHFHWA) operator if f(t) = log

( ρ+(1− ρ)t
t

)
, ρ> 0, defined as: 

q − ROHFHWA(℘̃1, ℘̃2,…, ℘̃n)

=
⋃

(γi, ηi) ∈ (μi, νi)

i= 1, 2,…, n

{(( ∏n
i=1(1 + (ρ− 1)γq

i )
ωi −

∏n
i=1(1 − γq

i )
ωi

∏n
i=1(1 + (ρ− 1)γq

i )
ωi + (ρ− 1)

∏n
i=1(1 − γq

i )
ωi

)1/q

,

(
ρ
∏n

i=1ηqωi
i∏n

i=1(1 + (ρ− 1)(1 − ηq
i ))

ωi + (ρ− 1)
∏n

i=1ηqωi
i

)1/q
)}

. (3) 

It is mentioned that in Eq. (3) for ρ= 1 and 2, q-ROHFHWA operator 
is changed into q-ROHFWA and q-ROHFEWA operator, respectively.  

• Frank Operation based 

If f(t) = log
( ζ− 1

ζt − 1

)
, ζ> 1, the Aq-ROHFWA operator changes to 

q-ROHF Frank WA (q-ROHFFWA) operator presented as: 

q − ROHFFWA(℘̃1, ℘̃2,…, ℘̃n)

=
⋃

(γi ,ηi)∈(μi ,νi)

i=1,2,…,n

{((

1 −
log
(

1 +
∏n

i=1

(
ζ1− γq

i − 1
)ωi
)

log ζ

)1/q

,

(
log
(

1 +
∏n

i=1

(
ζηq

i − 1
)ωi
)

log ζ

)1/q)}

.

(4)  

3.2.3. q-ROHF Archimedean geometric (Aq-ROHFWG) AOs 
In the following subsection, some q-ROHF Archimedean geometric 

AOs are proposed. 

Definition 9. Let {℘̃1, ℘̃2,…, ℘̃n} represent a group of q-ROHFNs, and 
the weight vector be ω = (ω1,ω2,…,ωn)

T where 
∑n

i=1ωi= 1 with 

ωi ∈ [0,1]. Then, Aq-ROHFWG operator is a mapping ℘
∼ n

→℘
∼

, defined as 

Aq − ROHFWG(℘̃1, ℘̃2,…, ℘̃n)=⊗A
n
i=1(℘i

ωi ),

Theorem 2. Let ℘i = (μi, νi) (i= 1, 2,…, n) be a collection of q-ROHFNs. 
The fused value obtained by Aq-ROHFWG operator also becomes a q-ROHFN 
such that 

Aq − ROHFWG(℘̃1, ℘̃2,…, ℘̃n)

=
⋃

(γi ,ηi)∈(μi ,νi)
i=1,2,…,n

{((

f − 1

(
∑n

i=1
ωif (γq

i )

))1/q

,

(

g− 1

(
∑n

i=1
ωig(ηq

i )

))1/q)}

.

(5)  

proof. Theorem 2’s proof is same as Appendix A. 

3.2.4. Different forms of Aq-ROHFWG operator 
If different forms are assigned to the decreasing generator f , the 

following q-ROHF WG operators can be deduced:  

• Hamacher Operation-based AO 

The Aq-ROHFWG operator becomes q-ROHF Hamacher WG 
(q-ROHFHWG) operator when f(t) = log

( ρ+(1− ρ)t
t

)
, ρ> 0, 

q − ROHFHWG(℘̃1, ℘̃2,…, ℘̃n)=
⋃

(γi, ηi) ∈ (μi, νi)

i= 1, 2,…, n
{((

ρ
∏n

i=1(γi)
qωi

∏n
i=1(1 + (ρ− 1)(1 − γq

i ))
ωi + (ρ− 1)

∏n
i=1(γ

q
i )

ωi

)1/q

,

( ∏n
i=1(1 + (ρ− 1)ηq

i )
ωi −

∏n
i=1(1 − ηq

i )
ωi

∏n
i=1(1 + (ρ− 1)ηq

i )
ωi + (ρ− 1)

∏n
i=1(1 − ηq

i )
ωi

)1/q
)}

. (6) 

If the above equation ρ= 1, 2 is considered q-ROHFHWG operator 
turned, respectively, into q-ROHFWG and q-ROHFEWG operators.  

• Frank Operation-based AO 

If f(t) = log
( ζ− 1

ζt − 1

)
, ζ> 1, then the Aq-ROHFWG operator turns into 

the q-ROHF Frank WG (q-ROHFFWG) operator defined as: 

q − ROHFFWG(℘̃1, ℘̃2,…, ℘̃n)
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=
⋃

(γi ,ηi)∈(μi ,νi)

i=1,2,…,n

{((
log
(

1 +
∏n

i=1

(
ζγq

i − 1
)ωi
)

log ζ

)1/q

,

(

1 −
log
(

1 +
∏n

i=1

(
ζ1− ηq

i − 1
)ωi
)

log ζ

)1/q)}

.

(7) 

The above-proposed operators satisfy Boundary, Idempotency, and 
Additivity properties (See Appendix B-D). 

3.3. Distance measures for q-ROHFNs 

In this subsection, the normalized distance measure and weighted 
normalized distance measure between two q-ROHFSs are defined and 
their necessary properties are stated. 

Definition 10. Let P̃ = {℘̃1, ℘̃2,…, ℘̃n} and Q̃ = {q̃1, q̃2,…, q̃n}

denote two sets of q-ROHFNs, where ℘̃i =
⋃

(γ
℘̃ i
,η

℘̃ i
)∈(μ

℘̃ i
,ν

℘̃ i
)

{(
γ℘̃ i

, η℘̃ i

) }

and ̃q i =
⋃

(γ
q̃ i
,η

q̃ i
)∈(μ

q̃ i
,ν

q̃ i
){(γq̃ i

,η
q̃ i
)}, and {ωi: 0≤ ωi ≤ 1} (i= 1, 2,…, n) be 

the respective weight vectors of q-ROHFNs with 
∑n

i=1ωi = 1. The 
normalized and weighted normalized distance between P̃ and Q̃ is 
formulated as follows:  

• Normalized distanced measure 

d(P̃ , Q̃ )=
1
n
∑n

i=1

(
1

2|℘̃i|

∑|℘̃i |

s=1
min

l

(
1
2

(⃒
⃒
⃒γq

℘̃is
− γq

q̃ il

⃒
⃒
⃒+

⃒
⃒
⃒ηq

℘̃is
− ηq

q̃il

⃒
⃒
⃒+

⃒
⃒
⃒

(
γq

q̃ il

− γq
℘̃is

)
+
(

ηq
q̃ il
− ηq

℘̃is

)⃒
⃒
⃒

))

+
1

2|q̃ i|

∑|q̃ i |

l=1
min

s

(
1
2

(⃒
⃒
⃒γq

℘̃is
− γq

q̃ il

⃒
⃒
⃒+

⃒
⃒
⃒ηq

℘̃is

− ηq
q̃ il

⃒
⃒
⃒+

⃒
⃒
⃒

(
γq

q̃il
− γq

℘̃is

)
+
(

ηq
q̃ il
− ηq

℘̃is

)⃒
⃒
⃒

))
)

(8)    

• Weighted normalized distance measure 

dw(P̃ , Q̃ )=
∑n

i=1
ωi

(
1

2|℘̃i|

∑|℘̃i |

s=1
min

l

(
1
2

(⃒
⃒
⃒γq

℘̃is
− γq

q̃ il

⃒
⃒
⃒+

⃒
⃒
⃒ηq

℘̃is
− ηq

q̃ il

⃒
⃒
⃒+

⃒
⃒
⃒

(
γq

q̃il

− γq
℘̃is

)
+
(

ηq
q̃ il
− ηq

℘̃is

)⃒
⃒
⃒

))

+
1

2|q̃ i|

∑|q̃ i |

l=1
min

s

(
1
2

(⃒
⃒
⃒γq

℘̃is
− γq

q̃ il

⃒
⃒
⃒+

⃒
⃒
⃒ηq

℘̃is

− ηq
q̃ il

⃒
⃒
⃒+

⃒
⃒
⃒

(
γq

q̃il
− γq

℘̃is

)
+
(

ηq
q̃ il
− ηq

℘̃is

)⃒
⃒
⃒

))
)

(9)   

The normalized distance measure satisfies following properties:  

i) 0≤ d(P̃ , Q̃ ) ≤ 1; ii) d(P̃ , Q̃ )= 0 iff P̃ = Q̃ ; iii) d(P̃ , Q̃ ) = d(Q̃ ,P̃ ); 
iv) If P̃ ⊆ Q̃ ⊆ R̃ , then d(P̃ , Q̃ )≤ d(P̃ , R̃ ) and d(Q̃ ,R̃ )≤ d(P̃ , R̃ ). 
The properties for dw is same as properties of d 

4. A SWARA-TOPSIS-based MCGDM technique under q-ROHF 
environment 

In this section, a novel SWARA-TOPSIS-based MCGDM method is 
introduced for q-ROHF environment. The SWARA method incorporates 
a step for pairwise comparisons of criteria to determine their relative 
weights. This helps DMs to quantify the importance of each criterion, 
providing a structured approach to allocate weights and avoid arbitrary 

or subjective judgments. In this article, weights of assessment criteria 
are evaluated by SWARA method in q-ROHF environment. Also, TOPSIS 
method is used to determine the ranking of the alternatives from best to 
worst solutions. The brief descriptions of the developed method are 
given as follows: 

Step I: Formulate the MCGDM problem and then create the decision 
matrix: 

suppose E= {E
(1)
,E

(2)
,…,E

(l)
} is a group of l experts, and a 

collection of alternatives is represented as Z = {Z 1,Z 2,…,Z m}. Let 
C = {C 1,C 2,…,C n} denotes a collection containing attributes. As-
sume ℘̃(k)

ij indicates the evaluation value of the alternative Z i 

(i= 1,2,…,m) concerning the criteria C j (j= 1, 2,…, n) given by DM 

E
(k). Suppose, P(k) = [℘̃(k)

ij ]m×n is the q-ROHF decision matrix 

(q-ROHFDM) which is evaluated by DM E(k). 

Step II: Calculate the weights of DMs: 

Determining the weights of the DMs during the decision-making 
process is crucial. Let d̃ (k) = (μk, νk) be the importance of the k th DM. 
Then the weight of the kth expert is obtained by using the expression 
[29]: 

φ(k) =

(
1/
⃒
⃒d̃

(k)⃒⃒
)∑

(γk ,ηk)∈(μk ,νk)
(γq

k + (πq
kγq

k/(γ
q
k + ηq

k)))
∑l

k=1

(
1/
⃒
⃒d̃

(k)⃒⃒
)∑

(γk ,ηk)∈(μk ,νk)
(γq

k + (πq
kγq

k/(γ
q
k + ηq

k)))
. (10)   

Step III: Aggregate the q-ROHFDM. 

To generate the aggregated q-ROHFDM, all individual matrices need 
to be merged into one group using DMs’ opinions. The Aq-ROHFHWA 
operator is applied, and obtain P = [℘̃ij]m×n, where ℘̃ij = (μij,νij) = Aq −

ROHFHWA(℘̃(1)
ij , ℘̃(2)

ij ,…, ℘̃(l)
ij ). 

Step IV: Calculate the criteria weights. 

The SWARA model is used to prioritize the criteria and compares 
pair-wise from upper to lower-ranking criteria. Resulting, a relative 
coefficient is assessed, and the weight is obtained and evaluated for 
solving MCGDM problems. Thus, we have the following steps for the 
SWARA model: 

Step IV-A: The importance of criteria is taken differently depending 
on the DM’s knowledge. Let Ĩ kj = (μ̃kj, ν̃kj) for k= 1, 2,…, l; 
j= 1,2,…, n be the criteria importance provided by DMs. First, 
aggregate the Ĩ kj values to combined importance values of each 
criterion as follows: 

I
∼

j = Aq − ROHFHWA
(

I
∼

1j,I
∼

2j,…,I
∼

lj

)

.

Calculate score values S(Ĩ j) of q-ROHFNs using Eq. (1) is 
determined. 

Step IV-B: Prioritize the criteria. The criteria are organized based on 
the DM’s preference from the most to the least important criterion. 
Step IV-C: Evaluate the relative significance, αj, of the score value. 
The relative significance is estimated from the criteria that are cho-
sen in the second rank, and succeeding relative significance is eval-
uated by differencing criterion j and criterion j − 1. 
Step IV-D: Compute the relative coefficient. The coefficient kj is 
given by 
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κj =

{
1, j= 1

αj+1, j ≥ 1, (11)  

where αj is the relative significance of score degree. 

Step IV-E: Assess the weight. The final weight pj is given by 

ϱj =

⎧
⎨

⎩

1, j= 1
ϱj− 1

κj
, j ≥ 1,

(12)   

Step IV-F: Calculate the criteria weight. The weights are estimated 
by 

wj =
ϱj

∑n
j=1ϱj

. (13)   

Step V: Define the best value (BV) and the worst value (WV). 

In the proposed method, obtaining the best and worst values for each 
criterion is very important for DMs. Here, the best and worst values are 
calculated in the form of the q-ROHF-BV and q-ROHF-WV which are 
denoted by 

℘
∼ +

=
(

μ+
j , ν+

j

)
=

{
(
μij, νij

)
⃒
⃒
⃒
⃒ max

i
S
(

℘
∼

ij

)}

, (14)  

℘
∼ −

=
(

μ−
j , ν−

j

)
=

{
(
μij, νij

)
⃒
⃒
⃒
⃒ min

i
S
(

℘
∼

ij

)}

. (15)   

Step VI: Calculation of distance measures from best and worst 
solution. 

By Eq. (9), calculate the weighted distance dw(Z i, ℘̃+) between 
options Z i (i= 1,2,…,m) and the q-ROHF-BV (℘̃+) and the weighted 
distance dw(Z i, ℘̃− ) between the options Z i and the q-ROHF-WV (℘̃− ). 

Step VII: Calculation of relative closeness coefficient (RC): 

Ultimately, the relative closeness coefficient can be calculated by 
using the below formulation: 

RC(Z i)=
dw(Z i, ℘̃−

)

dw(Z i, ℘̃−
) + dw(Z i, ℘̃+

)
. (16)   

Step VIII: Select the highest value among the values RC(Z i), i=
1, 2,…,m. The corresponding Z i represents the best option. 
Step IX: End. 

The flowchart of the proposed method is described in Fig. 1. 

5. Formulating the problem 

From different theoretical and empirical studies of SAARC countries, 
it is clear that SAARC has great potentiality to become an economically 
developed integrated region; but the target is not achieved yet after 
adopting so many strategies during its 38 years of its journey. Various 
statistical, mathematical and econometric techniques were applied by 
different researchers at different times to evaluate the integration pro-
cess of SAARC by using the data of export, import, migration, poverty, 
inequality and per capita income, Human Development Index (HDI), 
flow of capital in the member countries of SAARC. Many have invented 
various indices to measure the extent of integration of SAARC. All the 
studies have concluded that SAARC has not been able to achieve its 
target of reaching South Asian Economic Union (SAEU) till date and the 
progress is very slow compared to its potentiality. This study wants to 
take the initiative to analyse the strategies taken by SAARC over the 
years and make a proper assessment of them according to their capa-
bility and efficiency not by using the econometric and statistical tech-
niques which are used already by plenty of studies, but by a new manner 
which acknowledges the fuzziness or the imprecise nature and outcome 
of the SAARC strategies in an uncertain environment created by always 
politically conflicting members of SAARC. This study tries to rank the 
different strategies based on SWARA-TOPSIS-based MCGDM technique 
in q-ROHF environment and tries to find the best one which should be 
emphasized to get a successfully integrated regional block of SAARC. 

Fig. 1. Flowchart of the proposed methodology.  
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5.1. Posturing the goal of SAARC as MCGDM 

The developed MCGDM method is now applied in this section to 
assess triage and efficacy of strategies adopted by SAARC for regional 
integrity of south Asia. The MCGDM problem under this context is 
developed as follows: 

5.1.1. Identify the problem: Achievement of regional economic integration 
of SAARC 

The formation of SAARC and its’ strive for achieving an intensely 
unified regional block in form of South Asian Economic Union (SAEU) 
might bring a greater scope for intra-regional mobility of labour along 
with the trade and financial sector mobility in a peaceful, cooperative, 
collaborative, and coordinated manner among the members who are 
very much similar in their level of economic development. The end of 
cross-border violence among members, especially, between India and 
Pakistan-two big members of SAARC may be both the reason and the 
consequence of success of SAARC promises. 

5.1.2. Identify the alternatives 
The different initiatives taken by SAARC secretariat and the gov-

erning body for strengthening regional cooperation and economic 
integration in South Asia are viewed as the different alternatives for 
MCGDM technique of SAARC secretariat. 

SAPTA (Z 1): SAARC Preferential Trade Agreement (SAPTA) was the 
important initiative for economic integration taken by the SAARC 
secretariat, first mentioned by Sri Lanka in the sixth summit of SAARC 
held in December 1991. It was designed to encourage and aggravate 
mutual trade and economic cooperation within the SAARC through tariff 
concession. As trade is supposed to be the ‘Engine of Growth’, emphasis 
was laid on expansion of intra-regional trade through SAPTA. 

SARCO (Z 2): The Agreement for establishment of SAARC Arbitra-
tion Council (SARCO) was signed by the SAARC members during thir-
teenth Summit on 12th November 2005 in Dhaka to pledge an 
authorized organization within the region for fair and efficient settle-
ment through conciliation and arbitration of commercial, investment 
and such other disputes as may be referred to the Council by agreement. 
It was felt that for expansion of trade and having sufficient economic 
growth in the region, intra-regional capital flow in form of investment is 
very crucial which can enable to increase in the regional integration of 
SAARC also. Establishment of SARCO was supposed to make such in-
vestment more cost-effective and by resolving the disputes among 
members it will enhance regional peace and mutual cooperation. 

SAFTA (Z 3): The members of SAARC established the South Asian 
Free Trade Area (SAFTA) to promote and enhance mutual trade and 
economic cooperation among themselves, through exchanging conces-
sions in accordance with this Agreement. There was a transformation of 
SAPTA (South Asian Preferential Trade Agreement) to South Asian Free 
Trade Agreement (SAFTA) in the year 2006 was mostly targeted to 
elimination of all trade barriers of goods among member countries to 
accelerate and smoothen the international trade of goods among the 
members of SAARC and to further enhance the intra-regional economic 
integration. It tried to bring economic cooperation by reducing the tariff 
and barriers by and providing special preference to the Least Developed 
Nations among the SAARC 

SATIS (Z 4): SAARC Agreement on Trade in Services (SATIS) was 
penned by the SAARC members in the year 2010 which came into effect 
in 2012 was aimed at achieving liberalization in trade in services among 
members enhancing more dense regional integration by maximizing the 
recognition of potentiality of the region for trade and development by 
increasing intra-regional investment and production opportunities. 

SAU (Z 5): Establishment of the South Asian University in the year 
2010 was a promising step to the way to more deepening regional 
integration of SAARC. The objective of establishing the South Asian 
University was to enhance education in the South Asian community 
encouraging an understanding of one another’s view point and 

strengthen regional consciousness along with providing liberal and hu-
mane education to the brightest and the most dedicated students of 
South Asia so that a new class of quality leadership is nurtured and 
enhancing the capacity building of the South Asian Nations in science, 
technology and other areas of higher learning vital for improving their 
quality of life such as information technology, biotechnology and 
management sciences, etc. 

SDF (Z 6): SAARC Development Fund is another positive step to-
wards the proposal of South Asian Economic Union (SAEU). SDF was 
established by heads of all eight SAARC member states during 16th 
SAARC summit at Thimphu, Bhutan in April 2010. Its Governing Council 
comprises finance ministers of these eight countries. It is the replace-
ment of South Asian Development Fund (SADF), which was launched in 
1996 by merging two existing facilities called SAARC Fund for Regional 
Projects (SFRP) and SAARC Regional Fund. SDF was designed as um-
brella financial mechanism for all SAARC developmental projects and 
programs. Its core objectives are to promote welfare of the people of 
SAARC region, improve their quality of life and accelerate economic 
growth, social progress and poverty alleviation in the region. It funds 
projects in South Asia region via three windows viz. Social Window, 
Economic Window and Infrastructure Window. 

5.1.3. Identify the criteria 
There are three main criteria for deciding the best initiative taken by 

SAARC. First is to see how far these initiatives are capable to bring 
economic integration (C 1), second is to review how far the initiatives by 
SAARC can help to bring cultural integration in the region (C 2) and 
finally to check how they are able to bring societal integration (C 3). All 
the three decision criteria include several sub-criteria on the basis of 
which the best alternative selection by SAARC can be made. The sub- 
criteria can be explained in the following way. 

Export Integration (C 11) and Import Integration (C 12): The 
primary requirement of a regional integration is the homogenization in 
terms of its economic variables. Trade of goods and services is the key 
economic variable proficient in linking the world in a single thread. We 
can have a clear picture of trade integration of a regional block when 
viewed in terms of both export (Export Integration – Iex) and imports 
(Import Integration- Iim). Both the export and import integration of the 
individual members as well as the region as a whole can be viewed 
together in terms of (a) percentage share of intra-SAARC export (or 
import) in respective Gross Domestic Product (GDP) (b) percentage 
share of intra-SAARC export (or import) in total volume of international 
export (or import) and (c) ratio of connected countries for export (or 
import) to the total number of members of the region SAARC. 

Intra-regional flow of FDI (C 13) and intra¡regional flow of re-
mittances (C 14): Another essential pre-requisite for regional integra-
tion is to have integration in financial sector of the member countries 
and the financial sector integration can be measured by the intra- 
regional flow of Foreign Direct Investment (IFDI) and intra-regional 
flow of remittances (Irem) coming from intra-regional migration. FDI is 
an important source of foreign capital which can stimulate economic 
development of the economy while remittances from the citizens 
working abroad is an important source of much-needed fund especially 
in developing country. FDI and Remittances integration of SAARC are 
measured in terms of three variables i.e. GDPs, total FDI of the countries 
and the connecting members of the region for FDI and remittances and 
the arithmetic mean are calculated to get the value of required inte-
gration and higher values of these integration will ensure the homoge-
neity of the region has reached its advanced level. 

Convergence in HDI (C 15): The Human Development Index (HDI) 
is an average measure of health, education, income and over all standard 
of living of the people of the country and can be conceptualized as the 
composite statistical index comprising life expectancy, education and 
per capita income of the economy. The convergence in the level of HDI 
of the member countries demonstrates the wiping out the disparity in 
their level of human development and making the whole region more 
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homogenized. This is assumed to be the result of effective integration in 
trade, finance and labour markets. HDI converge can be measured sta-
tistically by both sigma and beta convergence techniques. 

Fall in level of poverty and inequality (C 16): The reduction in the 
level of poverty and income inequality measured in terms of GINI co-
efficient can also be a good indicator of the level of development of the 
region which is the salient objective of the formation of SAARC. 

Intra-regional migration (C 17): Intra-Regional migration is 
another important instrument in the way to have successful regional 
economic integration and it has also two dimensions-emigration and 
immigration because a migrant emigrates from the origin country and 
immigrates to the foreign country. Migration between SAARC countries 
is very obvious and efficient management of migration can tackle the 
problem of refugees as well as improve the work force and knowledge 
transfer mechanism of the region. 

Educational Integration (C 12): The opportunity to get higher ed-
ucation by all the members of the region is the basic criteria for making 
the region culturally enriched and integrated. 

Knowledge and technology transfer (C 22): Knowledge and tech-
nology transfer in the field of production can uplift mutual cooperation 
and bring production efficiency in the region and it is possible when 
there will be a proper integration. 

Abatement of conflict and tussle (C 31) and Mutual cooperation 
and friendship (C 32): To have peace and prosperity in the region the 
political conflict and tussle should be abolished and mutual cooperation 
and friendship should be established to have an effective integration in 
the region. 

5.1.4. Assessment or valuation of the alternatives on the basis of fulfilment 
of the criteria 

To assess the relative importance or effectiveness of the SAARC ini-
tiatives taken above, various journals, articles, research papers, in-
terviews and discussions on the performance of SAARC have been 
reviewed. Based on the experts’ comments, researchers’ observations 
and conclusions from SAARC secretariat resolutions, the alternative 
initiatives of SAARC can be valued in accordance of their effectiveness 
or importance in fulfilling the mentioned criteria as a linguistic term. 
Table 1 indicates linguistic variables (LVs), which are subsequently 
converted into q-ROFNs to illustrate the importance of the DMs and 
criteria. Table 2 presents the LVs for assessing the performance of each 
alternative with respect to each criterion. 

Three experts are approached with the alternative strategies and the 
criteria for their linguistic assessment or the preferences of the alter-
natives and termed them as the DMs for this purpose. Based on the ex-
periences and knowledge, the importance of the DMs is presented in 
Table 3. Table 4 defines the importance of the criteria in perspective 
with each DM to evaluate the alternatives concerning each criterion. 

5.2. Application of the developed MCGDM methods 

Now, the developed methods are applied on the formulated problem. 
The step-by-step execution of that method is presented below. 

Step 1. DMs expressed their opinion in q-ROHF environment with 
the help of LVs as given in Table 2. The q-ROHF decision matrices 

P(k) =

[

℘
∼ (k)

ij

]

6×11 
(k= 1,2, 3) are constructed, and the detailed data 

of the q-ROHF evaluative rating ℘̃(k)
ij for all Z i with respect to 

C j∈ C are presented in Tables 5–7. 

Step II: In accordance with Eq. (10), the DMs’ weights are computed 
as 

φ1= 0.3441,φ2= 0.3137 and φ3= 0.3423.

Step III: To generate the aggregated q-ROHFDM, all individual 
matrices need to be merged into one decision matrix. Considering 
rung parameter, q= 3 and Hamacher parameter, t= 3, the 
q-ROHFHWA operator is applied on Tables 5–7 to aggregate 
q-ROHFDMs into a single decision matrix ℘̃ij. Aggregate the 
q-ROHFDM, ℘̃ij is given as follows and represented in Table 8. 

℘̃ij =
(
μij, νij

)
= q − ROHFHWA

(
℘̃(1)

ij , ℘̃(2)
ij ,…, ℘̃(l)

ij

)
.

Step IV: For finding criteria weights, the SWARA model begins to 
prioritize the criteria and compares pair-wise from upper to lower- 
ranking criteria. Resulting, a relative coefficient is assessed, and 
the weight is obtained and evaluated for solving MCGDM problems. 
Thus, we have the following steps for the SWARA model: 
Step IV-A: For computing each criterion’s weight using SWARA, the 
DMs’ role is of high significance in assessing and calculating the 
weights, which are already depicted in Table 9. Each DM was asked 
to select each barrier’s importance. Aggregated the criteria impor-
tance and score values of each aggregated criteria importance are 
given in Table 9. 

With the use of Steps IV-B to IV-F, the experts ordered all the criteria 
from the first one to the last one. Based on SWARA technique, all weights 
of the criteria are presented in Table 10 as wj column. 

Step V: The best value and the worst value for each criterion are 
calculated and denoted by q-ROHF-BV (℘̃+) and q-ROHF-WV (℘̃− ), 
given in Table 11. 

In the proposed method, obtaining the best and worst values for each 
criterion is very important for DMs. Here, the best and worst values are 
calculated by Eqs. 14 and 15 are denoted by q-ROHF-BV (℘̃+) and 
q-ROHF-WV (℘̃− ). 

Table 1 
Linguistic preferences for the importance of DMs and Criteria.  

Linguistic terms Abbreviation Linguistic values/label 

Extremely Unimportant EU (0.2, 0.95)
Very Unimportant VU (0.35, 0.78)
Unimportant U (0.42, 0.61)
Moderate M (0.5, 0.6)
Important I (0.65, 0.3)
Very Important VI (0.8, 0.15)
Extremely Important EI (0.9, 0.1)

Table 2 
Linguistic preferences of alternative strategies.  

Linguistic terms Abbreviation Linguistic values/label 

Absolutely Insignificant AI (0.2,0.95)
Insignificant I (0.35, 0.78)
Slightly Insignificant SI (0.42, 0.61)
Moderate M (0.5,0.6)
Slightly Significant SS (0.65, 0.3)
Significant S (0.8,0.15)
Extremely Significant ES (0.9,0.1)

Table 3 
Importance level of Experts.  

Experts Linguistic term Linguistic values/label 

First DM (E(1)) EI (0.9,0.1)

Second DM (E(2)) I (0.65, 0.3)

Third DM (E(3)) VI (0.8,0.15)
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Step VI: The weighted distance, dw(Z i, ℘̃+) between options Z i 

(i= 1,2,…, 6) and best value, ℘̃+ and weighted distance, dw(Z i, ℘̃− )

between the options Z i (i= 1,2,…, 6) and the worst value ℘̃− are 
calculated and presented in Table 12. 

Step VII: Ultimately, the relative closeness coefficient (RC) is 
calculated by Eq. (16) and given as follows:    

Step VIII: Since RC(Z 6)> RC(Z 4)> RC(Z 3)> RC (Z 1)

> RC(Z 2)> RC(Z 5) among the values RC(Z i),i = 1,2,…,6, Z i is 
ranked as Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 1 ≻ Z 2 ≻ Z 5. As a result, Z 6 i.e., 
SDF emerges as the best option. 

The above results are determined by the proposed methodology with 
q-ROHFHWA operator. The archived results through proposed meth-
odology with other developed operators are presented in Table 13. 

From Table 13, it is very cleared that all geometric operators give the 
ranking of the alternative as Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 2 ≻ Z 1 ≻ Z 5 and all 
averaging operators give the ranking of the alternatives as 
Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 2 ≻ Z 1 ≻ Z 5. In both cases alternative Z 6 (i.e., 
SDF) is the best choice over the other alternatives. 

The result establishes the fact that SAARC Development Fund is the 
most effective instrument to integrate the region most successfully along 
with the improvement in the socio-economic development of the region 
followed by South Asian Trade in Services and SAFTA. The financial 

support and protection in three basic grounds like social, infrastructural 
and economic projects of the members are essentially the “remedy for all 
diseases” as all the impediments to the economic development of the 
SAARC members which are all suffering from economic and structural 
bottlenecks can be taken care of by SDF efficiently and its success will 
naturally integrate and increase the cooperation of the members. The 
data from official cite of SDF [30] shows how the fund is contributing to 
the members of SAARC as shown in pie chart in Fig. 2. 

Table 4 
Criteria importance provided by DM’s.   

C 11 C 12 C 13 C 14 C 15 C 16 C 17 C 21 C 22 C 31 C 32 

E(1) EI EI EI EI VI M VI I VI VI VI 

E(2) EI EI EI EI I M I U I VI VI 

E(3) EI EI EI EI M M AI M I VI VI  

Table 5 
Assessment matrix acquired from E(1).   

C 11 C 12 C 13 C 14 C 15 C 16 C 17 C 21 C 22 C 31 C 32 

Z 1 {ES} {ES} {SS} {S,ES} {M} {M,S} {SS} {I} {AI,SI} {M} {M}

Z 2 {SS,S} {M,S} {M,S} {S} {AI,SI} {I} {SI} {SI,M} {M} {S,ES} {SS,ES}
Z 3 {ES} {M,ES} {ES} {ES} {M} {SS} {ES} {SI} {SS} {I} {S}
Z 4 {S,ES} {ES} {ES} {ES} {ES} {ES} {SS,ES} {ES} {ES} {I} {I}
Z 5 {AI} {AI} {AI} {M} {S} {I} {ES} {S} {ES} {SS} {SS,S}
Z 6 {ES} {ES} {SS,ES} {ES} {S,ES} {ES} {ES} {S} {ES} {ES} {ES}

Table 6 
Assessment matrix acquired from E(2).   

C 11 C 12 C 13 C 14 C 15 C 16 C 17 C 21 C 22 C 31 C 32 

Z 1 {S} {SS,ES} {M} {I} {SI} {I} {M} {AI,SI} {AI, I,SI} {M} {SS}
Z 2 {SI,SS} {SS} {SS} {M,SS} {AI} {AI} {SI} {I} {I} {ES} {SS,ES}
Z 3 {ES} {ES} {ES} {ES} {SS} {S} {S} {AI} {M} {M,SS} {S}
Z 4 {ES} {ES} {S,ES} {ES} {S} {S,ES} {S} {ES} {ES} {M} {M}

Z 5 {AI, I} {AI} {AI} {SS} {S} {I} {M,SS} {ES} {S,ES} {S} {SS}
Z 6 {ES} {ES} {S,ES} {ES} {ES} {ES} {ES} {SS} {S} {S} {S}

Table 7 
Assessment matrix acquired from E(3).   

C 11 C 12 C 13 C 14 C 15 C 16 C 17 C 21 C 22 C 31 C 32 

Z 1 {S,ES} {ES} {S,ES} {M,S} {I} {SI} {M} {AI} {M} {SI,M,SS} {M,S}
Z 2 {S} {M,S} {SI,S} {M,S} {I} {I} {M} {SI} {AI} {S,ES} {ES}
Z 3 {ES} {ES} {ES} {ES} {SI,SS} {S} {SS} {I} {M} {SI} {S}
Z 4 {ES} {ES} {ES} {ES} {SS} {SS} {S} {S,ES} {ES} {AI} {M,SS}
Z 5 {AI} {AI} {M} {SS} {SS} {I} {SS,S} {ES} {M} {M} {M}

Z 6 {ES} {ES} {ES} {S,ES} {ES} {ES} {ES} {S} {SS} {M} {S}

RC(Z 1)= 0.4771,RC(Z 2)= 0.4765,RC(Z 3)= 0.6306,RC(Z 4)= 0.6690,RC(Z 5)= 0.4301, and RC(Z 6)= 0.7340.
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6. Sensitivity analysis 

The proposed methods depend on two parameters, rung parameter, q 
and hamacher parameter, τ or frank parameter, ζ which is associated 
with the proposed operators. If the rung parameter, q is varied from 2 to 
10 and fixing hamacher parameter, τ= 3 or frank parameter, ζ= 3, then 
the ranking through different proposed operators is shown in Figs. 3–6.  

• Importance of parameter q. 

Firstly, if q-ROHFHWA operator is used in the methodology and 
considering Hamacher parameter, τ= 3 and varying rung parameter, q 
from 2 to 10. The obtained results are shown in Fig. 3. From Fig. 3, it is 

clear that SDF (Z 6) is the best alternative. It’s also observed that two 
types of ranking are possible. If q∈ [2, 3.115], the obtained ranking is 
Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 1 ≻ Z 2 ≻ Z 5 and for q∈ [3.115, 10], ranking is 
Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 2 ≻ Z 1 ≻ Z 5. 

Similarly, if q-ROHFHWG operator is used, the obtained results are 
shown in Fig. 4. From Fig. 4, it is clear that SDF (Z 6) is the best alter-
native. Here it is seen that three types of ranking are possible. If q∈ [2,
2.358], the obtained ranking is Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 1 ≻ Z 2 ≻ Z 5. If 
q∈ [2.358, 9.795], the obtained ranking is Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 2 ≻

Z 1 ≻ Z 5. And for q∈ [9.795,10] the ranking is 
Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 1 ≻ Z 2 ≻ Z 5. 

Again, if q-ROHFFWA operator is used in the methodology and 

Table 8 
Aggregated decision matrix [℘̃ij]6×11.   

C 11 C 12 C 13 C 14 C 15 C 16 

Z 1 
{
(0.8416, 0.1305),
(0.8751, 0.1136)

} {
(0.8497, 0.1413),
(0.9000,0.1000)

} {
(0.6785, 0.2979),
(0.7432,0.2597)

} ⎧
⎪⎪⎨

⎪⎪⎩

(0.6164, 0.4212),
(0.7179, 0.2609),
(0.6944, 0.3684),
(0.7751, 0.2272)

⎫
⎪⎪⎬

⎪⎪⎭

{(0.4319,0.6638)}
{
(0.4335,6590),
(0.6001, 7284)

}

Z 2 ⎧
⎪⎨

⎪⎩

(0.6663, 0.2997),

(0.7107, 0.2369),

(0.7244, 0.2364),

(0.7612,0.1866)

⎫
⎪⎬

⎪⎭

⎧
⎪⎪⎨

⎪⎪⎩

(0.5555, 0.4879),
(0.6752, 0.3045),
(0.6757, 0.3037),
(0.7612, 0.1866)

⎫
⎪⎪⎬

⎪⎪⎭

⎧
⎪⎪⎨

⎪⎪⎩

(0.5354, 0.4909),
(0.6752, 0.3045),
(0.6622, 0.3057),
(0.7612, 0.1866)

⎫
⎪⎪⎬

⎪⎪⎭

⎧
⎪⎪⎨

⎪⎪⎩

(0.6393, 0.3806),
(0.7345, 0.2349),
(0.6757, 0.3037),
(0.7612, 0.1866)

⎫
⎪⎪⎬

⎪⎪⎭

{
(0.2706, 0.8972),
(0.3487,0.7807)

}
{(0.3169,0.8379)}

Z 3 {(0.9000,0.1000)}
{
(0.8237, 0.1883),
(0.9000,0.1000)

}
{(0.9000,0.1000)} {(0.9000,0.1000)}

{
(0.5354, 0.4909),
(0.6062,0.3842)

}
{(0.7571,0.1906)}

Z 4 
{
(0.8724, 0.1150),
(0.9000, 0.1000)

}
{(0.9000,0.1000)}

{
(0.8751, 0.1136),
(0.9000,0.1000)

}
{(0.9000,0.1000)} {(0.8071,0.1656)}

{
(0.8071,0.1656),
(0.8442, 0.1459)

}

Z 5 
{
(0.2000, 0.9500),
(0.2660, 0.9019)

}
{(0.2000,0.9500)} {(0.3607,0.8409)} {(0.6062,0.3842)} {(0.7574,0.1904)} {(0.3500,0.7800)}

Z 6 {(0.9000,0.1000)} {(0.9000,0.1000)}
⎧
⎪⎪⎨

⎪⎪⎩

(0.8067, 0.1660),
(0.8438, 0.1462),
(0.8751, 0.1136),
(0.9000, 0.1000)

⎫
⎪⎪⎬

⎪⎪⎭

{
(0.8726, 0.1149),
(0.9000,0.1000)

} {
(0.8724, 0.1150),
(0.9000,0.1000)

}
{(0.9000,0.1000)}

C 17 C 21 C 22 C 31 C 32 

Z 1 {(0.5604,0.4779)}
{
(0.2709, 0.8969),
(0.3432, 0.7912)

} ⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(0.3607,0.8409),
(0.3874,0.7832),
(0.4081,0.7296),
(0.4121,0.7186),
(0.4333,0.6590),
(0.4504,0.6066),

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

⎧
⎨

⎩

(0.4754, 0.6034),
(0.5000, 0.6000),
(0.5601,0.4785)

⎫
⎬

⎭

{
(0.5555, 0.4879),
(0.6752,0.3045)

}

Z 2 {(0.4504,0.6066)}
{
(0.4005, 0.6625),
(0.4335, 0.6590)

}
{(0.3878,0.7825)}

⎧
⎪⎪⎨

⎪⎪⎩

(0.8383, 0.1321),
(0.8724, 0.1150),
(0.8726, 0.1149),
(0.9000,0.1000)

⎫
⎪⎪⎬

⎪⎪⎭

⎧
⎪⎪⎨

⎪⎪⎩

(0.7691, 0.2064),
(0.8438, 0.1462),
(0.8497, 0.1413),
(0.9000, 0.1000)

⎫
⎪⎪⎬

⎪⎪⎭

Z 3 {(0.8071,0.1656)} {(0.3487,0.7807)} {(0.5604,0.4779)}
{
(0.4290,0.6644),
(0.4992, 0.5454)

}
{(0.8000,0.1500)}

Z 4 
{
(0.7571, 0.1906),
(0.8416,0.1305)

} {
(0.8726, 0.1149),
(0.9000, 0.1000)

}
{(0.9000,0.1000)} {(0.3823,0.7880)}

{
(0.4583, 0.6609),
(0.5270,0.5320)

}

Z 5 
⎧
⎪⎪⎨

⎪⎪⎩

(0.7437, 0.2592),
(0.7885, 0.2045),
(0.7696, 0.2060),
(0.8102,0.1624)

⎫
⎪⎪⎬

⎪⎪⎭

{(0.8724,0.1150)}
{
(0.7830, 0.2130),
(0.8243, 0.1877)

}
{(0.6702,0.3101)}

{
(0.6064, 0.3837),
(0.6757,0.3037)

}

Z 6 {(0.9000,0.1000)} {(0.7612,0.1866)} {(0.8071,0.1656)} {(0.7830,0.2130)} {(0.8416,0.1305)}

Table 9 
Aggregated criteria importance and score values.  

Criteria E(1) E(2) E(3) Aggregated 
q-ROHFNs 

Score Values 

C 11 ES ES ES 〈{0.9000},{0.1000}〉 0.8640 
C 12 ES ES ES 〈{0.9000},{0.1000}〉 0.8640 
C 13 ES ES ES 〈{0.9000},{0.1000}〉 0.8640 
C 14 ES ES ES 〈{0.9000},{0.1000}〉 0.8640 
C 15 S SS M 〈{0.6757},{0.3037}〉 0.6403 
C 16 M M M 〈{0.5000},{0.6000}〉 0.4545 
C 17 S I AI 〈{0.5765},{0.5246}〉 0.5236 
C 21 I SI M 〈{0.4316},{0.6641}〉 0.3937 
C 22 S SS SS 〈{0.7110},{0.2366}〉 0.6731 
C 31 S S S 〈{0.8000},{0.1500}〉 0.7543 
C 32 S S S 〈{0.8000},{0.1500}〉 0.7543  

Table 10 
Results of SWARA method for finding weights of the criteria.  

Criteria Score 
values 

Comparative 
significance of 
criteria (αj) 

CC (κj) Initial 
weight 
(ϱj) 

Final 
weight 
(wj) 

C 11 0.8640 – 1.0000 1.0000 0.1055 
C 12 0.8640 0 1.0000 1.0000 0.1055 
C 13 0.8640 0 1.0000 1.0000 0.1055 
C 14 0.8640 0 1.0000 1.0000 0.1055 
C 31 0.7543 0.1097 1.1097 0.9012 0.0951 
C 32 0.7543 0 1.0000 0.9012 0.0951 
C 22 0.6731 0.0812 1.0812 0.8335 0.0897 
C 15 0.6403 0.0329 1.0329 0.8070 0.0851 
C 17 0.5236 0.1166 1.1166 0.7227 0.0762 
C 16 0.4545 0.0691 1.0691 0.6760 0.0713 
C 21 0.3937 0.0608 1.0608 0.6372 0.0672  
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considering Frank parameter, ζ= 3 and varying rung parameter, q from 
2 to 10. The obtained results are shown in Fig. 5. This result is very 
similar to the results of q-ROHFHWA operator. From Fig. 5, it is also 
clear that two types of ranking are possible. If q∈ [2,3.215], the obtained 
ranking is Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 1 ≻ Z 2 ≻ Z 5 and for q∈ [3.215, 10], 
ranking is Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 2 ≻ Z 1 ≻ Z 5. So, it is clear that SDF 
(Z 6) is the best alternative. 

Similarly, if q-ROHFHWG operator is used, the obtained results are 
shown in Fig. 6. This result is quite similar to the results of q-ROHFHWG 
operator. From Fig. 6, it is clear that SDF (Z 6) is the best alternative. 
Here it is seen that three types of ranking are possible. If q∈ [2,2.325], 
the obtained ranking is Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 1 ≻ Z 2 ≻ Z 5. If 
q∈ [2.325, 8.65], the obtained ranking is Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 2 ≻

Z 1 ≻ Z 5. And for q∈ [8.65,10] the ranking is Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 1 ≻

Z 2 ≻ Z 5. 
More over if Hamacher parameter (τ) and Frank parameter (ζ) is 

varied from 2 to 10 and fixing the rung parameter, q for some values in 
[2, 10] then the ranking of the alternatives remains same i.e., Z 6 ≻

Z 4 ≻ Z 3 ≻ Z 2 ≻ Z 1 ≻ Z 5. So, for all cases, it is investigated that 
Z 6, i.e., SDF is the best alternative which needs to be improved firstly. 

7. Comparative studies 

To determine the validity and efficiency of the proposed method, this 
case study is compared with several existing methods through different 
AOs, viz., q-ROHFWPGHM [10], q-ROHFWPGGHM [10], PHFWA [11], 

PHFWG [11], PHFEWA [11], PHFEWG [11], PHFHWA [11], PHFHWG 
[11], PHFFWA [11], PHFFWA [11]. Comparisons are carried out using 
two different approaches, which offer diverse insights and allow for 
validation and cross-checking of results. By employing distinct methods, 
researchers can identify limitations, complement findings, enhance 
robustness, and address biases. Transparency about the chosen methods 
and their rationale is crucial for scrutiny and validation by the scientific 
community and interested parties. At first, the comparisons are estab-
lished based on characteristic of the operators. Following that, the 
comparisons shift towards evaluating the achieved results of the oper-
ators, focusing on their performance in practical applications or 
experiments. 

Table 11 
Best value and the worst value.  

Criteria q-ROHF-BV (℘̃+
) q-ROHF-WV (℘̃− )

C 11 {(0.9000,0.1000)}
{
(0.2000, 0.9500),
(0.2660,0.9019)

}

C 12 {(0.9000,0.1000)} {(0.2000,0.9500)}
C 13 {(0.9000,0.1000)} {(0.3607,0.8409)}
C 14 {(0.9000,0.1000)} {(0.6062,0.3842)}
C 15 

{
(0.8724,0.1150),
(0.9000, 0.1000)

} {
(0.2706, 0.8972),
(0.3487,0.7807)

}

C 16 {(0.9000,0.1000)} {(0.3169,0.8379)}
C 17 {(0.9000,0.1000)} {(0.4504,0.6066)}
C 21 

{
(0.8726,0.1149),
(0.9000, 0.1000)

} {
(0.2709, 0.8969),
(0.3432,0.7912)

}

C 22 {(0.9000,0.1000)} {(0.3878,0.7825)}
C 31 

⎧
⎪⎪⎨

⎪⎪⎩

(0.8383,0.1321),
(0.8724,0.1150),
(0.8726,0.1149),
(0.9000, 0.1000)

⎫
⎪⎪⎬

⎪⎪⎭

{(0.3823,0.7880)}

C 32 
⎧
⎪⎪⎨

⎪⎪⎩

(0.7691,0.2064),
(0.8438,0.1462),
(0.8497,0.1413),
(0.9000, 0.1000)

⎫
⎪⎪⎬

⎪⎪⎭

{
(0.4583, 0.6609),
(0.5270,0.5320)

}

Table 12 
Weighted distance from best value and worst value.   

Z 1 Z 2 Z 3 Z 4 Z 5 Z 6 

dw(Z i , ℘̃+) 0.4510 0.4852 0.3983 0.3784 0.5608 0.3171 
dw(Z i , ℘̃− ) 0.4116 0.4416 0.6799 0.7647 0.4233 0.8751  

Table 13 
Results through different developed operators.  

Operators RC(Z 1) RC(Z 2) RC(Z 3) RC(Z 4) RC(Z 5) RC(Z 6) Rankings 

q-ROHFWA 0.4779 0.4761 0.6297 0.6695 0.4359 0.7340 Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 1 ≻ Z 2 ≻ Z 5 

q-ROHFWG 0.4541 0.4697 0.6286 0.6595 0.4078 0.7333 Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 2 ≻ Z 1 ≻ Z 5 

q-ROHFEWA 0.4771 0.4759 0.6303 0.6692 0.4322 0.7340 Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 1 ≻ Z 2 ≻ Z 5 

q-ROHFEWG 0.4556 0.4694 0.6258 0.6594 0.4101 0.7331 Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 2 ≻ Z 1 ≻ Z 5 

q-ROHFHWG 0.4565 0.4696 0.6253 0.6594 0.4111 0.7330 Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 2 ≻ Z 1 ≻ Z 5 

q-ROHFFWA 0.4780 0.4763 0.6301 0.6692 0.4327 0.7339 Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 1 ≻ Z 2 ≻ Z 5 

q-ROHFFWG 0.4556 0.4699 0.6262 0.6593 0.4093 0.7330 Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 2 ≻ Z 1 ≻ Z 5  

Fig. 2. SDF Contribution as per session report of SDF, April 2023.  

Fig. 3. Relative closeness coefficient of alternatives using q-ROHFHWA oper-
ator varying q. 
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when comparing the approach based on the features of the operators, 
it is crucial to keep in mind that all of the produced operators and the 
aforementioned existing operators are capable of capturing hesitant 
hazy information. The AOs viz., q-ROHFWPGHM, q-ROHFWPGGHM 
proposed by Wang et al. [10] are based on some algebraic t-N&t-CNs, 
which are not general and flexible in nature. The proposed aggregation 
method employs a family of At-N&t-CNs including algebraic, Einstein, 
Hamacher, Frank, etc., classes. Thus, the developed operators possess 
the ability to make the aggregation process more robust and smoother 
by including various types of At-N&t-CNs in the aggregation functions. 
Further, the proposed AOs, viz., q-ROHFHWA, q-ROHFHWG, 
q-ROHFFWA, and q-ROHFFWG, include various flexible parameters that 
can reflect the attitudes of DMs allowing their risk preferences. More-
over, the designed AOs in this paper can generate a list of AOs as their 
special cases by considering specific decreasing generators. Hence the 
proposed method is more general than the existing method [10]. Again, 
the operators proposed by Sarkar and Biswas [11] are in PHFS envi-
ronment which is a lower domain of the q-ROHFS. So, operator proposed 
by Sarkar and Biswas [11] can be considered as a special case of pro-
posed operators by considering q= 2. 

Now the achieved results are compared with the results obtained 

through wang et al. [10] and Sarkar and Biswas [11] methods given in 
Table 14. It is worthy to mention here, the methodology proposed by 
wang et al. [10] and Sarkar and Biswas [11] depends on known weights. 
So, this case study cannot solve directly as the weights of the criteria and 
DMs are completely unknown here. So, proposed method can overcome 
this drawback of the existing operators. More over to solve the case 
study with those methods, the weights which obtained by proposed 
methodology are considered. From Table 14, it is found that the ranking 
of the alternatives is almost same and Z 6 (SDF) is the best alternative 
which validates the proposed method. 

Moreover, the difference of score values between two consecutive 
alternatives (rank-wise) obtained through method by Wang et al. [10] 
and proposed method are shown in Fig. 7. From Fig. 7 it is very clear that 
the score values between two consecutive alternatives in method by 
Wang et al. [10] is lower than proposed method. Therefore, the pro-
posed method is superior to Wang et al. [10] in terms of choosing the 
optimal choice. 

8. Conclusions and future studies 

q-ROHFS is a generalization of the other variants of fuzzy sets viz., 
Intuitionistic fuzzy sets (IFSs), Pythagorean fuzzy sets (PFSs), q-ROFSs, 
HFSs. So, q-ROHFS cover more info (both membership and non- 
membership) than IFSs, PFSs, q-ROFSs, HFSs. The SWARA-TOPSIS 
methodology offers a robust and comprehensive framework for 
decision-making in complex and multi-criteria scenarios. By combining 
the strengths of the SWARA and TOPSIS approaches, this methodology 
provides a systematic way to evaluate alternatives, assign appropriate 
weights to criteria, and select the most suitable option. In view of this 
type of flexibility, a SWARA-TOPSIS-based MCGDM method is devel-
oped on q-ROHF environment. To aggregate q-ROHF data, several At- 
CN&t-Ns-based AOs, viz., q-ROHFWA, q-ROHFWG, q-ROHFEWA, 
q-ROHFEWG, q-ROHFHWA, q-ROHFHWG, q-ROHFFWA, and 
q-ROHFFWG are introduced. Also, to perform TOPSIS method, a novel 
distance measure is proposed. Additionally, by changing the Hamacher 
and Frank parameters, all generalised cases are taken into account. Since 
these operators are far more trustworthy than other existing aggregation 
operators on such sets, they may be used to solve many decision-making 
issues more successfully. The recommended operators have the ability to 
detect moments of human uncertainty and comprehend the in-
terconnections between combined points of view. Furthermore, the 
suggested approaches might autonomously adapt the parameter’s value 
based on the risk tolerance thresholds of the decision-maker. 

Fig. 4. Relative closeness coefficient of alternatives using q-ROHFHWG oper-
ator varying q. 

Fig. 5. Relative closeness coefficient of alternatives using q-ROHFFWA oper-
ator varying q. 

Fig. 6. Relative closeness coefficient of alternatives using q-ROHFFWG oper-
ator varying q. 
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To establish application potentiality of the developed method a case 
study relating to assess the triage and efficacy of strategies adopted by 
SAARC for regional integrity of south Asia has been performed. Using 
q-ROHFS to find the efficacy of some of the strategies taken by SAARC 
for the integration and development of the region is an independent and 
disparate inspection of the results derived from the usual econometric 
and statistical method of analysis. The proposed method shows that 
SAARC Development Fund has the capability to integrate and develop 
the region most among other strategies. Practically, the final and com-
plete stage of economic integration (SAEU) can only be achieved if there 
arises transparency in all the sectors in the region with financial coop-
eration among the members. The next best weapon in the hand of 
SAARC is SATIS which tries to integrate trade in service sector. The third 
best strategy is SAFTA as derived by this study. Establishment of South 
Asian University can be a better approach to have higher education in 
the region but without fulfilling the other conditions of peace, integra-
tion, and cooperation it may not work effectively and that is obvious 
from the result of the study. 

The limitation of this paper is that this method cannot capture dual 
hesitant q-ROF, Type 2 fuzzy, T-Spherical fuzzy information also pro-
posed method cannot capture the intra relationship between criteria, in 
those cases, results may be differ. To overcome this, several de-
velopments may be performed in future: Choquet Integral-based AOs. 
The proposed operators can be developed to address scenarios encom-
passing complete or vague probabilistic linguistic preference relation-
ships within the context of group decision-making. multi-criteria group 
decision making with large-scale data in dual hesitant q-ROF, Type 2 
fuzzy, T-Spherical fuzzy environment. 

Policy implications  

• SDF can be viewed as best instrument in solving poverty, inequality 
and unemployment of all the SAARC countries which are the root 
causes of underdevelopment of them and therefore the main obsta-
cles in their way of regionalization, mutual cooperation. So, the 
member countries of SAARC should make a proper planning to make 
a strong developmental fund for themselves and work on it 
authentically.  

• SAARC should also give importance to service sector trade because 
service sector integrity will make a strong base for financial inte-
gration of all the similar countries of South Asia.  

• MCDGM can be viewed as a good technique in taking the decision of 
socio-economic planning not only for SAARC countries but also for 
other developing countries where there exists uncertainties and un-
availability of proper data along with the presence of interdependent 
factors. 
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Table 14 
Comparison results with existing methods.  

Operators S(Z 1) S(Z 2) S(Z 3) S(Z 4) S(Z 5) S(Z 6) Rankings 

q-ROHF 
WPGHM [10] 

0.0425 0.0450 0.0670 0.0771 0.0402 0.0856 Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 2 ≻ Z 1 ≻ Z 5 

q-ROHF 
WPGGHM [10] 

0.7970 0.7910 0.8358 0.8566 0.7775 0.8764 Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 1 ≻ Z 2 ≻ Z 5 

PHFWA [11] 0.6691 0.6677 0.7974 0.8392 0.6261 0.8692 Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 1 ≻ Z 2 ≻ Z 5 

PHFWG [11] 0.4722 0.4509 0.6424 0.6827 0.3310 0.8378 Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 1 ≻ Z 2 ≻ Z 5 

PHFEWA [11] 0.6498 0.6491 0.7868 0.8318 0.5985 0.8670 Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 1 ≻ Z 2 ≻ Z 5 

PHFEWG [11] 0.4973 0.4817 0.6691 0.7164 0.3660 0.8437 Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 1 ≻ Z 2 ≻ Z 5 

PHFHWA [11] 0.6397 0.6390 0.7810 0.8276 0.5826 0.8660 Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 1 ≻ Z 2 ≻ Z 5 

PHFHWG [11] 0.5113 0.4985 0.6837 0.7338 0.3854 0.8470 Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 1 ≻ Z 2 ≻ Z 5 

PHFFWA [11] 0.6595 0.6588 0.7921 0.8355 0.6123 0.8680 Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 1 ≻ Z 2 ≻ Z 5 

PHFFWG [11] 0.4843 0.4661 0.6549 0.6987 0.3479 0.8403 Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 1 ≻ Z 2 ≻ Z 5 

q-ROHFWA 0.4779 0.4761 0.6297 0.6695 0.4359 0.7340 Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 1 ≻ Z 2 ≻ Z 5 

q-ROHFWG 0.4541 0.4697 0.6286 0.6595 0.4078 0.7333 Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 2 ≻ Z 1 ≻ Z 5 

q-ROHFEWA 0.4771 0.4759 0.6303 0.6692 0.4322 0.7340 Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 1 ≻ Z 2 ≻ Z 5 

q-ROHFEWG 0.4556 0.4694 0.6258 0.6594 0.4101 0.7331 Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 2 ≻ Z 1 ≻ Z 5 

q-ROHFHWA 0.4771 0.4765 0.6306 0.6690 0.4301 0.7340 Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 1 ≻ Z 2 ≻ Z 5 

q-ROHFHWG 0.4565 0.4696 0.6253 0.6594 0.4111 0.7330 Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 2 ≻ Z 1 ≻ Z 5 

q-ROHFFWA 0.4780 0.4763 0.6301 0.6692 0.4327 0.7339 Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 1 ≻ Z 2 ≻ Z 5 

q-ROHFFWG 0.4556 0.4699 0.6262 0.6593 0.4093 0.7330 Z 6 ≻ Z 4 ≻ Z 3 ≻ Z 2 ≻ Z 1 ≻ Z 5  

Fig. 7. Difference of Score values between two consecutive alternatives (rank-wise).  
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Abstract
Dual hesitant q-rung orthopair fuzzy set has already been appeared as a useful tool to express
fuzzy and ambiguous information more precisely than other variants of fuzzy sets. Usually,
equalweights of the possiblemembership aswell as non-membership values in a dual hesitant
q-rung orthopair fuzzy set, are considered in modelling decision making problems, which
is quite unreasonable. Because, in ascertaining possible membership or non-membership
values for an alternative under some criteria, the frequency level of appearing those values
frequently differs. Thus, employing same weights/ degrees of importance to each of the
assigned membership and non-membership values would affect overall process of decision
making. To overcome such situation, this paper introduces the notion of weighted dual hes-
itant q-rung orthopair fuzzy set which allows decision makers to assign different weights
of possible arguments in details. Taking advantage of Hamacher t-norms and t-conorms as
a generalization of algebraic and Einstein operations, some operational laws for weighted
dual hesitant q-rung orthopair fuzzy sets are investigated in this paper. Further, based on
those defined operational rules, a series of weighted aggregation operators are proposed to
aggregate the weighted dual hesitant q-rung orthopair fuzzy information effectively. Next,
applying the proposed operators, a methodology for solving real-life group decision making
problems under weighted dual hesitant q-rung orthopair fuzzy context is developed. Lastly,
the aptness of the introduced method is illustrated by solving few numerical examples.
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1 Introduction

To deal with uncertainties and imprecision in different complicated environments, Zadeh
(1965) introduced the concept of fuzzy sets. Later on, many researchers extended the idea of
fuzzy sets to cope with vagueness more rigorously. Atanassov (1986) developed intuition-
istic fuzzy sets (IFS), which have membership along with non-membership degrees having
their sum less than or equal to 1. Later on, Yager (2013, 2014) established the concept of
Pythagorean fuzzy (PF) sets (PFSs), which is a generalization of IFS. PFS consists of mem-
bership and non-membership degrees satisfying the condition that their square sum is less
than or equal to 1. After the inception of PFS, it is successfully implemented on various
types of real-life based problems (Sarkar and Biswas 2019, 2020; Biswas and Deb 2020;
Gayen and Biswas 2021; Deb and Biswas 2021; Sarkar et al. 2021). But, PFS contains some
drawbacks. It fails to compute the decision arguments like (0.6, 0.9) where the square sum
of membership and non-membership parts becomes greater than 1. To address such difficul-
ties, Yager (2017) further extended PFSs to a more generalized set, called q-rung orthopair
fuzzy (q-ROF) set (q-ROFS). The distinguishing characteristic of q-ROFS is that the sum of
the qth power of membership and non-membership degrees is not exceeding 1. For q � 1
and 2, q-ROFS becomes IFS and PFS, respectively. So q-ROFS is more extensively applied
to handle decision arguments than IFS and PFS. Also for a clearer understanding of the
satisfactory region for IFS, PFS, and q-ROFS, Fig. 1 is provided. Recently Senapati and
Yager (2020) introduced Fermatean fuzzy (FF) sets, which is also a special case of q-ROFS,
with q � 3. Due to this broader flexibility of q-ROFS, numerous researchers investigated
and developed plenty of theories on it. Liu and Wang (2017) introduced some fundamental
theories of q-ROFS and proposed weighted averaging (WA) and weighted geometric (WG)
aggregation operators: q-ROF WA (q-ROFWA) and q-ROF WG (q-ROFWG) aggregation
operators.Wei et al. (2018a, b) introduced generalized geometric Heronianmean in q-ROFSs
and developed several aggregation operators to solve multicriteria decisionmaking (MCDM)
problems. Peng et al. (2018) proposed a new score function for q-ROF number (q-ROFN)
and derived q-ROF weighted exponential aggregation operator by introducing exponential
operational laws on q-ROFS. Wang et al. (2019b) presented a family of q-ROF Muirhead
mean (MM) operators, viz., q-ROF MM, q-ROF weighted MM, q-ROF dual MM and q-
ROF weighted dual MM operators. Combining Bonferroni mean (BM) with q-ROFNs, Liu
and Wang (2019) defined some aggregation operators based on Archimedean t-norms and t-
conorms. Further, Yang and Pang (2019) introduced partitioned BM in q-ROF environment,
and they also developed two q-ROF aggregation operators, viz., q-ROF partitioned BM and
geometric BM operators. Wang et al. (2019a) proposed several aggregation operators based
on Hamy mean, dual Hamy mean and their weighted variants. Jana et al. (2019) introduced
Dombi operations to construct q-ROF Dombi aggregation operators, such as q-ROF-Dombi
WA, Dombi ordered WA, Dombi hybrid WA, and their geometric counterparts. To aggregate
q-ROFNs, Xing et al. (2019) developed a class of q-ROF point WA and WG aggregation
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Fig. 1 Satisfying areas of IFS, PFS, and q-ROFS

operators by introducing point operators, viz., q-ROF point WA, q-ROF point WG, gen-
eralized q-ROF point WA and generalized q-ROF point WG operators. Considering fair
or neutral decisions, Garg and Chen (2020) presented q-ROF weighted neutral averaging,
ordered neutral averaging and hybrid neutral averaging aggregation operators. Darko and
Liang (2020a) developed some new Hamacher operations for q-ROFS, and applied those
operations to develop q-ROF Hamacher average, q-ROF Hamacher Maclaurin symmetric
mean and corresponding weighted aggregation operators.

In daily life, decision makers (DMs) often become irresolute and hesitant among several
possible judgement values while making decisions. To capture these instances, Torra (2010)
proposed a new variant of fuzzy set called hesitant fuzzy set (HFS), which ease peoples’
difficulty in expressing their ambiguous decision values. It allows the DMs to provide their
evaluation values corresponding to each element using a set of possible assessing values
instead of a single membership value in [0, 1]. Further, the scarcity of non-membership val-
ues in HFSs was identified by Zhu et al. (2012). They accomplished this need and developed
the concept of dual hesitant fuzzy (DHF) sets (DHFSs). DHFS can capture both the mem-
bership and non-membership grades with different possible decision values. Subsequently,
the theory and its applications are investigated by numerous scholars (Wang et al. 2016;
Biswas and Sarkar 2019; Darko and Liang 2020b). Fusing HFS (Torra 2010) with q-ROFS
(Yager 2017), Xu et al. (2018) introduced the concept of dual hesitant q-ROF (DHq-ROF)
set (DHq-ROFS). In DHq-ROFS, the membership and non-membership values of objects
are represented by two sets of several possible numbers. The significance of DHq-ROFSs
in dealing with decision making problems is that they can portray inherent hesitancy and
complexity in a more extensive way by changing the q parameter according to their needs.
Wang et al. (2019c) proposed some MM and dual MM (DMM) operators under DHq-ROF
environment, viz., DHq-ROFMM, DHq-ROF DMM and their weighted operators. Based on
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Hamacher operations, Wang et al. (2019d) developed several WA, ordered WA and hybrid
average operators under DHq-ROF environment along with geometric operators. For solv-
ing multi-attribute decision making (MADM) problems, Akram et al. (2021a) introduced a
new approach by extending the concept of q-ROF graphs to DHq-ROF context, and based
on Hamcher operation, they proposed DHq-ROF Hamacher graphs. Recently, Sarkar and
Biswas (2021) developed BM operators for aggregating DHq-ROF information based on
Dombi t-conorms and t-norms to solve multicriteria group decision making (MCGDM)
problems.

However, in MCDM, the level of importance of various possible evaluation values for
a specific object may vary depending on various situations. Thus, it is necessary to assign
degrees of individual importance to the evaluation values associated with the process of
decision making to prevent loss of essential information.

It is crucial to observe that, in the above-mentioned hesitant fuzzy contexts, the possi-
ble membership degrees or non-membership degrees maintain an equal level of importance,
whichmay result an unreasonable consequence. To overcome such drawbacks in HFS, Zhang
and Wu (2014) developed a remarkable perception, called weighted HFS (WHFS), by incor-
porating individual possible importance degrees tomembership values. Also, they introduced
some operations on WHFS using Archimedean t-conorms and t-norms and delivered some
Archimedean operation-basedWHFWA andWG aggregation operators. Further, Zeng et al.
(2019a) designed different weights to the possible interval-valued (IV) membership and
non-membership terms of IV HFS (IVHFS) and introduced the concept of weighted IVHFS
(WIVHFS). An MCGDM model in accordance with the weights of DMs (whether known
or unknown) is also presented by them. Again, Zeng et al. (2019b) developed weighted
hesitant fuzzy linguistic (WHFL) term sets considering different confidences of DMs. They
also provided a list of aggregation operators, viz., WHFL WA, WHFL WG, generalized
WHFL WA and the generalized WHFL WG operators for fusing WHFL data. The concept
of weighted dual hesitant (WDH) fuzzy (WDHF) set (WDHFS) was generated by Zeng
et al. (2020) by taking into account the important degrees of several possible membership
and non-membership grades of each element. They investigated the operations and proper-
ties of WDHFSs, and presented several WDHF aggregation operators, viz., WDHF WA and
WDHFWG operators, to apply them in group decision making contexts. Recently, Ali et al.
(2021) introducedweighted IVDHF sets (WIVDHFSs) and developedWIVDHF aggregation
operators based on Archimedean operations.

As per the authors’ knowledge, importance degrees related to hesitant membership and
non-membership degrees of DHq-ROFS are not found yet in the existing literature. It is the
fact that ignoring individual weightage or degree of importance corresponding to hesitant
membership and non-membership values for assessing a variable may cause a distortion of
information. To validate that point, the following example is provided for a better under-
standing of the necessity of the incorporation of importance degrees.

Suppose an educational institution wants to recruit an efficient teacher. This task would
be performed by evaluating three aspirants Ti (i � 1, 2, 3) on the basis of some relevant
criteria. For this purpose, the institute hired ten DMs to anonymously provide their opin-
ions about the candidates in view of the criteria. The experts provided their assessment
values using q-ROFNs. For candidate T1, suppose five experts provided assessment value
as (0.5, 0.2), two experts provided (0.8, 0.1), and three experts (0.7, 0.2). Similarly, for
T2, five experts provided (0.8, 0.1), two experts provided (0.5, 0.2), and three experts pro-
vided (0.7, 0.2) as assessment values. For T3, five experts provided (0.7, 0.2), two experts
give (0.8, 0.1) and three experts give (0.5, 0.2) as assessment values. Now, if the decision
values provided by the experts are represented by a DHq-ROFN, the number would be
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˜d � ({0.5, 0.7, 0.8}, {0.1, 0.2}) for every aspirant Ti (i � 1, 2, 3). So, it is now difficult to
select the best one. If the weight/importance degrees of membership and non-membership
values are assigned by counting the number of experts who provided the same assessment
values, the problem can be resolved. Thus, assigning individual weights to hesitant mem-
bership and non-membership degrees of DHq-ROFS would produce a more prominent and
rational result in practical decision cases.

Beingmotivated by the above interpretation, in this article, weightedDHq-ROFS (WDHq-
ROFS) is developed as a significant tool for relevant research. The proposed WDHq-ROFS
consists of membership part together with the non-membership part characterized by their
independent weights/importance degrees. It is noteworthy to mention here that several exist-
ing fuzzy variants viz., DHq-ROFS, dual hesitant Pythagorean fuzzy set, DHFS,HFS etc., can
be accomplished from the proposed concept. In this manner, the proposed WDHq-ROFS is
recognized as a powerfulmeans for assessing uncertainties connectedwith realistic instances.

For aggregating WDHq-ROF information, Hamacher t-norms and t-conorms (Ht-N&t-
CNs) are considered in this paper. In the past few years, Hamacher operation-based
aggregation operators became a leading research topic (Darko and Liang 2020a; Wei et al.
2018a, b;Wang et al. 2021; Akram et al. 2021b; Hadi et al. 2021; Shahzadi et al. 2021; Gayen
et al. 2022). The basic algebraic and Einstein t-norms and t-conorms can be easily obtained
from Ht-N&t-CNs, and also a comprehensive class of t-norms together with t-conorms can
be generated by changing the value of Hamacher parameter. Thus, employing Ht-N&t-CNs
for the yielding of WDHq-ROF information would be an impactful development that would
enrich the information aggregation premise.

So the motivation and objective of this paper are:

1. to introduce the notion of WDHq-ROFSs andWDHq-ROFNs by incorporating different
weightage values/importance degrees among possible membership and non-membership
terms.

2. to develop some Hamacher operational rule-based aggregation operators, viz., WDHq-
ROF Hamacher WA (WDHq-ROFHWA), and WDHq-ROF Hamacher WG (WDHq-
ROFHWG) operators for the purpose of solving MCGDM.

3. to propose a systematic approach to enrich the MCGDM method in WDHq-ROF envi-
ronment.

4. to apply the suggested approach in solving real-worldMCGDMproblems to demonstrate
its feasibility and to provide a comparative analysis to highlight its benefits.

The main difference between the proposed method and the existing methods (Darko and
Liang 2020a; Garg 2018; Wang et al. 2014; Wei and Lu 2017) is that the proposed method
can reflect the weightage of importance of each decision information, whereas the existing
methods use equal weightage values/importance degrees among possible membership and
non-membership terms. But, in real-life decision-making contexts, preference degrees of
different possible membership and non-membership values may deviate from each other.
Therefore, the proposed method is more appropriate than existing method for dealing with
MCGDM problems under uncertain contexts.

The remainder of this paper is structured as follows. Section 2 briefly recalls basic con-
cepts related to WDHFS, q-ROFS and DHq-ROFS. In Sect. 3, the concept of WDHq-ROFS
is introduced. Also, the score and accuracy functions are defined for ordering WDHq-
ROFNs. Further, some algebraic operational rules of WDHq-ROFNs are explored based
on Ht-N&t-CNs. Hamacher operations-based aggregation operators: WDHq-ROFHWA and
WDHq-ROFHWG operators are developed in Sect. 4. In Sect. 5, a novel method for solving
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MCGDM problems under WDHq-ROF context is presented utilizing the proposed WDHq-
ROF aggregation operators. Section 6 comprises some numerical examples to explore the
rationality and applicability of the proposed approach. The next section compares the
developedmodel with several well-known existing approaches to show the validity and effec-
tiveness of the proposedmodel. Finally, Sect. 8 summarizes the paper. Finally, the conclusion
is made and the scope for future works is provided in Sect. 8.

2 Preliminaries: concepts and definitions

This section is comprised of some fundamental definitions and concepts related to WDHFS,
q-ROFS, DHq-ROFS and Ht-N&t-CNs.

2.1 WDHFS

Definition 2.1.1 (Zeng et al. 2020) Let X be a fixed set, then a WDHFS, Dw on X is defined
as:

D
w � {〈x,Yw(x),Gw(x)

〉|x ∈ X
}

, (1)

in which Yw(x) � ⋃

〈γ ,wγ 〉∈Yw(x)

{〈

γ ,wγ

〉}

, and Gw(x) � ⋃

〈η,wη〉∈Gw(x)

{〈

η,wη

〉}

rep-
resent the collection of possible membership and non-membership degrees of an element
x ∈ X to the set Dw, respectively. Where γ , η ∈ [0, 1] with 0 ≤ γ + η ≤ 1, and

∑

wγ � 1,
∑

wη � 1, wγ ,wη ∈ [0, 1]. In WDHFS D
w, wγ and wη represent the importance degrees

corresponding to the possible membership and non-membership values γ and η, respectively.
For convenience, Zeng et al. (2020) called dw � (Yw(x),Gw(x)

)

as a WDHF element
(WDHFE), and simply denoted as dw � (Yw,Gw

)

. It is noted that, d � (Y,G) represents
the original DHF element of dw.

2.2 q-ROFS

Definition 2.2.1 (Yager 2017) Let X be a fixed set. A q-ROFS, ℘̃ on X is represented by.

℘̃ � {〈x, ξ℘̃(x), ψ℘̃(x)
〉|x ∈ X

}

, (2)

where ξ℘̃ : X → [0, 1] and ψ℘̃ : X → [0, 1] denote the membership and non-membership
grades of the element x ∈ X to the set ℘̃ satisfying the condition that.

0 ≤ (ξ℘̃(x)
)q +

(

ψ℘̃(x)
)q ≤ 1, q ≥ 1. (3)

The degree of indeterminacy π℘̃(x) of x is given as.

π℘̃(x) � [(ξ℘̃(x)
)q +

(

ψ℘̃(x)
)q − (ξ℘̃(x)

)q(
ψ℘̃(x)

)q] 1q

For simplicity,
(

ξ℘̃(x), ψ℘̃(x)
)

is called a q-ROFN and is denoted by �̃� � (ξ , ψ).
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2.3 DHq-ROFS

Combining q-ROFSs (Yager 2017) with DHFS (Zhu et al. 2012), Xu et al. (2018) proposed
the notion of DHq-ROFSs, which permits the DMs in providing their evaluation values with
two sets of possible membership and non-membership values.

Definition 2.3.1 (Xu et al. 2018) Let X be a fixed set. A DHq-ROFSR on X is described as:

R � (〈x, hR(x), gR(x)〉|x ∈ X), (4)

where hR(x) � ⋃

ζ∈hR(x){ζ : 0 ≤ ζ ≤ 1} and gR(x) � ⋃

ϑ∈gR(x){ϑ : 0 ≤ ϑ ≤ 1} repre-
sent the set of possible membership and non-membership values, respectively, of the element
x ∈ X to the set R satisfying the conditions:

0 ≤
(

max
ζ∈hR(x)

{ζ }
)q

+

(

max
ϑ∈gR(x)

{ϑ}
)q

≤ 1, q ≥ 1.

For convenience, Xu et al. (2018) called the pair R(x) � (hR(x), gR(x)) as a DHq-
ROFN, and denoted it by r̃ � 〈h, g〉.

Definition 2.3.2 (Xu et al. 2018) Suppose r̃ � 〈h, g〉 be a DHq-RFN. Then the score function
S(̃r) of r̃ is expressed as:

S(̃r) � 1

𝓃h

∑

ζ∈hζ q − 1

𝓃g

∑

ϑ∈gϑ
q ,

And, the accuracy function of r̃, denoted by A(̃r), is defined by.

A(̃r) � 1

𝓃h

∑

ζ∈hζ q +
1

𝓃g

∑

ϑ∈gϑ
q ,

Where 𝓃h and 𝓃g are the number of elements in h and g, respectively.
The ordering of DHq-RFNs can be processed by the following rule:
Let r̃i � (hi , gi ) (i � 1, 2) be any two DHq-RFNs.

• If S(̃r1) > S(̃r2), then r̃1 is superior to r̃2, denoted by r̃1 	 r̃2;
• If S(̃r1) � S(̃r2), then
• for A(̃r1) > A(̃r2), r̃1 	 r̃2;
• for A(̃r1) � A(̃r2), r̃1 is equivalent to r̃2, denoted by r̃1 ≈ r̃2.

2.4 Ht-N&t-CNs

In fuzzy aggregation theory, t-norms and t-conorms perform a significant role, which is
capable of formulating generalized intersection and union of fuzzy sets and its extensions.
In 1978, Hamacher (1978) introduced one of generalized t-norms and t-conorms, which is
known as Ht-N&t-CNs, and expressed as (
 > 0):

Hamacher t-norms: T H

 (x, y) � xy


+(1−
)(x+y−xy) ,

Hamacher t-conorms: SH

 (x, y) � x+y−xy−(1−
)xy

1−(1−
)xy .
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3 Development of WDHq-ROFS

The preference degrees of different possible membership and non-membership values may
deviate from each other in real-life decision-making contexts. It is worthy to mention here
that DHq-ROFS overlooks the variation of the importance of degrees of possible evaluation
values. To handle this issue and acquire more relevant and rational results, WDHq-ROFS is
introduced in this section by incorporating respective weights of possible membership and
non-membership degrees.

Definition 3.1 AWDHq-ROFS, Kω on a fixed set, X , is defined as.

Kω � {〈x, hω(x), gω(x)
〉|x ∈ X

}

(5)

where hω(x) � ⋃

〈ζ |ωζ 〉∈hω(x)

{〈

ζ |ωζ

〉}

, gω(x) � ⋃

〈ϑ |ωϑ 〉∈gω(x){〈ϑ |ωϑ 〉}, represent the col-
lection of possible membership and non-membership degrees of the element x ∈ X to the
set Kω, respectively, and ωζ , ωϑ ∈ [0, 1] represent the weights/degrees of importance cor-
responding to ζ and ϑ , respectively. The elements of the sets hω(x) and gω(x) satisfy the
condition that,

0 ≤
(

max
〈ζ |ωζ 〉∈hω(x)

{ζ }
)q

+

(

max
〈ϑ |ωϑ 〉∈gω(x)

{ϑ}
)q

≤ 1,

where q ≥ 1 and ζ , ϑ ∈ [0, 1] along with
∑𝓁(hω)

〈ζ |ωζ 〉∈hω(x)ωζ � 1, and
∑𝓁(gω)

〈ϑ |ωϑ 〉∈gω(x)ωϑ � 1.

Here 𝓁(hω) and 𝓁(gω) denotes the cardinality of hω(x) and gω(x), respectively.
For convenience,𝓀ω � (hω(x), gω(x)) is called aWDHq-ROF number (WDHq-ROFN),

and denoted by 𝓀ω � (hω, gω). Here, 𝓀 � (h, g) � 〈⋃ζ∈h(x){ζ },⋃ϑ∈g(x){ϑ}〉 represents
the corresponding DHq-ROFN of WDHq-ROFN 𝓀ω.

Remark For instance,WDHq-ROFS is converted intoDHq-ROFS if all the degrees of impor-
tance ωζ and ωϑ attached with possible membership and non-membership values turn into
an equal value. Thus, DH q-ROFS is a particular case of WDHq-ROFS.

Definition 3.2 Let 𝓀ω � 〈hω, gω〉 be any WDHq-ROFN, then its score function S
(

𝓀ω
)

and
accuracy function A

(

𝓀ω
)

are defined as follows:

S
(

𝓀ω
) �

∑

〈ζ |ωζ 〉∈hω
ζ qωζ −

∑

〈ϑ |ωϑ 〉∈gω
ϑqωϑ,

A
(

𝓀ω
) �

∑

〈ζ |ωζ 〉∈hω
ζ qωζ +

∑

〈ϑ |ωϑ 〉∈gω
ϑqωϑ.

Based on the defined score and accuracy functions of WDHq-ROFN, the following rule
is delivered to compare any two WDHq-ROFNs.

Definition 3.3 The ordering of WDHq-ROFNs can be performed as follows:
Let 𝓀ω

i � (hω
i , gω

i

)

(i � 1, 2) be any two WDHq-ROFNs,

If S
(

𝓀ω
1

)

> S
(

𝓀ω
2

)

, then 𝓀ω
1 is superior to 𝓀ω

2 , denoted by 𝓀ω
1 	 𝓀ω

2 ;
If S
(

𝓀ω
1

) � S
(

𝓀ω
2

)

, then

(i) if A
(

𝓀ω
1

)

> A
(

𝓀ω
2

)

, then 𝓀ω
1 	 𝓀ω

2 ;
(ii) if A

(

𝓀ω
1

) � A
(

𝓀ω
2

)

, then 𝓀ω
1 is analogous to 𝓀ω

2 , denoted by 𝓀ω
1 ≈ 𝓀ω

2 .
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3.1 Hamacher operations onWDHq-ROFNs

Utilizing the Ht-N&t-CNs, some basic operational rules for WDHq-ROFNs are defined as
follows:

Definition 3.1.1 Let 𝓀ω
1 � (hω

1 , gω
1

)

, 𝓀ω
2 � (hω

2 , gω
2

)

and 𝓀ω � (hω, gω) be any three given
WDHq-ROFNs, and consider λ > 0. Then in the following, some Hamacher operational
rules are defined as.

1. 𝓀ω
1 ⊕H𝓀ω

2 �
(

⋃

〈ζi |ωζi 〉∈hω
i ,i�1,2

{〈

(

ζ1
q + ζ2

q − ζ1
qζ2

q − (1 − 
)ζ1
qζ2

q

1 − (1 − 
)ζ1
qζ2

q

)1/q

, ωζ1ωζ2

〉}

,

⋃

〈ϑi |ωϑi 〉∈gω
i ,i�1,2

{〈

(

ϑ1
qϑ2

q


 + (1 − 
)(ϑ1
q + ϑ2

q − ϑ1
qϑ2

q)

)1/q

, ωϑ1ωϑ2

〉})

;

2. 𝓀ω
1 ⊗H𝓀ω

2 �
(

⋃

〈ζi |ωζi 〉∈hω
i ,i�1,2

{〈

(

ζ1
qζ2

q


 + (1 − 
)(ζ1
q + ζ2

q − ζ1
qζ2

q)

)1/q

, ωζ1ωζ2

〉}

,

⋃

〈ϑi |ωϑi 〉∈gω
i ,i�1,2

{〈

(

ϑ1
q + ϑ2

q − ϑ1
qϑ2

q − (1 − 
)ϑ1
qϑ2

q

1 − (1 − 
)ϑ1
qϑ2

q

)1/q

, ωϑ1ωϑ2

〉})

;

3. λH𝓀ω �
⎛

⎝

⋃

〈ζ |ωζ 〉∈hω

⎧

⎨

⎩

〈(

(1 + (
 − 1)ζ q)λ − (1 − ζ q)λ

(1 + (
 − 1)ζ q)λ + (
 − 1)(1 − ζ q)λ

)1/q

, ωζ

〉

⎫

⎬

⎭

,

⋃

〈ϑ |ωϑ 〉∈gω

{〈

(


ϑqλ

(1 + (
 − 1)(1 − ϑq))λ + (
 − 1)ϑqλ

)1/q

, ωϑ

〉})

;

4.
(

𝓀ω
)λ �

(

⋃

〈ζ |ωζ 〉∈hω

{〈

(


ζ qλ

(1 + (
 − 1)(1 − ζ q))λ + (
 − 1)ζ qλ

)1/q

, ωζ

〉}

,

⋃

〈ϑ |ωϑ 〉∈gω

⎧

⎨

⎩

〈(

(1 + (
 − 1)ϑq)λ − (1 − ϑq)λ

(1 + (
 − 1)ϑq)λ + (
 − 1)(1 − ϑq)λ

)1/q

, ωϑ

〉

⎫

⎬

⎭

⎞

⎠.

In particular, when 
 � 1, the above-mentioned Hamacher operational rules reduce to the
algebraic operational rules on WDHq-ROFNs presented as follows:

• Algebraic operational rules on WDHq-ROFNs:

(A1) 𝓀ω
1 ⊕ 𝓀ω

2 �
(

⋃

〈ζi |ωζi 〉∈hω
i ,i�1,2

{〈

(ζ1
q + ζ2

q − ζ1
qζ2

q)
1
q , ωζ1ωζ2

〉}

,
⋃

〈ϑi |ωϑi 〉∈gω
i , i � 1, 2

{〈

ϑ1ϑ2, ωϑ1ωϑ2

〉})

;

(A2) 𝓀ω
1 ⊗ 𝓀ω

2 �
(

⋃

〈ζi |ωζi 〉∈hω
i ,i�1,2

{〈

ζ1ζ2, ωζ1ωζ2

〉}

,

⋃

〈ϑi |ωϑi 〉∈gω
i ,i�1,2

{〈

(ϑ1
q + ϑ2

q − ϑ1
qϑ2

q)
1
q , ωϑ1ωϑ2

〉})

;

(A3) λ𝓀ω �
(

⋃

〈ζ |ωζ 〉∈hω

{〈

(

1 − (1 − ζ q)λ
)1/q

, ωζ

〉}

,
⋃

〈ϑ |ωϑ 〉∈gω

{〈

ϑλ, ωϑ

〉}

)

;

(A4)
(

𝓀ω
)λ �

(

⋃

〈ζ |ωζ 〉∈hω

{〈

ζ λ, ωζ

〉}

,
⋃

〈ϑ |ωϑ 〉∈gω

{〈

(

1 − (1 − ϑq)λ
)1/q

, ωϑ

〉})

.

Moreover, the Hamacher operational rules reduce to the Einstein operational rules on
WDHq-ROFNs for 
 � 2 presented as follows:

• Einstein operational rules on WDHq-ROFNs:
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(E1) 𝓀ω
1 ⊕E𝓀ω

2 �
(

⋃

〈ζi |ωζi 〉∈hω
i ,i�1,2

{〈

(

ζ1
q+ζ2

q

1+ζ1
qζ2

q

)1/q
, ωζ1ωζ2

〉}

,

⋃

〈ϑi |ωϑi 〉∈gω
i ,i�1,2

{〈

(

ϑ1
qϑ2

q

1 + (1 − ϑ1
q)(1 − ϑ2

q)

)1/q

, ωϑ1ωϑ2

〉})

;

(E2) 𝓀ω
1 ⊗E𝓀ω

2 �
(

⋃

〈ζi |ωζi 〉∈hω
i ,i�1,2

{〈

(

ζ1
qζ2

q

1+(1−ζ1
q )(1−ζ2

q )

)1/q
, ωζ1ωζ2

〉}

,

⋃

〈ϑi |ωϑi 〉∈gω
i ,i�1,2

{〈

(

ϑ1
q + ϑ2

q

1 + ϑ1
qϑ2

q

)1/q

, ωϑ1ωϑ2

〉})

;

(E3) λ𝓀ω �
(

⋃

〈ζ |ωζ 〉∈hω

{〈

(

(1+ζ q )λ−(1−ζ q )λ

(1+ζ q )λ+(1−ζ q )λ

)1/q
, ωζ

〉}

,

⋃

〈ϑ |ωϑ 〉∈gω

{〈

(

2ϑqλ

(1 + (1 − ϑq))λ + ϑqλ

)1/q

, ωϑ

〉})

;

(E4)
(

𝓀ω
)λ �

(

⋃

〈ζ |ωζ 〉∈hω

{〈

(

2ζ qλ

(1+(1−ζ q ))λ+ζ qλ

)1/q
, ωζ

〉}

,

⋃

〈ϑ |ωϑ 〉∈gω

⎧

⎨

⎩

〈(

(1 + ϑq)λ − (1 − ϑq)λ

(1 + ϑq)λ + (1 − ϑq)λ

)1/q

, ωϑ

〉

⎫

⎬

⎭

⎞

⎠.

With the aid of the above Hamacher-based operations, in the next section, some new
WDHq-ROF Hamacher aggregation operators, viz., WDHq-ROFHWA, WDHq-ROFHWG
operators and their exceptional cases are derived. Further, several desirable characteristics
are also discussed in detail.

4 Development of aggregation operators underWDHq-ROF
environment

In the MCGDM context, the advantages of Ht-N&t-CNs have already been discussed in
the introduction section. Utilizing the benefits of Hamacher operations, several aggregation
operators under WDHq-ROF environment are developed as follows:

4.1 WDHq-ROFHWA operator

Definition 4.1.1 Let
{

𝓀ω
1 ,𝓀ω

2 , . . . ,𝓀ω
n

}

be a set of WDHq-ROFNs, and  �
(1,2, . . . , n)

T be the weight vector with
∑n

i�1i � 1 and i ∈ [0, 1]. Then WDHq-
ROFHWA operator is a function: (Kω)n → Kω, given by.

WDHq − ROFHWA
(

𝓀ω
1 ,𝓀ω

2 , . . . ,𝓀ω
n

) � ⊕H
n
i�1

(

i𝓀ω
i

)

(6)

Theorem 4.1.1 Let 𝓀ω
i � (

hω
i , gω

i

)

(i � 1, 2, . . . , n) be a set of WDHq-ROFNs, then the
aggregated outcome employing WDHq-ROFHWA operator is also a WDHq-ROFN, and.
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WDHq-ROFHWA(𝓀ω
1 ,𝓀ω

2 , . . . ,𝓀ω
n )

�

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⋃

ζi |ωζi ∈ hω
i

i � 1, 2, . . . , n

⎧

⎨

⎩

(
∏n

i�1

(

1 + (
 − 1)ζ qi
)i −∏n

i�1

(

1 − ζ
q
i

)i

∏n
i�1

(

1 + (
 − 1)ζ qi
)i + (
 − 1)

∏n
i�1

(

1 − ζ
q
i

)i

)
1
q

,

n
∏

i�1

ωζi

⎫

⎬

⎭

,

⋃

ϑi |ωϑi ∈ gω
i

i � 1, 2, . . . , n

⎧

⎨

⎩

(



∏n

i�1 ϑ
qi
i

∏n
i�1

(

1 + (
 − 1)
(

1 − ϑ
q
i

))i + (
 − 1)
∏n

i�1

(

ϑ
q
i

)i

)
1
q

,

n
∏

i�1

ωϑi

⎫

⎬

⎭

⎞

⎠

(7)

Proof For n � 2,

1𝓀ω
1 �

⎛

⎝

⋃

〈ζ1|ωζ1 〉∈hω
1

⎧

⎨

⎩

〈(

(1 + (
 − 1)ζ1q)
1 − (1 − ζ1

q)1

(1 + (
 − 1)ζ1q)
1 + (
 − 1)(1 − ζ1

q)1

)1/q

, ωζ1

〉

⎫

⎬

⎭

,

⋃

〈ϑ1|ωϑ1 〉∈g1ω

{〈

(


ϑ1
q1

(1 + (
 − 1)(1 − ϑ1
q))1 + (
 − 1)ϑ1

q1

)1/q

, ωϑ1

〉})

.

and 2𝓀ω
2 �

(

⋃

〈ζ2|ωζ2 〉∈hω
2

{〈

(

(1+(
−1)ζ2q )2−(1−ζ2
q )2

(1+(
−1)ζ2q )2+(
−1)(1−ζ2
q )2

)1/q
, ωζ2

〉}

,

⋃

〈ϑ2|ωϑ2 〉∈g2ω

{〈

(


ϑ2
q2

(1 + (
 − 1)(1 − ϑ2
q))2 + (
 − 1)ϑ2

q2

)1/q

, ωϑ2

〉})

.

Now, 1𝓀ω
1 ⊕H2𝓀ω

2 �

�

⎛

⎜

⎜

⎝

⋃

〈ζi |ωζi 〉 ∈ hω
i

i � 1, 2

⎧

⎨

⎩

⎛

⎝

(

∏2
i�1(1 + (
 − 1)ζi q )

i −∏2
i�1(1 − ζi

q )i

∏2
i�1(1 + (
 − 1)ζi q )

i + (
 − 1)
∏2

i�1(1 − ζi
q )i

) 1
q

,
∏2

i�1
ωζi

⎞

⎠

⎫

⎬

⎭

,

⋃

〈ϑi |ωϑi 〉 ∈ gω
i

i � 1, 2

⎧

⎨

⎩

⎛

⎝

(



∏2

i�1ϑi
qi

∏2
i�1(1 + (
 − 1)(1 − ϑi

q ))i + (
 − 1)
∏2

i�1(ϑi
q )i

) 1
q

,
∏2

i�1
ωϑi

⎞

⎠

⎫

⎬

⎭

⎞

⎟

⎟

⎠

i.e., the theorem holds for n � 2. Assume now that the theorem holds for n � t .
Hence, WDHq-ROFHWA

(

𝓀ω
1 ,𝓀ω

2 , . . . ,𝓀ω
t

)

�

⎛

⎜

⎜

⎝

⋃

〈ζi |ωζi 〉 ∈ hω
i

i � 1, 2, . . . , t

⎧

⎨

⎩

⎛

⎝

(

∏t
i�1(1 + (
 − 1)ζi q )

i −∏t
i�1(1 − ζi

q )i

∏t
i�1(1 + (
 − 1)ζi q )

i + (
 − 1)
∏t

i�1(1 − ζi
q )i

) 1
q

,
∏t

i�1
ωζi

⎞

⎠

⎫

⎬

⎭

,

⋃

〈ϑi |ωϑi 〉 ∈ gω
i

i � 1, 2, . . . , t

⎧

⎨

⎩

⎛

⎝

(



∏t

i�1ϑi
qi

∏t
i�1(1 + (
 − 1)(1 − ϑi

q ))i + (
 − 1)
∏t

i�1(ϑi
q )i

) 1
q

,
∏t

i�1
ωϑi

⎞

⎠

⎫

⎬

⎭

⎞

⎟

⎟

⎠

;

Then for n � t + 1,

WDHq-ROFHWA
(

𝓀ω
1 ,𝓀ω

2 , . . . ,𝓀ω
t ,𝓀ω

t+1

)
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� WDHq-ROFHWA
(

𝓀ω
1 ,𝓀ω

2 , . . . ,𝓀ω
t

)⊕Ht+1𝓀ω
t+1

�

⎛

⎜

⎜

⎝

⋃

〈ζi |ωζi 〉 ∈ hω
i

i � 1, 2, . . . , t

⎧

⎨

⎩

⎛

⎝

(

∏t
i�1(1 + (
 − 1)ζi q )

i −∏t
i�1(1 − ζi

q )i

∏t
i�1(1 + (
 − 1)ζi q )

i + (
 − 1)
∏t

i�1(1 − ζi
q )i

) 1
q

,
∏t

i�1
ωζi

⎞

⎠

⎫

⎬

⎭

,

⋃

〈ϑi |ωϑi 〉 ∈ gω
i

i � 1, 2, . . . , t

⎧

⎨

⎩

⎛

⎝

(



∏t

i�1ϑi
qi

∏t
i�1(1 + (
 − 1)(1 − ϑi

q ))i + (
 − 1)
∏t

i�1(ϑi
q )i

) 1
q

,
∏t

i�1
ωϑi

⎞

⎠

⎫

⎬

⎭

⎞

⎟

⎟

⎠

⊕H

⎛

⎝

⋃

〈ζt+1|ωζt+1 〉∈hω
t+1

⎧

⎨

⎩

〈(

(1 + (
 − 1)ζt+1q )
t+1 − (1 − ζt+1

q )t+1

(1 + (
 − 1)ζt+1q )
t+1 + (
 − 1)(1 − ζt+1

q )t+1

)1/q

, ωζt+1

〉

⎫

⎬

⎭

,

⋃

〈ϑt+1|ωϑt+1 〉∈gt+1ω

{〈

(


ϑt+1
qt+1

(1 + (
 − 1)(1 − ϑt+1
q))t+1 + (
 − 1)ϑt+1

qt+1

)1/q

, ωϑt+1

〉})

�

⎛

⎜

⎜

⎜

⎝

⋃

〈ζi |ωζi 〉 ∈ hω
i

i � 1, 2, . . . , t

⎧

⎨

⎩

⎛

⎝

(

(1 + (
 − 1)ζt+1q )t+1
∏t

i�1(1 + (
 − 1)ζi q )i − (1 − ζt+1
q )t+1

∏t
i�1(1 − ζi

q )i

(1 + (
 − 1)ζt+1q )
t+1

∏t
i�1(1 + (
 − 1)ζi q )

i + (
 − 1)(1 − ζt+1
q )t+1

∏t
i�1(1 − ζi

q )i

) 1
q

,

ωζt+1

∏t

i�1
ωζi

)}

,

⋃

〈ϑi |ωϑi 〉 ∈ gω
i

i � 1, 2, . . . , t

⎧

⎨

⎩

⎛

⎝

(


ϑt+1
qt+1

∏t
i�1ϑi

qi

(1 + (
 − 1)(1 − ϑt+1
q ))t+1

∏t
i�1(1 + (
 − 1)(1 − ϑi

q ))i + (
 − 1)(ϑt+1
q )t+1

∏t
i�1(ϑi

q )i

) 1
q

,

ωϑt+1

∏t

i�1
ωϑi

)})

�

⎛

⎜

⎜

⎝

⋃

〈ζi |ωζi 〉 ∈ hω
i

i � 1, 2, . . . , t, t + 1

⎧

⎨

⎩

⎛

⎝

(

∏t+1
i�1(1 + (
 − 1)ζi q )

i −∏t+1
i�1(1 − ζi

q )i

∏t+1
i�1(1 + (
 − 1)ζi q )

i + (
 − 1)
∏t+1

i�1(1 − ζi
q )i

) 1
q

,
∏t+1

i�1
ωζi

⎞

⎠

⎫

⎬

⎭

,

⋃

〈ϑi |ωϑi 〉 ∈ gω
i

i � 1, 2, . . . , t, t + 1

⎧

⎨

⎩

⎛

⎝

(



∏t+1

i�1ϑi
qi

∏t+1
i�1(1 + (
 − 1)(1 − ϑi

q ))i + (
 − 1)
∏t+1

i�1(ϑi
q )i

) 1
q

,
∏t+1

i�1
ωϑi

⎞

⎠

⎫

⎬

⎭

⎞

⎟

⎟

⎠

.

Therefore, the theorem is true for n � t + 1 also; and hence is true for all n.
This completes the proof.

• Subject to particular values of Hamacher parameter 
, some particular variants of the
developed WDHq-ROFHWA operator can be established.

If 
 � 1, then WDHq-ROFHWA operator is converted to WDHq-ROFWA operator as
follows:

WDHq − ROFW A
(

𝓀ω
1 ,𝓀ω

2 , . . . ,𝓀ω
n

) � ⊕n
i�1

(

i𝓀ω
i

)

�

⎛

⎜

⎜

⎝

⋃

〈ζi |ωζi 〉 ∈ hω
i

i � 1, 2, . . . , n

{(

(

1 −
∏n

i�1

(

1 − ζi
q)i

) 1
q
,
∏n

i�1
ωζi

)}

,

⋃

〈ϑi |ωϑi 〉 ∈ gω
i

i � 1, 2, . . . , n

{(
∏n

i�1
ϑi

qi ,
∏n

i�1
ωϑi

)}

⎞

⎟

⎟

⎠

.
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If 
 � 2, the WDHq-ROFHWA operator is converted to WDHq-ROFEWA operator as
follows:

WDHq − ROFEW A
(

𝓀ω
1 ,𝓀ω

2 , . . . ,𝓀ω
n

) � ⊕E
n
i�1

(

i𝓀ω
i

)

�

⎛

⎜

⎜

⎝

⋃

〈ζi |ωζi 〉 ∈ hω
i

i � 1, 2, . . . , n

⎧

⎨

⎩

⎛

⎝

(

∏n
i�1(1 + ζi

q)i −∏n
i�1(1 − ζi

q)i

∏n
i�1(1 + ζi

q)i +
∏n

i�1(1 − ζi
q)i

) 1
q

,
∏n

i�1
ωζi

⎞

⎠

⎫

⎬

⎭

,

⋃

〈ϑi |ωϑi 〉 ∈ gω
i

i � 1, 2, . . . , n

⎧

⎨

⎩

⎛

⎝

(

2
∏n

i�1ϑi
qi

∏n
i�1(1 + (1 − ϑi

q))i +
∏n

i�1(ϑi
q)i

) 1
q

,
∏n

i�1
ωϑi

⎞

⎠

⎫

⎬

⎭

⎞

⎟

⎟

⎠

,

Now, some fundamental properties of the proposedWDHq-ROFHWA operator are stated
in follow-up.

4.2 The properties of theWDHq-ROFHWA operator

The proposed aggregation operators meet some stimulating properties, including idempo-
tency, monotonicity, and boundedness, which are presented below:

Theorem4.2.1 (Idempotency) Suppose
{

𝓀ω
1 ,𝓀ω

2 , . . . ,𝓀ω
n

}

is a collection ofWDHq-ROFNs,
if all 𝓀ω

i � 〈hω
i , gω

i 〉 are equal, i.e., 𝓀ω
i � 𝓀ω � 〈hω, gω〉 for all i , then.

WDHq-ROFHWA
(

𝓀ω
1 ,𝓀ω

2 , . . . ,𝓀ω
n

) � 𝓀ω. (8)

Proof

WDHq-ROFHWA
(

𝓀ω
1 ,𝓀ω

2 , . . . ,𝓀ω
n

)

�

⎛

⎜

⎜

⎝

⋃

〈ζi |ωζi 〉 ∈ hω
i

i � 1, 2, . . . , n

⎧

⎨

⎩

⎛

⎝

(

∏n
i�1(1 + (
 − 1)ζi q )

i −∏n
i�1(1 − ζi

q )i

∏n
i�1(1 + (
 − 1)ζi q )

i + (
 − 1)
∏n

i�1(1 − ζi
q )i

) 1
q

,
∏n

i�1
ωζi

⎞

⎠

⎫

⎬

⎭

,

⋃

〈ϑi |ωϑi 〉 ∈ gω
i

i � 1, 2, . . . , n

⎧

⎨

⎩

⎛

⎝

(



∏n

i�1ϑi
qi

∏n
i�1(1 + (
 − 1)(1 − ϑi

q ))i + (
 − 1)
∏n

i�1(ϑi
q )i

) 1
q

,
∏n

i�1
ωϑi

⎞

⎠

⎫

⎬

⎭

⎞

⎟

⎟

⎠

.

(9)

Now, since 𝓀ω
i � 𝓀ω � 〈hω, gω〉 for i � 1, 2, . . . , n, then.

ζi � ζ and ϑi � ϑ for i � 1, 2, . . . , n.
Therefore, WDHq-ROFHWA

(

𝓀ω,𝓀ω, . . . ,𝓀ω
)

�
⎛

⎝

⋃

〈ζ |ωζ 〉∈hω

⎧

⎨

⎩

⎛

⎝

(

∏n
i�1(1 + (
 − 1)ζ q )i −∏n

i�1(1 − ζ q )i

∏n
i�1(1 + (
 − 1)ζ q )i + (
 − 1)

∏n
i�1(1 − ζ q )i

) 1
q

,
∏n

i�1
ωζ

⎞

⎠

⎫

⎬

⎭

,

⋃

〈ϑ |ωϑ 〉∈gω

⎧

⎨

⎩

⎛

⎝

(



∏n

i�1ϑ
qi

∏n
i�1(1 + (
 − 1)(1 − ϑq ))i + (
 − 1)

∏n
i�1(ϑ

q )i

) 1
q

,
∏n

i�1
ωϑ

⎞

⎠

⎫

⎬

⎭

⎞

⎠

�
(

⋃

〈ζ |ωζ 〉∈hω

{〈

(


ζ q




) 1
q

,
∏n

i�1
ωζ

〉}

,
⋃

〈ϑ |ωϑ 〉∈gω

{〈

(


ϑq




) 1
q

,
∏n

i�1
ωϑ

〉})

123



   40 Page 14 of 34 A. Sarkar et al.

�
(

⋃

〈ζ |ωζ 〉∈hω

{〈

ζ , ωζ
∗〉},

⋃

〈ϑ |ωϑ 〉∈gω

{〈

ϑ,ωϑ
∗〉}
)

� 〈hω, gω〉 � 𝓀ω.

Here, ωζ
∗ �∏n

i�1ωζ , ωϑ
∗ �∏n

i�1ωϑ .
Hence the theorem.

Theorem4.2.2 (Monotonicity) Let
{

𝓀ω
1 ,𝓀ω

2 , . . . ,𝓀ω
n

}

and
{

𝓀ω′
1 ,𝓀ω′

2 , . . . ,𝓀ω′
n

}

be two col-

lections of WDHq-ROFNs,

𝓀ω
i � 〈hω

i , gω
i 〉 �

⎛

⎜

⎜

⎝

∪ 〈ζi |ωζi 〉 ∈ hω
i

i � 1, 2, . . . , n

{〈

ζi , ωζi

〉}

,∪ 〈ϑi |ωϑi 〉 ∈ gω
i

i � 1, 2, . . . , n

{〈

ϑi , ωϑi

〉}

⎞

⎟

⎟

⎠

and.

𝓀ω′
i � 〈hω′

i , gω′
i 〉 �

⎛

⎜

⎜

⎜

⎝

∪ 〈ζ ′
i |ωζ ′

i
〉 ∈ hω

i

i � 1, 2, . . . , n

{〈

ζ ′
i , ωζ ′

i

〉}

,∪ 〈ϑ ′
i |ωϑ ′

i
〉 ∈ gω′

i

i � 1, 2, . . . , n

{〈

ϑ ′
i , ωϑ ′

i

〉}

⎞

⎟

⎟

⎟

⎠

If ζi ≤ ζ
′
i , ϑi ≥ ϑ ′

i , ωζi ≤ ωζ ′
i
and ωϑi ≥ ωϑ ′

i
∀i � 1, 2, . . . , n, then.

WDHq-ROFHWA
(

𝓀ω
1 ,𝓀ω

2 , . . . ,𝓀ω
n

) ≤ WDHq-ROFHWA
(

𝓀ω′
1 ,𝓀ω′

2 , . . . ,𝓀ω′
n

)

where  � (1,2, . . . , n)
T representing the weight vector and

∑n
i�1i � 1, i ∈

[0, 1].

Proof Let f (x) � 1+(
−1)x
1−x , x ∈ [0, 1), then f ′(x) � 


(1−x)2
> 0, thus f is an increasing

function. Since for every 𝓀ω
i and 𝓀ω′

i , ζi ≤ ζ ′
i ,(i � 1, 2, . . . , n)

(1 + (
 − 1)ζi q)

(1 − ζi
q)

≤
(

1 + (
 − 1)ζ ′
i
q)

(

1 − ζ ′
i
q) .

So,
(

(1+(
−1)ζi q )
(1−ζi

q )

)i ≤
((

1+(
−1)ζ
′
i

q)

(

1−ζ
′
i
q)

)i

⇐⇒
∏n

i�1

(

(1 + (
 − 1)ζi q)

(1 − ζi
q)

)i

≤
∏n

i�1

⎛

⎝

(

1 + (
 − 1)ζ
′
i
q
)

(

1 − ζ
′
i
q
)

⎞

⎠

i

⇐⇒
∏n

i�1

(

(1 + (
 − 1)ζi q)

(1 − ζi
q)

)i

+ (
 − 1) ≤
∏n

i�1

⎛

⎝

(

1 + (
 − 1)ζ
′
i
q
)

(

1 − ζ
′
i
q
)

⎞

⎠

i

+ (
 − 1)

⇐⇒ 1
∏n

i�1

(

(1+(
−1)ζi q )
(1−ζi

q )

)i
+ (
 − 1)

≥ 1

∏n
i�1

((

1+(
−1)ζ
′
i
q)

(

1−ζ
′
i
q)

)i

+ (
 − 1)

⇐⇒ 

∏n

i�1(1 − ζi
q)i

∏n
i�1(1 + (
 − 1)ζi q)

i + (
 − 1)
∏n

i�1(1 − ζi
q)i
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≥


∏n

i�1

(

1 − ζ
′
i
q
)i

∏n
i�1

(

1 + (
 − 1)ζ
′
i
q
)i

+ (
 − 1)
∏n

i�1

(

1 − ζ
′
i
q
)i

⇐⇒ 1 − 

∏n

i�1(1 − ζi
q)i

∏n
i�1(1 + (
 − 1)ζi q)

i + (
 − 1)
∏n

i�1(1 − ζi
q)i

≤ 1 −


∏n

i�1

(

1 − ζ
′
i
q
)i

∏n
i�1

(

1 + (
 − 1)ζ
′
i
q
)i

+ (
 − 1)
∏n

i�1

(

1 − ζ
′
i
q
)i

⇐⇒
∏n

i�1(1 + (
 − 1)ζi q)
i −∏n

i�1(1 − ζi
q)i

∏n
i�1(1 + (
 − 1)ζi q)

i + (
 − 1)
∏n

i�1(1 − ζi
q)i

≤
∏n

i�1

(

1 + (
 − 1)ζ
′
i
q
)i −∏n

i�1

(

1 − ζ
′
i
q
)i

∏n
i�1

(

1 + (
 − 1)ζ
′
i
q
)i

+ (
 − 1)
∏n

i�1

(

1 − ζ
′
i
q
)i

(10)

Again let g(y) � (1+(
−1)(1−y))
y , y ∈ (0, 1], 
 > 0, then g′(y) � − 


y2
< 0, thus g(y) is a

decreasing function.
Since for all i , ϑi

q ≥ ϑ ′
i
q , then.

1+(
−1)(1−ϑi
q )

ϑi
q ≤ 1+(
−1)(1−ϑ ′

i
q)

ϑ ′
i
q ,

Thus,
(

1+(
−1)(1−ϑi
q )

ϑi
q

)i ≤
(

1+(
−1)(1−ϑ ′
i
q)

ϑ ′
i
q

)i

⇐⇒
∏n

i�1

(

1 + (
 − 1)(1 − ϑi
q)

ϑi
q

)i

≤
∏n

i�1

(

1 + (
 − 1)
(

1 − ϑ ′
i
q)

ϑ ′
i
q

)i

⇐⇒
∏n

i�1

(

1 + (
 − 1)(1 − ϑi
q)

ϑi
q

)i

+ (
 − 1)

≤
∏n

i�1

(

1 + (
 − 1)
(

1 − ϑ ′
i
q)

ϑ ′
i
q

)i

+ (
 − 1)

⇐⇒ 1
∏n

i�1

(

1+(
−1)(1−ϑi
q )

ϑi
q

)i
+ (
 − 1)

≥ 1
∏n

i�1

(

1+(
−1)(1−ϑ ′
i
q)

ϑ ′
i
q

)i
+ (
 − 1)

⇐⇒ 

∏n

i�1ϑi
qi

∏n
i�1(1 + (
 − 1)(1 − ϑi

q))i + (
 − 1)
∏n

i�1ϑi
qi

≥ 

∏n

i�1ϑ
′
i
qi

∏n
i�1

(

1 + (
 − 1)
(

1 − ϑ
′
i
q
))i

+ (
 − 1)
∏n

i�1ϑ
′
i
qi

. (11)

From (10) and (11) and using the relations ωζi ≤ ωζ ′
i
and ωϑi ≥ ωϑ ′

i
, it is clear that.

S
(

WDHq-ROFHWA
(

𝓀ω
1 ,𝓀ω

2 , . . . ,𝓀ω
n

)) ≤ S
(

WDHq-ROFHWA
(

𝓀ω′
1 ,𝓀ω′

2 , . . . ,𝓀ω′
n

))

Therefore,WDHq-ROFHWA
(

𝓀ω
1 ,𝓀ω

2 , . . . ,𝓀ω
n

) ≤ WDHq-ROFHWA
(

𝓀ω′
1 ,𝓀ω′

2 , . . . ,𝓀ω′
n

)

.
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Theorem 4.2.3 (boundedness) Let 𝓀ω
i � (

hω
i , gω

i

)

(i � 1, 2, . . . , n) be a collection of
WDHq-ROFNs, and let.

ζ− � min
{

ζi |〈ζi |ωζi 〉 ∈ hω
i

}

, ζ + � max
{

ζi |〈ζi |ωζi 〉 ∈ hω
i

}

,

ϑ− � min
{

ϑi |〈ϑi |ωϑi 〉 ∈ gω
i

}

, ϑ+ � max
{

ϑi |〈ϑi |ωϑi 〉 ∈ gω
i

}

,

ωζ− � min
{

ωζi |〈ζi |ωζi 〉 ∈ hω
i

}

, ωζ+ � max
{

ωζi |〈ζi |ωζi 〉 ∈ hω
i

}

,

ωϑ− � min
{

ωϑi |〈ϑi |ωϑi 〉 ∈ gω
i

}

, ωϑ+ � max
{

ωϑi |〈ϑi |ωϑi 〉 ∈ gω
i

}

.

If 𝓀ω− � (〈ζ−|ωζ−〉, 〈ϑ+|ωϑ+〉) and 𝓀ω
+ � (〈ζ +|ωζ+〉, 〈ϑ−|ωϑ−〉),

then 𝓀ω− ≤ WDHq-ROFHWA
(

𝓀ω
1 ,𝓀ω

2 , . . . ,𝓀ω
n

) ≤ 𝓀ω
+ .

Proof Let f (x) � 1+(
−1)x
1−x , x ∈ [0 , 1), then f ′(x) � 


(1−x)2
> 0, thus f is an increasing

function.

Since, ζ− ≤ ζi ≤ ζ +, (i � 1, 2, . . . , n)
i.e.,

(

ζ−)q ≤ ζi
q ≤ (ζ +

)q (i � 1, 2, . . . , n) then f
((

ζ−)q) ≤ f (ζi q) ≤ f
((

ζ +
)q)

i.e., 1+(
−1)ζ−
1−ζ− ≤ 1+(
−1)ζi q

1−ζi
q ≤ 1+(
−1)(ζ+)

q

1−(ζ+)q
.

Let � (1,2, . . . , n)
T is the weight vector satisfying

∑n
i�1i � 1 andi ∈ [0, 1].

Then for all i ,
(

1+(
−1)(ζ−)
q

1−(ζ−)
q

)i ≤
(

1+(
−1)ζi q

1−ζi
q

)i ≤
(

1+(
−1)(ζ+)
q

1−(ζ+)q

)i

⇐⇒
∏n

i�1

(

1 +


(

ζ−)q

1 − (ζ−)q

)i

≤
∏n

i�1

(

1 + (
 − 1)ζi q

1 − ζi
q

)i

≤
∏n

i�1

(

1 +


(

ζ +
)q

1 − (ζ +)q

)i

⇐⇒ 1 +


(

ζ−)q

1 − (ζ−)q ≤
∏n

i�1

(

1 + (
 − 1)ζi q

1 − ζi
q

)i

≤ 1 +


(

ζ +
)q

1 − (ζ +)q

⇐⇒ 1


 + 
(ζ+)q

1−(ζ+)q

≤ 1
∏n

i�1

(

1+(
−1)ζi q

1−ζi
q

)i
+ (
 − 1)

≤ 1


 +

(ζ−)

q

1−(ζ−)
q

⇐⇒ 1 − (ζ +
)q



≤

∏n
i�1(1 − ζi

q)i

∏n
i�1(1 + (
 − 1)ζi q)

i + (
 − 1)
∏n

i�1(1 − ζi
q)i

≤ 1 − (ζ−)q




⇐⇒ ζ− ≤
(

∏n
i�1(1 + (
 − 1)ζi q)

i −∏n
i�1(1 − ζi

q)i

∏n
i�1(1 + (
 − 1)ζi q)

i + (
 − 1)
∏n

i�1(1 − ζi
q)i

) 1
q

≤ ζ + (12)

Again let g(y) � (1+(
−1)(1−y))
y , y ∈ (0, 1], 
 > 0, then g′(y) � − 


y2
< 0, thus g(y) is a

decreasing function.
Since for all i ,

(

ϑ−)q ≤ ϑi
q ≤ (ϑ+

)q , then g
((

ϑ−)q) ≥ g(ϑi
q) ≥ g

((

ϑ+
)q), i.e.,

(

1 + (
 − 1)
(

1 − (ϑ+
)q))

(ϑ+)q
≤ (1 + (
 − 1)(1 − ϑi

q))

ϑi
q ≤

(

1 + (
 − 1)
(

1 − (ϑ−)q))
(

ϑ−)q

⇐⇒
∏n

i�1

(
(

1 + (
 − 1)
(

1 − (ϑ+
)q))

(ϑ+)q

)i

≤
∏n

i�1

(

(1 + (
 − 1)(1 − ϑi
q))

ϑi
q

)i
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≤
∏n

i�1

(
(

1 + (
 − 1)
(

1 − (ϑ−)q))
(

ϑ−)q

)i

⇐⇒ 


(ϑ+)q
− (
 − 1) ≤

∏n
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(
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q))

ϑi
q

)i

≤ 

(

ϑ−)q − (
 − 1)

⇐⇒ 1



(ϑ−)
q

≤
∏n

i�1ϑi
qi

∏n
i�1(1 + (
 − 1)(1 − ϑi

q))i + (
 − 1)
∏n

i�1(ϑi
q)i

≤ 1



(ϑ+)q

⇐⇒ ϑ− ≤
(



∏n

i�1ϑi
qi

∏n
i�1(1 + (
 − 1)(1 − ϑi

q))i + (
 − 1)
∏n

i�1ϑi
qi

) 1
q

≤ ϑ+. (13)

Using (12) and (13) and based on given ωζ− , ωζ+ , ωϑ− and ωϑ+ it is found that.

𝓀ω− ≤ WDHq-ROFHWA
(

𝓀ω
1 ,𝓀ω

2 , . . . ,𝓀ω
n

) ≤ 𝓀ω
+

Hence the theorem.

4.3 WDHq-ROFHWG operator

In this subsection, WDHq-ROFWG operator is developed based on Hamacher operational
rules.

Definition 4.3.1 Let
{

𝓀ω
1 ,𝓀ω

2 , . . . ,𝓀ω
n

}

be a set of WDHq-ROFNs, Then WDHq-ROFWG
operator is a function: (Kw)n → Kw , given by.

WDHq − ROFHWG
(

𝓀ω
1 ,𝓀ω

2 , . . . ,𝓀ω
n

) � ⊗H
n
i�1

(

(

𝓀ω
i

)i
)

, (14)

where  � (1,2, . . . , n)
T representing the weight vector with

∑n
i�1i � 1 and

i ∈ [0, 1].

Theorem 4.3.1 Let 𝓀ω
i � (

hω
i , gω

i

)

(i � 1, 2, . . . , n) be a set of WDH q-ROFNs, then the
aggregating value using WDHq-ROFHWG operator is also an WDHq-ROFN and.

WDHq − ROFHWG
(

𝓀ω
1 ,𝓀ω

2 , . . . ,𝓀ω
n

)

� 〈
⋃
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q )i
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,
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⎞

⎠

⎫

⎬
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⋃
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⎩

⎛

⎝

(
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 − 1)ϑi
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,
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i�1
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⎞

⎠

⎫

⎬

⎭

〉.

(15)

Proof This proof is analogous to the proof of Theorem 4.1.1.

• Subject to particular values of Hamacher parameter 
, some special variants of the devel-
oped WDHq-ROFHWG operator can be established.

If 
 � 1, then WDHq-ROFHWG operator is converted to WDHq-ROFWG operator as
follows:

WDHq-ROFWG
(

𝓀ω
1 ,𝓀ω

2 , . . . ,𝓀ω
n

) � ⊕n
i�1

(

i𝓀ω
i

)
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�
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⎜
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If 
 � 2, the WDHq-ROFHWG operator is converted to WDH q-ROFEWG operator as
follows:
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It is clear that the WDHq-ROFHWG operator also satisfies the properties idempotency,
monotonicity, and boundedness.

Moreover, a list of some valuable aggregation operators is presented in Fig. 2, which can
be easily constructed from the developed operators by setting particular values of Hamachar
and rung parameters.

5 An approach tomulticriteria group decisionmaking withWDHq-ROF
information

In the present section, the proposed aggregation operators are employed to develop an
MCGDM approach under WDHq-ROF environment.

In anMCGDMproblem, suppose Z � {Z1, Z2, . . . ., Zm} denotes a set of distinct alterna-
tives and C � {C1, C2, . . . ., Cn} represents the set of n criteria along with their weight vector
 � (1,2, . . . , n)

T , satisfying i ∈ [0, 1] and
∑n

i�1i � 1. There are p number of
experts, E (1), E (2), . . . , E (p), who provide their judgement values by evaluating the alterna-
tives on the basis of the criteria as mentioned above. Let a q-ROFN,𝓅i j

(k) � 〈ζi j (k), ϑi j
(k)〉

represents the assessment value given by an expert, E (k) under the criteria, C j for the alter-

native, Zi , and the individual decision matrices D(k)
m×n � [𝓅i j

(k)
]

m×n
(k � 1, 2, . . . , p) are

constructed. The goal of the DMs is to find the ranking of alternatives to identify the best
choice.

Then, the developed WDHq-ROF aggregation operators are applied to the MCGDM
method which involves the following steps:

Step 1: Formulate a collective decision matrix, Rω
m×n �

[

𝓇ω
i j

]

m×n
, based on the indi-

vidual decision matrices D(k)
m×n � [

𝓅i j
(k)
]

m×n
, provided by the DMs, where the elements
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Fig. 2 List of several reduced aggregation operators. WDH PF (WDHPF); WDH FF (WDHFF); Hamacher
WA (HWA); Hamacher WG (HWG); Einstein WA (EWA); Einstein WG (EWG)

are in the form of WDHq-ROFNs. In this context, two different cases may occur, respec-

tively, in computing the collective decisionmatrixRω
m×n �

[

𝓇ω
i j

]

m×n
bymeans of different

WDHq-ROFNs, 𝓇ω
i j :

Case 1: If the experts’ weights are unknown,

(16)

𝓇ω
i j �

{

({〈

ζi j |ωζi j

〉}

,
{〈

ϑi j |ωϑi j

〉})

: ζi j ∈
⋃

k

{

ζi j
(k)
}

, ϑi j

∈
⋃

k

{

ϑi j
(k)
}

, ωζi j � l
(

ζi j
)

p
, ωϑi j � l

(

ϑi j
)

p

}

,

where l
(

ζi j
)

represents the number of experts providing satisfaction degree ζi j , and l
(

ϑi j
)

is
the number of experts providing dissatisfaction degree ϑi j .

Case 2. If the weight vector of the DMs is given as w � (

𝓌1,𝓌2, . . . ,𝓌p
)T , 𝓌i ≥ 0

with
∑p

i�1𝓌i � 1. Then,

𝓇ω
i j �

{

({〈

ζi j |ωζi j

〉}

,
{〈

ϑi j |ωϑi j

〉})

: ζi j ∈
⋃

k

{

ζi j
(k)
}

,

ϑi j ∈
⋃

k

{

ϑi j
(k)
}

, ωζi j �
∑

E (k)∈N(ζi j)
𝓌k, ωϑi j �

∑

E (k)∈N(ϑi j)
𝓌k

}

, (17)

where N
(

ζi j
)

and N
(

ϑi j
)

denote the collection of the expertswho provided the satisfaction
and dissatisfaction degrees, ζi j and ϑi j , respectively.
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Step 2: Compute the overall assessments of the alternatives. Aggregate WDH q-ROFNs
𝓇ω
i j for each alternative Zi using WDH q-ROFHWA (or WDH q-ROFHWG) operator to

obtain 𝓇ω
i as follows:

𝓇ω
i �
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⎜

⎜
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⎠
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(18)
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⎠

,

(19)

for i � 1, 2, . . . ,m& j � 1, 2, . . . , n.
Step 3:Calculate the the scores values S

(

𝓇ω
i

)

and accuracy values A
(

𝓇ω
i

)

of the aggregated
WDHq-ROFNs 𝓇ω

i for each alternative Zi (i � 1, . . . ,m).
Step 4: Rank the alternatives Zi , (i � 1, 2, . . . ,m) in descending order using the com-

parison rule of WDHq-ROFNs, and finally, select the most desirable alternative.

6 Illustrative examples

In this section,WDHq-ROFWA andWDHq-ROFWG operators are implemented practically
to demonstrate the effectiveness of the proposed approach. Two practical examples with
WDHq-ROF data are considered to describe the implementation process. In the first example,
a manufacturing company wants to select an assembling parts supplier and second one, a
supplier chain management desires to select a suitable supplier from a group of prospect
suppliers.

Example 1. Supplier selection is the procedure, a company uses to find, assess, and work
with suppliers. The process of choosing a supplier effectively uses a significant part of a
company’s financial resources and is essential to the success of any corporation. Suppose a
manufacturing company wants to select the most suitable supplier to supply critical parts in
their assembling process (adapted from Zeng et al. (2020)). There are five available suppliers
Zi (i � 1, 2, . . . , 5) from which the most preferred supplier is to be identified based on five
criteria, viz.,C1: overall cost of the product;C2: quality of the product;C3: service performance
of supplier; C4: supplier’s profile and C5: risk factor. The weight vector corresponding to the
criteria C is  � (1, . . . , 5)

T � (0.2, 0.15, 0.2, 0.3, 0.15)T . There are four experts E (k)

(k � 1, 2, 3, 4) in the decisionmaking committee. The experts E (k) (k � 1, 2, 3, 4) evaluated
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the alternatives Zi (i � 1, 2, . . . , 5) with respect to the attributes C j ( j � 1, 2, . . . , 5) using
q-ROFNs. Based on the experts’ assessments, four q-ROF decision matrices (q-ROFDMs),
D(k)
m×n � [𝓅i j

(k)
]

m×n
(k � 1, 2, 3, 4) (see Tables 1, 2, 3, 4) are constructed.

The weights of the experts are given as w � (0.3, 0.2, 0.3, 0.2)T . Using the proposed
method, the task is to determine the best supplier which is presented below.

Step 1: Since the weight of the experts is known, the collective WDH q-ROF decision

matrix Rω �
[

𝓇ω
i j

]

5×5
is constructed using Eq. (17) as shown in Table 5.

In thematrix,Rω, the (1, 1)th entry,𝓇ω
11 �

( {〈0.3|0.2〉, 〈0.4|0.3〉, 〈0.5|0.2〉, 〈0.6|0.3〉},
{〈0.3|0.5〉, 〈0.4|0.2〉, 〈0.8|0.3〉}

)

corresponding to (Z1, C1) is represented on the basis of the membership degrees
(0.4, 0.5, 0.6, 0.3) and non-membership degrees (0.8, 0.3, 0.3, 0.4) provided by the
respective DMs having weights (0.3, 0.2, 0.3, 0.2)T. Thus the membership values

Table 1 q-ROFDM D(1)
m×n provided by E(1)

C1 C2 C3 C4 C5

Z1 〈0.4, 0.8〉 〈0.5, 0.2〉 〈0.6, 0.2〉 〈0.6, 0.8〉 〈0.7, 0.5〉
Z2 〈0.6, 0.2〉 〈0.9, 0.2〉 〈0.3, 0.4〉 〈0.7, 0.1〉 〈0.8, 0.2〉
Z3 〈0.7, 0.4〉 〈0.8, 0.1〉 〈0.5, 0.5〉 〈0.3, 0.4〉 〈0.6, 0.3〉
Z4 〈0.3, 0.4〉 〈0.7, 0.1〉 〈0.8, 0.1〉 〈0.4, 0.6〉 〈0.9, 0.1〉
Z5 〈0.8, 0.1〉 〈0.3, 0.4〉 〈0.4, 0.5〉 〈0.9, 0.2〉 〈0.5, 0.2〉

Table 2 q-ROFDM D(2)
m×n provided by E(2)

C1 C2 C3 C4 C5

Z1 〈0.5, 0.3〉 〈0.6, 0.1〉 〈0.7, 0.5〉 〈0.5, 0.6〉 〈0.8, 0.2〉
Z2 〈0.7, 0.2〉 〈0.6, 0.2〉 〈0.4, 0.4〉 〈0.6, 0.2〉 〈0.7, 0.3〉
Z3 〈0.5, 0.6〉 〈0.7, 0.2〉 〈0.6, 0.3〉 〈0.4, 0.2〉 〈0.6, 0.1〉
Z4 〈0.5, 0.4〉 〈0.8, 0.1〉 〈0.4, 0.2〉 〈0.7, 0.2〉 〈0.9, 0.3〉
Z5 〈0.9, 0.3〉 〈0.5, 0.4〉 〈0.6, 0.3〉 〈0.6, 0.2〉 〈0.5, 0.1〉

Table 3 q-ROFDM D(3)
m×n provided by E(3)

C1 C2 C3 C4 C5

Z1 〈0.6, 0.3〉 〈0.5, 0.2〉 〈0.6, 0.8〉 〈0.8, 0.5〉 〈0.7, 0.4〉
Z2 〈0.6, 0.2〉 〈0.5, 0.3〉 〈0.6, 0.4〉 〈0.7, 0.2〉 〈0.6, 0.3〉
Z3 〈0.6, 0.1〉 〈0.8, 0.2〉 〈0.7, 0.3〉 〈0.3, 0.5〉 〈0.8, 0.1〉
Z4 〈0.7, 0.3〉 〈0.6, 0.1〉 〈0.5, 0.2〉 〈0.8, 0.3〉 〈0.5, 0.2〉
Z5 〈0.9, 0.1〉 〈0.6, 0.2〉 〈0.9, 0.3〉 〈0.5, 0.2〉 〈0.7, 0.1〉
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Table 4 q-ROFDM D(4)
m×n provided by E(4)

C1 C2 C3 C4 C5

Z1 〈0.3, 0.4〉 〈0.7, 0.1〉 〈0.8, 0.4〉 〈0.3, 0.7〉 〈0.4, 0.6〉
Z2 〈0.7, 0.1〉 〈0.7, 0.3〉 〈0.4, 0.2〉 〈0.9, 0.2〉 〈0.3, 0.1〉
Z3 〈0.4, 0.1〉 〈0.5, 0.2〉 〈0.8, 0.1〉 〈0.6, 0.5〉 〈0.6, 0.3〉
Z4 〈0.8, 0.2〉 〈0.5, 0.1〉 〈0.9, 0.4〉 〈0.7, 0.2〉 〈0.8, 0.2〉
Z5 〈0.6, 0.1〉 〈0.9, 0.2〉 〈0.7, 0.2〉 〈0.9, 0.3〉 〈0.8, 0.1〉

{0.3, 0.4, 0.5, 0.6} possesses the weights {0.3, 0.4, 0.5, 0.6}, respectively and the non-
membership values {0.3, 0.4, 0.8}, bears the weights {0.5, 0.2, 0.3}, respectively.

Step 2: Utilise WDH q-ROFHWA operator (Eq. (18)) (by considering q � 3, 
 � 3)
to aggregate all the preference values 𝓇ω

i j ( j � 1, 2, 3, 4, 5) for the i th alternative, Zi , and
derive the overall performance value 𝓇ω

i (i � 1, 2, . . . , 5) corresponding to that alternative
as

𝓇ω
1 � ({〈0.4373|0.0029〉 , 〈0.4993|0.0086〉, 〈0.5324|0.0029〉, 〈0.4841|0.0029〉,

〈0.5371|0.0086〉, 〈0.5663|0.0029〉, 〈0.5197|0.0043〉, 〈0.5670|0.0130〉, 〈0.5936|0.0043〉,

. . . . . . . . . . . . . . . . . . . . . . . .

〈0.6808|0.0022〉, 〈0.6995|0.0007〉, 〈0.7144|0.0007〉, 〈0.7403|0.0022〉, 〈0.7556|0.0007〉},

{〈0.2590|0.0036〉, 〈0.2876|0.0054〉, 〈0.2978|0.0054〉, 〈0.3070|0.0036〉, 〈0.2753|0.0024〉,

〈0.3055|0.0036〉, 〈0.3164|0.0036〉, 〈0.3260|0.0024〉, 〈0.2911|0.0024〉, 〈0.3229|0.0033〉,

. . . . . . . . . . . . . . . . . . . . . ,

〈0.6178|0.0022〉, 〈0.5586|0.0032〉, 〈0.6123|0.0049〉, 〈0.6309|0.0049〉, 〈0.6471|0.0032〉})

In a similar manner 𝓇ω
2 , 𝓇

ω
3 , 𝓇

ω
4 and 𝓇ω

5 can be calculated.
Step 3: Based on Definition 3.2, the score values S

(

𝓇ω
i

)

(i � 1, 2, 3, 4, 5) are evaluated
as.

S
(

𝓇ω
1

) � 0.1504, S
(

𝓇ω
2

) � 0.2881, S
(

𝓇ω
3

) � 0.2065, S
(

𝓇ω
4

) � 0.3278, S
(

𝓇ω
5

) � 0.4057.
Step 4: Since S

(

𝓇ω
5

)

> S
(

𝓇ω
4

)

> S
(

𝓇ω
2

)

> S
(

𝓇ω
3

)

> S
(

𝓇ω
1

)

, the ordering of the alter-
natives is obtained as Z5 	 Z4 	 Z2 	 Z3 	 Z1. So, the best alternative is found as
Z5.

In a similar manner, if the given MCGDM is solved using WDHq-ROFHWG operator,
the score values are found as.

S
(

𝓇ω
1

) � 0.0129, S
(

𝓇ω
2

) � 0.2202, S
(

𝓇ω
3

) � 0.1191, S
(

𝓇ω
4

) � 0.2356, S
(

rω
5

) � 0.3051
Following the principle of ordering as described in Definition 3.3, the ranking of alterna-

tives becomes Z5 	 Z4 	 Z2 	 Z3 	 Z1. So, the best alternative is identified as Z5.
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6.1 Impact of parameters on the decision result

To demonstrate the impact of the Hamacher parameter 
 in the above example, steps 2 and
3 are repeatedly executed with different values of 
. For convenience, the rung parameter
is fixed at q � 3 in this case. The aggregated score values and corresponding ranking
results corresponding to WDH q-ROFHWA and WDHq-ROFHWG operators are presented
in Tables 6 and 7, respectively. From Tables 6 and 7, it is ascertained that although different
score values are obtained for different values of Hamacher parameter 
, but the ranking
results remain the same as Z5 	 Z4 	 Z2 	 Z3 	 Z1 for each case. It is significantly
noticeable that the score values of the alternatives become smaller with the increasing values
of the Hamacher parameter based on WDHq-ROFHWA operator. In Fig. 3, the change in
score values of different alternatives is visualized for q � 3 as a fixed value and varying 
 in
[1, 10]. A decreasing trend in score values is observed there. Thus it can be ascertained that
a DM can take pessimistic or optimistic views based on this conviction. So, DMs having a
pessimistic attitude towards an alternative based on some criteria must prefer a higher value
of Hamacher parameter 
.

On the other hand, using WDHq-ROFHWG operator, an increasing trend of the score
values of alternatives is observed with the increase of Hamacher parameter 
. This fact has
been presented in Fig. 4, in which 
 varied in [1, 10] and the value of the rung parameter
q is fixed at q � 3. In this case, also DMs can utilize apply their optimistic or pessimistic
standpoint for the evaluation process.

Table 6 Ranking results varying Hamacher parameter 
 in WDH q-ROFHWA operator

Parameter S(Z1) S(Z2) S(Z3) S(Z4) S(A5) Rankings


 � 1 0.171 0.3087 0.2244 0.3542 0.4392 Z5 	 Z4 	 Z2 	 Z3 	 Z1

 � 2 0.1579 0.2959 0.2136 0.3377 0.418 Z5 	 Z4 	 Z2 	 Z3 	 Z1

 � 3 0.1504 0.2881 0.2065 0.3278 0.4057 Z5 	 Z4 	 Z2 	 Z3 	 Z1

 � 4 0.1454 0.2827 0.2013 0.3209 0.3974 Z5 	 Z4 	 Z2 	 Z3 	 Z1

 � 6 0.1388 0.2754 0.1939 0.3118 0.3866 Z5 	 Z4 	 Z2 	 Z3 	 Z1

 � 8 0.1345 0.2705 0.1888 0.3059 0.3798 Z5 	 Z4 	 Z2 	 Z3 	 Z1

 � 10 0.1314 0.267 0.1851 0.3016 0.375 Z5 	 Z4 	 Z2 	 Z3 	 Z1

Table 7 Ranking results varying Hamacher parameter 
 in WDHq-ROFHWG operator

Parameter S(Z1) S(Z2) S(Z3) S(Z4) S(Z5) Rankings


 � 1 −0.0161 0.2069 0.1085 0.2172 0.2780 Z5 	 Z4 	 Z2 	 Z3 	 Z1

 � 2 0.0019 0.216 0.1156 0.2294 0.2961 Z5 	 Z4 	 Z2 	 Z3 	 Z1

 � 3 0.0129 0.2202 0.1191 0.2356 0.3051 Z5 	 Z4 	 Z2 	 Z3 	 Z1

 � 4 0.0208 0.2228 0.1214 0.2394 0.3107 Z5 	 Z4 	 Z2 	 Z3 	 Z1

 � 6 0.0317 0.2258 0.1245 0.2443 0.3173 Z5 	 Z4 	 Z2 	 Z3 	 Z1
� � 8 0.0393 0.2276 0.1266 0.2473 0.3212 Z5 	 Z4 	 Z2 	 Z3 	 Z1
� � 10 0.0449 0.2289 0.1283 0.2495 0.3238 Z5 	 Z4 	 Z2 	 Z3 	 Z1
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Fig. 3 Effect of Hamacher parameter on score values based on WDHq-ROFHWA operator

Fig. 4 Effect of Hamacher parameter on score values based on WDHq-ROFHWG operator

If the above problem is solved based on algebraic and Einstein operations, i.e. for 
 � 1
and 2, the achieved scores and rankings of the alternatives are listed in Table 8.

On the contrary, keeping theHamacher parameter fixed at 
 � 3, adopting different values
of rung parameter q the consequences in score values and orderings of the preferences are
manifested in Tables 9 and 10, respectively, with the aid of WDHq-ROFHWA and WDHq-
ROFHWG operators.
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Table 8 Ranking results using algebraic and Einstein operations-based WDHq-ROF AO

Operators(q � 3) Scores Rankings

WDHq-ROFWA (
 � 1) S(Z1) � 0.1710, S(Z2) � 0.3087,
S(Z3) � 0.2244, S(Z4) �
0.3542,S(Z5) � 0.4392

Z5 	 Z4 	 Z2 	 Z3 	 Z1

WDHq-ROFEWA (
 � 2) S(Z1) � 0.1579, S(Z2) � 0.2959,
S(Z3) � 0.2136, S(Z4) �
0.3377,S(Z5) � 0.4180

Z5 	 Z4 	 Z2 	 Z3 	 Z1

WDHq-ROFWG (
 � 1) S(Z1) � −0.0161,
S(Z2) � 0.2069,
S(Z3) � 0.1085, S(Z4) �
0.2172,S(Z5) � 0.2780

Z5 	 Z4 	 Z2 	 Z3 	 Z1

WDHq-ROFEWG (
 � 2) S(Z1) � 0.0019, S(Z2) � 0.2160,
S(Z3) � 0.1156, S(Z4) �
0.2294,S(Z5) � 0.2961

Z5 	 Z4 	 Z2 	 Z3 	 Z1

Table 9 Ranking results in varying rung parameter q in WDH q-ROFHWA operator

S(Z1) S(Z2) S(Z3) S(Z4) S(Z5) Rankings

q � 1 0.1570 0.4311 0.3188 0.4446 0.5175 Z5 	 Z4 	 Z2 	 Z3 	 Z1
q � 2 0.1736 0.3844 0.2821 0.4161 0.4956 Z5 	 Z4 	 Z2 	 Z3 	 Z1
q � 3 0.1504 0.2881 0.2065 0.3278 0.4057 Z5 	 Z4 	 Z2 	 Z3 	 Z1
q � 4 0.1192 0.2117 0.1466 0.2532 0.3288 Z5 	 Z4 	 Z2 	 Z3 	 Z1
q � 6 0.0688 0.1205 0.076 0.1574 0.2278 Z5 	 Z4 	 Z2 	 Z3 	 Z1
q � 8 0.0392 0.0752 0.0419 0.104 0.1681 Z5 	 Z4 	 Z2 	 Z3 	 Z1
q � 10 0.0228 0.0508 0.0242 0.0718 0.1289 Z5 	 Z4 	 Z2 	 Z3 	 Z1

Table 10 Ranking results in varying rung parameter q in WDH q-ROFHWG operator

S(Z1) S(Z2) S(Z3) S(Z4) S(Z5) Rankings

q � 1 0.0743 0.3866 0.2516 0.3795 0.4514 Z5 	 Z2 	 Z4 	 Z3 	 Z1
q � 2 0.0493 0.323 0.1923 0.3289 0.4063 Z5 	 Z4 	 Z2 	 Z3 	 Z1
q � 3 0.0129 0.2202 0.1191 0.2356 0.3051 Z5 	 Z4 	 Z2 	 Z3 	 Z1
q � 4 −0.0109 0.1424 0.0702 0.1617 0.2199 Z5 	 Z4 	 Z2 	 Z3 	 Z1
q � 6 −0.0270 0.05751 0.0238 0.0754 0.1123 Z5 	 Z4 	 Z2 	 Z3 	 Z1
q � 8 −0.0248 0.0234 0.0083 0.0363 0.0587 Z5 	 Z4 	 Z2 	 Z3 	 Z1
q � 10 −0.0186 0.0097 0.0034 0.0182 0.0319 Z5 	 Z4 	 Z2 	 Z3 	 Z1
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It is indicated fromTable 9 that even if different score values are acquiredby thepreferences
but the leading option is always Z5 and also a steady ranking Z5 	 Z4 	 Z2 	 Z3 	 Z1

is found under WDHq-ROFHWA operator. However, from Table 10, it is ascertained that
different score values according to different rung parameters q are acquired by the alternatives
through WDHq-ROFHWG operator. It is significant to note that ranking results quite differ
at q � 1. After that, the ranking of alternatives becomes stable. Nevertheless, the leading
option remains the same in any case.

• Based on the traditional MCGDMmethod using q-ROFHWA and q-ROFHWG operators
If the above Example 1 is solved using the traditional MCGDMmethod (Darko and Liang
2020a), then the consequences are checked. Utilizing the q-ROFHWA operator (consid-
ering q � 3, 
 � 3) under the traditional MCGDM method, the results are calculated as
S(Z1) � 0.1765, S(Z2) � 0.2897, S(Z3) � 0.2097, S(Z4) � 0.3313, S(Z5) � 0.4115.
The ranking of the alternatives is found as Z5 	 Z4 	 Z2 	 Z3 	 Z1. Besides using
the q-ROFHWG operator (taking q � 3,
 � 3) under traditional group decision mak-
ing framework, the score values are evaluated as S(Z1) � 0.0141, S(Z2) � 0.2127,
S(Z3) � 0.1122, S(Z4) � 0.2193, S(Z5) � 0.2891. Hence the ranking of the alternatives
remains the same as previous.

7 Comparative study

TOelucidate the superiority and efficacy of the suggestedWDH q-ROF aggregation operators
in realistic problems, a comparative study is performed in this section.

7.1 Comparison with existingmethods

The identical ranking result is found using the traditional MCGDM method (Darko and
Liang 2020a) (under q-ROF environment) and the proposed method, reflecting the proposed
method’s validity. It can also be stated that the proposed method can be considered as an
alternative way to deal with MCGDM problems. Furthermore, Zeng et al. (2020) also found
the same ranking result. Over this also the sustainability of the proposedmethod is confirmed.

Further, it is to be noted here that Zeng et al. (2020) solved the above example under the
WDHF environment, which fails to incorporate decision values with membership and non-
membership grades having sum greater than 1. That was clearly a drawback of Zeng et al.’s
(2020) method. While, the proposed method is investigated under WDHq-ROF context, and
consequently, it widens the scope of application in the information aggregation process with
the aid of a parameter q . It is important to ascertain that Zeng et al.’s method becomes a
particular case of the proposed method if Hamacher parameter 
 � 1 and rung parameter
q � 1, are considered in the process of aggregation. Thus it can be concluded that the
proposed WDHq-ROFHWA and WDHq-ROFHWG operators are more flexible and general
than existing operators (Zeng et al. 2020) in the information aggregation processes. Thus, the
developed method in this paper is more proficient under a realistic decision-making context.

Nevertheless, the same ranking results are not enough to affirm the advantage of the
proposed method. So, another example is considered and solved in the next section for the
establishment of the benefits of the proposed approach.
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Table 11 DHq-ROFDM provided by DM

C1 C2 C3 C4

Z1 ({0.3, 0.4}, {0.6}) ({0.4, 0.5}, {0.3, 0.4}) ({0.2, 0.3}, {0.7}) ({0.4, 0.5}, {0.5})
Z2 ({0.6}, {0.4}) ({0.2, 0.4, 0.5}, {0.4}) ({0.2}, {0.6, 0.7, 0.8}) ({0.5}, {0.4, 0.5})
Z3 ({0.5, 0.7}, {0.2}) ({0.2}, {0.7, 0.8}) ({0.2, 0.3, 0.4}, {0.6}) ({0.5, 0.6, 0.7}, {0.3})
Z4 ({0.7}, {0.3}) ({0.6, 0.7, 0.8}, {0.2}) ({0.1, 0.2}, {0.3}) ({0.1}, {0.6, 0.7, 0.8})
Z5 ({0.6, 0.7}, {0.2}) ({0.2, 0.3, 0.4}, {0.5}) ({0.4, 0.5}, {0.2}) ({0.2, 0.3, 0.4}, {0.5})

7.2 Further comparative analysis

The proposed method is verified in the above sub-section by comparing it with existing
methods (Darko and Liang 2020a; Zeng et al. 2020). Also, some sort of superiority of the
developed approach is outlined in the view points of rung parameter q and the Hamacher
parameter 
. However, to illuminate the advantages of the suggested approach compared
to some existing methods (Garg 2018; Wang et al. 2014; Wei and Lu 2017), the following
numerical example is considered.

Example 2 In the context of supply chain management Wei and Lu (2017) studied a problem
to select the most suitable supplier. There are five prospective suppliers Zi (i � 1, 2, 3, 4, 5)
need to be evaluated on four criteria C j (i � 1, 2, 3, 4). The four criteria include product
quality C1, service C2, delivery C3 and price C4, respectively.

Wei and Lu (2017) used DHPF data as presented in Table 11 to indicate the DMs’ pref-
erence values by considering the same importance degree of each possible membership and
non-membership values. However, DMs may have different confidences in ascertaining each
possible membership and non-membership values during assessing alternatives under cer-
tain criteria. Thus ignoring the different importance degrees of each possible membership
and non-membership value might cause a significant loss of information. Next, to show the
effectiveness of the suggested approach, the existing problem is revised by considering the
different importance degrees of possiblemembership and non-membership values and solved
using the proposed method under WDHq-ROF environment.

Table 11 is revised by incorporating different importance degrees and a WDHq-ROFDM,

Dm×n �
[

𝓀ω
i j

]

m×n
is constructed, which is presented in Table 12.

The proposed operators are used to aggregate theWDHq-ROFNs as described in Table 12,
and ranking results of the alternatives are obtained. Besides, different existing aggregation
methods (Garg 2018; Wang et al. 2014; Wei and Lu 2017) are applied in Table 11 to find the
ranking of the alternatives. Then, the achieved outcomes utilizing the existing methods and
the proposed method are displayed in Table 13 for representing a summary of comparative
analysis. From Table 13, it is understood that a fluctuation in the ranking results is found
by applying the proposed method. This happens because the proposed method can consider
different importance degrees for each possible membership and non-membership values of
alternatives with respect to given criteria. On the other side, existing methods neglect the
associating weightage of importance for possible membership and non-membership grades
of each alternative in the process of decision-making. This negligence of the importance
values causes a severe loss of information, leading to erroneous decision results.
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Table 13 Comparison with different existing methods

Method Score values Ranking

HPFWA (Garg 2018)
(q � 2 and 
 � 1)

S(Z1) � −0.1622,
S(Z2) � −0.0600,
S(Z3) � 0.0784, S(Z4) �
0.0913,S(Z5) � 0.1210

Z5 	 Z4 	 Z3 	 Z2 	 Z1

HPFWG (Garg 2018) S(Z1) � −0.2302,
S(Z2) � −0.1866,
S(Z3) � −0.1162, S(Z4) �
−0.1852,S(Z5) � 0.0188

Z5 	 Z3 	 Z4 	 Z2 	 Z1

DHFWA (Wang et al. 2014)
(q � 1 and 
 � 1)

S(Z1) � −0.1846,
S(Z2) � −0.0852,
S(Z3) � 0.0617, S(Z4) �
0.0392,S(Z5) � 0.1406

Z5 	 Z3 	 Z4 	 Z2 	 Z1

DHFWG (Wang et al. 2014) S(Z1) � −0.2388,
S(Z2) � −0.1897,
S(Z3) � −0.1008, S(Z4) �
−0.2261,S(Z5) � 0.0450

Z5 	 Z3 	 Z2 	 Z4 	 Z1

DHPFHWA (Wei and Lu 2017)
(q � 2 and 
 � 3)

S(Z1) � −0.1743,
S(Z2) � −0.0810,
S(Z3) � 0.0489, S(Z4) �
0.0426,S(Z5) � 0.1057

Z5 	 Z3 	 Z4 	 Z2 	 Z1

DHPFHWG (Wei and Lu 2017) S(Z1) � −0.2179,
S(Z2) � −0.1642,
S(Z3) � −0.0822, S(Z4) �
−0.1506,S(Z5) � 0.0324

Z5 	 Z3 	 Z4 	 Z2 	 Z1

WDHq-ROFWA (q � 3, 
 � 1) S(Z1) � −0.1130,
S(Z2) � −0.0279,
S(Z3) � 0.0220, S(Z4) �
0.1231,S(Z5) � 0.0571

Z4 	 Z5 	 Z3 	 Z2 	 Z1

WDHq-ROFWG (q � 3, 
 � 1) S(Z1) � −0.1746,
S(Z2) � −0.1489,
S(Z3) � −0.1104, S(Z4) �
−0.0865,S(Z5) � −0.0217

Z5 	 Z4 	 Z3 	 Z2 	 Z1

WDHq-ROFEWA (q � 3, 
 � 2) S(Z1) � −0.1172,
S(Z2) � −0.0349,
S(Z3) � 0.0164, S(Z4) �
0.1046,S(Z5) � 0.0530

Z4 	 Z5 	 Z3 	 Z2 	 Z1

WDHq-ROFEWG (q � 3, 
 � 2) S(Z1) � −0.1692,
S(Z2) � −0.1373,
S(Z3) � −0.1018, S(Z4) �
−0.0790,S(Z5) � −0.0193

Z5 	 Z4 	 Z3 	 Z2 	 Z1

WDHq-ROFHWA (q � 3, t � 3) S(Z1) � −0.1193,
S(Z2) � −0.0391,
S(Z3) � 0.0129, S(Z4) �
0.0919,S(Z5) � 0.0501

Z4 	 Z5 	 Z3 	 Z2 	 Z1

WDHq-ROFHWG (q � 3, t � 3) S(Z1) � −0.1654,
S(Z2) � −0.1299,
S(Z3) � −0.0958, S(Z4) �
−0.0739,S(Z5) � −0.0175

Z5 	 Z4 	 Z3 	 Z2 	 Z1
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It is to be mentioned here that Wei and Lu (2017) solved the problem under DHPF
environment and found the ranking of the alternatives as Z5 	 Z3 	 Z4 	 Z2 	 Z1 using
both DHPFHWA and DHPFHWG operators. While solving this problem using HPFWA and
HPFWG operators (Garg 2018), the ordering of the alternatives is found as Z5 	 Z4 	
Z3 	 Z2 	 Z1 and Z5 	 Z3 	 Z4 	 Z2 	 Z1, respectively. Again, based on DHFWA
and DHFWG operators (Wang et al. 2014), the ranking of the alternatives is obtained as
Z5 	 Z3 	 Z4 	 Z2 	 Z1 and Z5 	 Z3 	 Z2 	 Z4 	 Z1, respectively.

It is worthy to mention here that all the above ranking results can be achieved by the
proposed method if the different importance degrees are ignored. In this respect, it is to be
pointed out here that for q � 2 and 
 � 1, the proposed operator will generate same ranking
results as achieved by Garg (2018). Further, for q � 1 and 
 � 1, in the proposed operator
would result same ranking as obtained by Wang et al. (2014), Again, the results obtained
by Wei and Lu (2017) can be acquired by the proposed operators if q � 2 and 
 � 3 are
taken into account. It is to be noted here that all the above rankings are obtained through
the proposed operators by ignoring different weights corresponding to possible membership
and non-membership grades. Thus it can be concluded that the existing operators under
consideration become some specific cases of developed operators. In each of the above
cases, the best alternative is Z5. Whereas, using the proposed method, the best alternative
may vary between Z4 and Z5. Two different rankings Z4 	 Z5 	 Z3 	 Z2 	 Z1 and
Z5 	 Z4 	 Z3 	 Z2 	 Z1 are achieved by applying the proposed WDHq-ROFHWA
and WDHq-ROFHWG operators, respectively. The proposed method can prevent the loss
of information by considering different weights associated with each possible membership
and non-membership degrees of DH q-ROFNs. Thus, it can be stated that, compared to the
existing methods, the proposed weight-based method can produce more rational rankings
and generate relevant best choices according to the situation.

8 Conclusions

In this article, the concepts of WDHq-ROFS and WDHq-ROFN are introduced by incor-
porating different weightage values/importance degrees among possible membership and
non-membership terms to control the degree of certainty of the elements. Also, the score
function and accuracy function for WDHq-ROFNs are provided to define comparison of
WDHq-ROFNs. Some fundamental operational laws of WDHq-ROFNs are defined based
on Ht-N&t-CNs. Meanwhile, to aggregate the attribute performances which are in the form
of WDHq-ROFNs, WDHq-ROFHWA and WDHq-ROFHWG operators, are proposed to
model the complex decision making situations. The proposed operators include a class of
weighted averaging and weighted geometric operators for various fuzzy environments which
are discussed explicitly in this paper. A newMCGDMmodel under WDHq-ROFSs environ-
ment is developed. Finally, some numerical instances are given, alongwith some comparative
analyses to demonstrate the validity and effectiveness of the proposed approach. Through
the achieved outcomes and comparative studies, it is evidenced that the proposed method
reflects its robustness in dealing MCGDM problems. In the future, the developed approach
may be applied to the fields of medical diagnosis, knowledge representation, cluster analysis
and so on. Furthermore, the proposed weighted concept can be incorporated with interval-
valued DHq-ROF, neutrosophic fuzzy (Jana et al. 2020), q-rung orthopair hesitant fuzzy
uncertain linguistic, linguistic q-rung orthopair fuzzy (Deb et al. 2022), complex fermatean
fuzzy (Akram et al. 2022), and complex hesitant q-rung orhopair sets comparatively.
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A B S T R A C T   

This research work contributes significantly to the current information field by offering an 
innovative model named the T-spherical fuzzy hypersoft (T-SFHS) set (T-SFHSS). This framework 
addresses both aspects of the three-dimensional knowledge implicated in the satisfaction, absti-
nence, and dissatisfaction inherent in human decision-making. It is an innovative approach to the 
problem of introducing computer cognition and decision-making in uncertain settings into the 
real world. The T-SFHSS is superior at determining what to do with unclear or imprecise data. The 
T-SFHSS enhances fuzzy sets such as the “intuitionistic fuzzy hypersoft set” and the “Pythagorean 
fuzzy hypersoft set”. It aims to increase the precision of fuzzy set calculations. To aggregate the 
decision data most effectively, we propose some novel Sugeno-Weber t-norm and t-conorm-based 
operational rules for T-SFHS numbers (T-SFHSNs). We then propose some T-SFHS aggregation 
operators with desirable properties in light of these operational laws. We conduct an illustrative 
study on natural agribusiness to demonstrate the viability and utility of the present methodology. 
The correctness of the obtained results can be verified by contrasting the proposed SW aggre-
gation operators (AOs) on T-SFSS with the approaches already in use. The findings show that the 
proposed methodology is more consistent and successful than the current procedures.   
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1. Introduction 

In our daily lives, conflict resolution is built on intelligence gathering, machine learning, knowledge compilation, and so on. The 
unavailability of concrete evidence is a major problem in strategic planning. This lack of information can be filled in by a mathematical 
theory, which makes it possible to use the right decision-making (DM) strategies. Companies might benefit from DM ideology, which 
can sometimes compile and rate a variety of opinions from good to one of the worst possible choices. Therefore, it enables us to select, 
categorize, construct our possibilities, and conduct an in-depth analysis. “Multicriteria decision-making (MCDM)” is the best way to 
find a much better answer based on all possible factors or criteria that could be involved. Throughout history, it has generally been 
accepted that all evidence about the option concerning attributes and associated weights was expected to be transmitted in crisp 
numbers. There are a great number of considerations and indications packed into the multiple evaluation and decision-making 
problems. The primary objective of resolving the assessment and decision-making problem is categorizing and compiling the infor-
mation for evaluation indicators. However, due to the complexities present in real-life systems, people deal with many MCDM 
problems where the evaluation information is uncertain. To deal with it, Zadeh [47] introduced fuzzy sets (FS) as a common method 
for dealing with DM juxtapositions and inconsistencies. A membership value that ranges from 0 to 1 is assigned to each element within 
this list. Professionals mostly look at “membership and non-membership values” during the DM process, which FS can’t do. Atanasov 
[2] proposed the “intuitionistic fuzzy set (IFS)” as a solution to the problems mentioned above. 

The complexity of FS and IFS binds them together to appropriately address concerns such as uncertainty. The main source of these 
difficulties could be a flaw in the parameter estimation tools. It looks for a theoretical way to deal with situations that don’t have any 
problems. In 1999, the Russian researcher Molodtsov addressed this flaw. Prof. Molodtsov introduced the soft set (SS) theory [27], 
which is yet another predefined category of groups in the discourse universe. SS theory is useful in many areas, like game theory, 
measurement theory, making decisions, Riemann integration, smoothness of functions, etc. SS studies have been quite vigorous, and 
many discoveries have been obtained in fundamental and methodological areas. In Maji et al. [25], the concept of “fuzzy soft sets” was 
proposed as a fuzzy expansion of “classical soft sets”, along with some basic characteristics that were carefully examined. Since then, 
several investigations have been made on this topic. Jiang et al. [15] introduced entropy on intuitionistic fuzzy soft sets (IFSS) and 
interval-valued fuzzy soft sets. 

Even though it is thought to be possible to imagine the linear discrepancy seen between “membership grade (MG)”, μ and “non- 
membership grade (NMG)”, ν, the FSS and IFSS models are unable to accommodate incorrect and ambiguous facts. For instance, the 
IFSS, as explained previously, cannot handle it if decision-makers choose MG and NMG values of 0.9 and 0.2, respectively. It is because 
of 0.9 + 0.2 > 1. Peng et al. [29] integrated SS with a “Pythagorean fuzzy set (PFS)” [43] to directly describe it, and they introduced 
the concept of “Pythagorean fuzzy SS (PFSS)” by changing the fundamental constraint from μ+ν ≤ 1 to μ2 + ν2 ≤ 1. It is clear from 
their structure that FSS and IFSS are special cases of PFSS. 

The PFSS theory is important for solving many important MCDM problems [20] but is imperfect. When the square sum of MG and 
NMG exceeds 1, the PFSS cannot handle the problem. To address these issues, Hussain et al. [12] proposed a generalization of IFSS and 
PFSS, known as “q-rung orthopair fuzzy (q-ROF) SS (q-ROFSS)”. q-ROFSS gives systemic designers additional leeway in expressing 
their opinions about MG and NMG by meeting the constraint that the sum of q-th powers of MG and NMG is less than or equal to 1. For 
example, 〈0.7,0.8〉 is appropriate for using the q-ROFSS to tackle cases where q = 3. Hamid et al. [10] created the q-ROFS TOPSIS and 
q-ROFS VIKOR methods to solve MCGDM difficulties. Chinram et al. [4] proposed the q-ROFS weighted geometric operator for 
q-ROFSS with its advantageous characteristics. To resolve MCDM problems, they also employed their newly built operator. 

In real life, q-ROFSS can handle representative samples that need to be completed or clarified, but it needs help with data that 
contradicts itself. For illustration, in Son’s work [37], voting results for the election of village director may be broken down into three 
categories: “vote for”, “neutral voting”, and “vote against”. “Neutral voting” means “no vote.” On the white ballot, you can’t agree or 
disagree with the candidate, but you can still vote. This case occurred in reality, but q-ROFSS could not deal with it. In this regard, Yang 
et al. [44] introduced picture FSS, which is a direct extension of FSS, IFSS, PFSS, and q-ROFSS by incorporating the concepts of positive, 
μ, negative, ν, and neutral MG, δ of an element. Khan et al. [18] introduced generalized picture FSS and their basic properties. Jan et al. 
[14] suggested some AOs for the proposed multi-valued picture FSS. These are called “multi-picture FSS-weighted averaging, ordered 
weighted averaging, and hybrid weighted averaging operators”. 

Whereas PFSS and q-ROFSS structures have been substantially enhanced by picture FSS structures, picture FSS still has a few 
restrictions in specific situations; for example, picture FSSs cannot be allocated (μ, δ, ν) when μ + δ + ν > 1. To overcome this issue, a 
new model of spherical fuzzy SS (SFSS) was developed by Perveen et al. [30], and some of its properties have been introduced. SFSS is 
constructed by μ2 + δ2 + ν2 ≤ 1. Ahmmad et al. [1] laid out the basic operational laws for SFSS. Based on these operational laws, they 
then laid out several AOs, such as, “SFS- weighted average, ordered weighted average, and hybrid average AOs”, were introduced. Riaz 
et al. (2022) defined the concepts of SFSS topology and SFSS separation axioms. The investigation of various SFSS-topology properties 
yields pertinent conclusions. Some fundamental terms, such as “spherical fuzzy soft basis, spherical fuzzy soft subspace, spherical fuzzy 
soft interior, spherical fuzzy soft closure, and spherical fuzzy soft boundary”, were defined by Garg et al. [6]. However, even squaring is 
not enough as the squared sum of μ, δ, and ν exceeds the unit interval, i.e., μ2 + δ2 + ν2 > 1. To deal with this kind of situation, Guleria 
and Bajaj [7] presented a modification of SFSS which was known as T-spherical fuzzy SS (T-SFSS) based on “T-spherical fuzzy set” 
[24]. T-SFSS has the condition that μt +δt +νt ≤ 1 where t ≥ 1. It is mentioned here that, just as the q-ROF is a generalized version of IF 
and PF context, the T-SF environment is a more generalized version of the picture fuzzy and spherical fuzzy environment. Guleria and 
Bajaj [7] introduced some averaging and geometric AOs (weighted, ordered, and hybrid) for the “T-spherical fuzzy soft numbers”. 
T-SFSS are a more generic version of IFSSs, PFSSs, and SFSSs. 
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1.1. Review on hypersoft set theory 

In reality, distinct attributes are further partitioned into disjoint attribute–value sets. The existing soft set theory does not apply to 
such sets. As a result, Florentin Smarandache, an American scientist, first proposed a new structure, hypersoft set theory, in 2018 to 
address such circumstances. 

We briefly look at some research on real-world decision-making with different kinds of extinct contexts, such as fuzzy information, 
intuitionistic fuzzy information, neutrosophic sets, Pythagorean fuzzy information, hesitant fuzzy information, and linguistic infor-
mation, all of which use hypersoft set theory. 

After the invention of hypersoft sets, several extended versions have been developed as a combination of a set with several sets, 
such as a fuzzy set, a rough set, an expert set, a cubic set, etc. Different works on these sets have been conducted within a very short 
span. Saqlain et al. [35] proposed the TOPSIS approach for the neutrosophic HySS. Further, they defined some basic operational laws 
for NHySS: intersection, union, complement, etc. And the suggested method is applied to the MCDM issue. Saeed et al. [34] introduced 
fuzzy HySS (FHySS), resulting from the hypersoft set concept. The fact that each FHySS may be viewed as a (fuzzy) information system 
and can be expressed in a datasheet with values between [0,1] is particularly useful. Yolcu and Ozturk [46] introduced some notions of 
the fundamental operation of FHySSs. Martin and Smarandache [26] made the plithogenic HySS include the degree to which the 
elements of the attribute system belong to each other. Rahman et al. [32] defined complex FHySS by hybridizing HySS and complex 
fuzzy sets. By integrating HySSs with bipolarity, Musa and Asaad [28] produced a new mathematical framework named the bipolar 
HySS. Saeed et al. [33] presented the novelty of complex multi-fuzzy HySS. Musa and Asaad, in the year 2022, added bipolar hypersoft 
topological spaces to the group of bipolar HySSs. Yolcu et al. [45] developed a new environment, intuitionistic fuzzy HySS (IFHySS). 
They also introduce some fundamental operational laws of IFHySSs, viz., union, intersection, complement, etc. Zulqarnain et al. [50] 
proposed the concept of Pythagorean FHySS. Saqlain et al. [36] first consider distances for NHySS and then propose similarity 
measures for NHSS. They also consider aggregated operations when aggregating the NHySS decision matrix. Khan et al. [19] intro-
duced a new concept called q-rung orthopair fuzzy HySS (q-ROF Hypersoft sets). We introduce a theme of fundamental operations such 
as q-ROF Hypersoft-subset, q-ROF Hypersoft null-set, q-ROF Hypersoft absolute-set, union, intersection, and complement. We also 
present “AND” and “OR” operators. 

1.2. Motivations of the paper 

Compared to individual decision-making, group decision-making has two benefits: synergy and shared knowledge. The concept of 
synergy holds that the sum of its parts is greater than the whole. When choosing, a group’s collective judgment may be superior to any 
individual member’s. Group members can develop more comprehensive and reliable ideas and recommendations through discussion, 
inquiry, and collaboration. In decision-making scenarios, the attribution function f , which is unique to the cartesian product with the n 
attribute, cannot consider many sub-attributes in the extant research. The existing theories, viz., IFSS, PFSS, q-ROFSS, etc., fall short of 
resolving these kinds of issues when any attribute from a set of parameters includes additional sub-attributes. Several compelling 
hybridized models with different hypersoft sets have been proposed to tackle such situations, namely, bipolar hypersoft sets, IFHSS, 
Pythagorean fuzzy HSS, q-ROF hypersoft sets. The authors have argued for their applicability in group decision-making theory. One of 
the major insufficiencies of these models is that they only study the assignment of MGs and NMGs to the parameterized character-
ization of the elements by different experts, taking no account of the abstain degrees. From this viewpoint, this paper aims to develop a 
new hybrid method combining hypersoft theory to represent some problems that are difficult to explain in other extensions of fuzzy set 
theory, such as human opinions involving four types of answers: yes, abstain, no, and refusal. For this purpose, this paper combines the 
T-spherical fuzzy set and hypersoft set to obtain a new hypersoft set model named the T-spherical fuzzy hypersoft set. Sometimes, this 
new model makes descriptions of the real world more realistic and useful. The new notion includes a family of existing and novel fuzzy 
extensions, viz., IFHSS, Pythagorean fuzzy HSS, q-ROF HSS, picture fuzzy HSS, spherical fuzzy HSS, etc. 

Sugeno has introduced a family of nilpotent t-conorms (with asymptotic members drastic sum and probabilistic sum) in his PhD 
thesis [38]. On the other hand, a family of nilpotent t-norms were introduced by Weber [40] (with asymptotic members product and 
drastic product). These t-norm and t-conorm (t-N & t–CN) are dual in the sense of families, namely Sugeno t–CN with parameter λ 
∊]-1,∞[ is an operation dual to Weber t-N with parameter ψ = - λ

1+λ ∊ ] − 1,∞[. Due to this duality, both families are given tribute to 
Sugeno and Weber, thus calling them Sugeno-Weber t-norms and t-conorms (SW t-N & t–CN). For more details, we recommend 
subsection 4.7 of Klement et al. [21]. Observe also that using a probabilistic approach, considering the product for independent 
random events A and B, P(A ∩ B) = TP(P(A),P(B)) (the product t-norm is given by TP(x,y) = x.y, as well as the valuation-based boundary 
P(A ∩ B) ≥ P(A) + P(B) − 1, and thus, due to the non-negativity of probability measures, P(A ∩ B) ≥ TL(P(A),P(B)) (here TL is the 
Lukasiewicz t-norm given by TL(x,y) = max(x + y-1,0)), one can look on Sugeno-Weber t-norms as a truncated by 0 linear combination 
with parameters λ

1+λ and 1
1+λ, λ ∊ ]-1,∞[, of the product and binary operation given by x + y-1 generating TL. SW t-N & t–CN have the 

properties of general t-norm and t-conorm (t-N & t-CNs). The SW t-N&t–CN incorporates a variable parameter ψ , that provides 
decision-makers (DM) greater flexibility by allowing them to set the parameter’s value appropriately. As a result, 

the SW t-N&t-CN appear appropriate for defining T-SFHySSs operations and reducing inaccuracies and data redundancy. 
An AO is a methodical mathematical representation in data analysis that combines all the evidence gathered as an argument into a 

single data form useful for making many important decisions. Sugeno-Weber (SW)-based AOs are well known for being endearing 
classical AOs. In some cases, the current AOs don’t seem eager to use the DM method to mark the exact decision. Several AOs must be 
modified to address these specific challenges. Consequently, we shall present SW AOs depending on preliminary data to determine 
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whether they will inspire the ongoing study and constraints of T-SFHySSs indicated earlier. The accompanying research’s main goals 
are classified in this manner: 

1.3. Contribution of the paper  

1. We introduce the T-SFHySS concept.  
2. We exhibit comprehensive operating laws for T-spherical fuzzy hypersoft numbers (T-SFHySNs) based on SW t-N&t-CN.  
3. The T-SFHSS successfully handles complex challenges while considering DM process factors. We created the SW AOs for T-SFHySS 

with this benefit in mind.  
4. We create the T-SFHyS Sugeno-Weber operators by combining the above-mentioned SW t-N&t-CN operating rules with some 

essential characteristics. 

Fig. 1. Classification of T-SFHySS.  
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5. Following the suggested AOs, we develop an MCDM method to address DM difficulties in the T-SFHyS context and offer a 
mathematical illustration of natural agriculture.  

6. We provide a comparative analysis to evaluate the viability and superiority of the new MCDM methodology. 

1.4. Main novelties of the paper 

It should be noted that the T-SFHySS were made by generalizing the FSS, IFSS, PSS, q-ROFSS, PFSS, SFSS, and T-SFSS sets that were 
already known. Severe variants of fuzzy HySS are also a particular case in our developed set. T-SFHySS is the best way to deal with 
many sub-attributes of assumed parameters connected to SS or other popular frameworks. Our developed set is more powerful at 
conveying the uncertainty and ambiguity of the DMs than existing sets. A chart is presented in Fig. 1 for a clear understanding. We used 
Sugeno–Weber triangular norm-based aggregation operators for the first time in a T-spherical fuzzy hypersoft setting to solve MCDM 
problems. 

1.5. Structure of the paper 

The following framework has been maintained throughout this investigation: Section 2 discusses the fundamental understanding of 
various key concepts, including T-SFS, SS, HySS, SW t-N&t-CNs, and PFHySS. Section 3 establishes the concept of T-SFHySS model. 
Based on SWt-N&t-CNs, Section 4 delineates some fundamental operational laws for T-SFHySS. The next two sections define T-SFHySS 
Sugeno-Weber weighted averaging (T-SFHySSWWA) and T-SFHySS Sugeno-Weber weighted geometric (T-SFHySSWWG) operators. In 
these two sections, the authors discuss several adaptable characteristics of the intended operators. In Section 7, the authors construct 
an MCDM method using the T-SFHySSWWA and T-SFHySSWWG operators. Section 8 provides a case study to elucidate the suggested 
operators and methodology. Section 9 examines the impact of parameters on decision-making outcomes. Section 10 discusses the 
advantages and efficacy of the proposed methodology, along with a comparison to several current methods. Section 11 concludes the 
article by expanding its conclusions and posing queries for future research. 

2. Preliminaries 

This section reviews and provides some fundamental ideas related to the suggested methodology, which is widely established in the 
field. 

2.1. T-Spherical fuzzy sets 

Sometimes decision-makers express their opinion on an alternative, which may include more than two components: favour, 
abstinence, dislike, and refusal. To overcome this difficulty, Mahmood et al. [24] developed the concept of T-SFS, taking into 
consideration approval, objection, and waiver degrees corresponding to an object. The definition of T-SFS is presented below. 

Definition 1. [24] For any universal set X, a T-SFS takes the form as 

Ã =
{〈

x,
(
μÃ (x), δÃ (x), νÃ (x)

)〉⃒
⃒x ∈ X

}
, (1)  

where μÃ (x), δÃ (x), νÃ (x) : X→[0,1] indicates the MG, abstinence, and NMG, respectively, fulfilling the condition that 
0 ≤ μÃ

t (x)+δÃ
t (x)+νÃ

t (x) ≤ 1 where t ≥ 1. The “degree of refusal” of x in Ã is represented as ςÃ (x) =
(
1 −

(
μÃ

t (x) + δÃ
t (x) + νÃ

t (x)
) )1

t . The triplet (μ, δ, ν) is referred to as the “T-SF number (T-SFN)” and is represented by ̃α = (μ, δ, ν). 
For comparison among T-SFNs, Mahmood et al. [24] defined the score and accuracy functions of T-SFNs, and utilizing this tool, 

they defined a ranking method for T-SFNs as follows: 

Definition 2. [24] Let α̃1 = (μ1, δ1, ν1) and α̃2 = (μ2, δ2, ν2) be any two T-SFNs and S
(

α̃1

)

=
(
μt

1 − δt
1 − νt

1
)
, S(α̃2) =

(
μt

2 − δt
2 − νt

2
)

representing the score functions of α̃1 and α̃2 and A(α̃1) =
(
μt

1 +δt
1 +νt

1
)
, A
(

α̃2

)

=
(
μt

2 +δt
2 +νt

2
)

representing the accuracy functions of α̃1 

and α̃2, respectively. Then the ordering between α̃1 and α̃2 is maintained by the following rules:  

(i) If S(α̃1) > S
(

α̃2

)

, then α̃1 ≻ α̃2;  

(ii) If S
(

α̃1

)

= S
(

α̃2

)

, then  

• If A(α̃1) > A
(

α̃2

)

, then α̃1 ≻ α̃2;  

• If A
(

α̃1

)

= A
(

α̃2

)

, then α̃1 ≈ α̃2. 
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2.2. Soft sets 

Several useful approaches, such as the theory of probability [22], the fuzzy set theory [47], the theory of interval mathematics [5], 
the rough set theory [48], etc., have been established for interacting with ambiguous and imprecise situations. However, the 
parameterization tool associated with any of these theories needs to be improved. In 1999, Molodtsov presented the “soft set (SS)” 
theory to tackle these issues. SS can be used as a general-purpose mathematical tool for managing uncertainty. 

Definition 3. [27] Consider I a universal set, E be a set of parameters and Σ ⊆ E. The power set of I is denoted by P (I). A pair (Λ,Σ) is 
referred to as an SS over I, where Λ is a mapping given by 

Λ : Σ→P (I)

Also, it can be represented as follows: 

(Λ,Σ) = {Λ(c) ∈ P (I)|c ∈ E }

2.3. Hypersoft sets 

In numerous real-world scenarios, distinct attributes are subdivided into separate value sets. While making a decision, decision- 
makers may have a propensity or a talent for neglecting this categorization of traits. The explanatory study of soft sets does not 
apply to such sets. To address such circumstances, Smarandache (2018) developed a hypersoft set. 

Definition 4. ((Smarandache, 2018)) “Let U be a universe of discourse; P (U ) is the power set of U .” Let a1,a2,⋯,an, for n ≥ 1, be a set 
of n well-defined, distinct attributes, whose associated sub-attributes are, respectively, the sets A1, A2, …, An with Ai ∩ Aj = ∅ for i ∕= j, and i,

j = 1,2,⋯,n. Suppose A1 × A1 × … × A1 = A
⃛
=
{

L 1h1 × L 2h2 × … × L nhn

}
be a collection of multi-attributes, where 1 ≤ h1 ≤ |A1|, 1 ≤

h2 ≤ |A2| and so on. Then the pair 
(

F,A1 × A1 × … × A1 = A
⃛ )

is said to be HySS over U , and its mapping is defined as. 

F : A1 × A2 × … × An = A
⃛

→P (U )

It is also defined as 
(

F,A
⃛ )

=
{(

L̂ ,F
A

⃛ (L̂ )
)
: L̂ ∈ A

⃛
,F

A
⃛ (L̂ ) ∈ P (U )

}
. (2)  

2.4. Pythagorean fuzzy hypersoft sets 

Utilizing the ideas of PFS and HySS, Zulqarnain et al. [50] extended the concept of the intuitionistic fuzzy hypersoft set to PFHySS. 
Compared to the intuitionistic fuzzy hypersoft set, the PFHySS can handle more uncertainty, which is the most important thing to do 
when making a decision based on fuzzy information. 

Definition 5. [50] Let I be a universal set. Let a1,a2,⋯,an, for n ≥ 1, be a set of n well-defined, distinct attributes, whose corresponding sub- 

attributes are, respectively, the sets A1, A2, …, An with Ai ∩ Aj = ∅ for i ∕= j, and i, j = 1, 2, ⋯, n. Assume A1 × A1 × … × A1 = A
⃛
=

{
L 1h1 × L 2h2 × … × L nhn

}
is a set of multi-attributes, where 1 ≤ h1 ≤ |A1|, 1 ≤ h2 ≤ |A2| and so on. Consider PFSI to be a set of all 

“Pythagorean fuzzy subsets” over I. The pair 
(

F,A1 × A1 × … × A1 = A
⃛ )

is then said to be PFHySS over U , and its mapping is defined as 

F : A1 × A2 × … × An = A
⃛

→PyFSI.

It is also defined as 
(

F,A
⃛ )

=
{(

â,F
A

⃛ (â)
)
: â ∈ A

⃛
,F

A
⃛ (â) ∈ PyFSI

}
. (3)  

2.5. Sugeno–Weber t-norms and t-conorm 

Siegfried Weber established the SW t-Ns family in the early 1980s, and Michio Sugeno established the dual t-CNs in the early 1970s. 

Definition 6. [17] The category 
(
Tψ

SW
)

ψ∈[0,∞)
of SW t-Ns is stated by 
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Tψ
SW(x, y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

TD(x, y) if ψ = − 1

max
(

0,
x + y − 1 + ψxy

1 + ψ

)

if − 1 < ψ < +∞

TP(x, y) if ψ = +∞

(4)  

where TD(x, y) and TP(x, y) represent the drastic t-N and product t-N (or, algebraic product), respectively. 
The category 

(
Sψ

SW
)

ψ∈[0,∞)
of SW t-CNs is stated by 

Sψ
SW(x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

SD(x, y) if ψ = − 1

min
(

1, x + y −
ψ

1 + ψ xy
)

if − 1 < ψ < +∞

SP(x, y) if ψ = +∞

(5)  

where SD(x, y) and SP(x, y) represent the drastic t-CNs and probabilistic sum (or, algebraic sum), respectively. 

3. Development of T-Spherical fuzzy hypersoft sets 

Definition 7. Let I be a universal set and P (I) be the power set of I. Assume a1,a2,⋯,an, for n ≥ 1, is a set of n well-defined distinct 
attributes, whose associated sub-attributes are, respectively, the sets A1, A2, …, An with Ai ∩ Aj = ∅ for i ∕= j , and i , j = 1,2,⋯,n. Assume 

A1 × A1 × … × A1 = A
⃛
=
{

â1h1 × â2h2 × … × ânhn

}
be a collection of multi-attributes, where 1 ≤ h1 ≤ |A1|, 1 ≤ h2 ≤ |A2| and so on. 

Suppose T − SFSI is a collection of all T-SF subsets over I. The pair 
(

F,A1 × A1 × … × A1 = A
⃛ )

is then described as T-SFHySS over I, and 

its mapping is indicated as 

F : A1 × A2 × … × An = A
⃛

→T − SFSI (6) 

It can also be interpreted as follows: 
(

F,A
⃛ )

=
{(

â,F
A

⃛ (L̂ )
)
: L̂ ∈ A

⃛
,F

A
⃛ (L̂ ) ∈ T − SFSI

}
(7) 

where F
A

⃛ (L̂ ) =
{

x, μF(L̂ )(x), δF(L̂ )(x), νF(L̂ )(x) : x ∈ I
}

, in which μF(L̂ )(x), δF(L̂ )(x), νF(L̂ )(x) : I→[0, 1] stands for the MG, degree of 

abstinence, and NMG, respectively, of the sub-attributes of the considered parameters, satisfying the condition that 
0 ≤ μF(L̂ )

τ(x)+δF(L̂ )
τ(x)+νF(L̂ )

τ(x) ≤ 1 where τ ≥ 1. The degree of hesitancy of x in Ã is represented as 

H
L̂ i j

=
(

1 −
(

μF(L̂ )
τ(x) + δF(L̂ )

τ(x) + νF(L̂ )
τ(x)

))1
τ (8) 

Simply, A
L̂ j

(xi ) =
{(

xi , μj (xi ), δj (xi ), νj (xi )
)
: xi ∈ I

}
can be written ℘̃

L̂ ij
= 〈μF(L̂ i j ), δF(L̂ i j ), νF(L̂ i j )〉, which is called the T-SF 

hypersoft number (T-SFHySN). 

Example 1. Consider the universe of discourse I = {x1, x2} and a = {a1 : Teaching methodology; a2 : Subjects; a3 : Classes} be a collection 
of attributes with the following corresponding attribute values: 

Teaching methodology A1 = {a11 : project base; a11 : class discussion}, 
Subjects A2 = {a21 : mathematics; a22 : computer science; a23 : statistics}, 
Classes A3 = {a31 : masters; a32 : doctoral}. 

Let A
⃛
= (A1 × A2 × A3) = {L̂ 11, L̂ 12}× {L̂ 21, L̂ 22, L̂ 23}× {L̂ 31, L̂ 32} =

{(a11, a21, a31), (a11, a21, a32), (a11, a22, a31), (a11, a22, a32), (a11, a23, a31), (a11, a23, a32),

(a12, a21, a31), (a12, a21, a32), (a12, a22, a31), (a12, a22, a32), (a12, a23, a31), (a12, a23, a32) }

A
⃛
= {L̂ 1, L̂ 2, L̂ 3, L̂ 4, L̂ 5, L̂ 6, L̂ 7, L̂ 8, L̂ 9, L̂ 10, L̂ 11, L̂ 12}.

Then the T-SFHySS over I is given as follows: 
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(F ,A) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(L̂ 1, (x1, 〈0.6, 0.25, 0.3〉), (x2, 〈0.5, 0.3, 0.7〉) ), (L̂ 2, (x1, 〈0.6, 0.15, 0.7〉), (x2, 〈0.7, 0.3, 0.5〉) ),
(L̂ 3, (x1, 〈0.4, 0.35, 0.8〉), (x2, 〈0.3, 0.2, 0.7〉) ), (L̂ 4, (x1, 〈0.6, 0.1, 0.5〉), (x2, 〈0.5, 0.2, 0.6〉) ),
(L̂ 5, (x1, 〈0.7, 0.4, 0.3〉), (x2, 〈0.4, 0.2, 0.8〉) ), (L̂ 6, (x1, 〈0.5, 0.2, 0.4〉), (x2, 〈0.6, 0.1, 0.5〉) ),
(L̂ 7, (x1, 〈0.5, 0.25, 0.6〉), (x2, 〈0.4, 0.3, 0.5〉) ), (L̂ 8, (x1, 〈0.2, 0.3, 0.5〉), (x2, 〈0.3, 0.3, 0.9〉) ),
(L̂ 9, (x1, 〈0.4, 0.2, 0.6〉), (x2, 〈0.8, 0.2, 0.5〉) ), (L̂ 10, (x1, 〈0.7, 0.4, 0.4〉), (x2, 〈0.7, 0.15, 0.2〉) ),
(L̂ 11, (x1, 〈0.4, 0.35, 0.5〉), (x2, 〈0.5, 0.1, 0.3〉) ), (L̂ 12, (x1, 〈0.5, 0.2, 0.7〉), (x2, 〈0.4, 0.2, 0.7〉) )

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

Definition 8. Let ℘̃âij
= 〈μi j , δi j , νi j 〉 be a T-SFHySN, then score function can be defined in the following way: 

S
(

℘̃
L̂ ij

)

= μi j
τ − δi j

τ − νi j
τ +

(
eμi j

τ − δi j
τ − νi j

τ

eμi j
τ − δi j

τ − νi j
τ
+ 1

−
1
2

)

H
L̂ i j

τ (9) 

for q ≥ 1 and S
(

℘̃
L̂ ij

)

∈ [ − 1, 1]. 

Let ℘̃
L̂ 11

= 〈μ11, δ11, ν11〉 and ℘̃
L̂ 12

= 〈μ12, δ12, ν12〉 be two T-SFHySNs. Then  

(i) If S
(

℘̃
L̂ 11

)〉

S
(

℘̃
L̂ 12

)

, then ℘̃
L̂ 11

≻ ℘̃
L̂ 12  

(ii) If S
(

℘̃
L̂ 11

)〈

S
(

℘̃
L̂ 12

)

, then ℘̃
L̂ 11

≺ ℘̃
L̂ 12 

If S
(

℘̃
L̂ 11

)

= S
(

℘̃
L̂ 12

)

, then  

• If H
L̂ 11

> H
L̂ 12

, then ℘̃
L̂ 11

≺ ℘̃
L̂ 12  

• If H
L̂ 11

= H
L̂ 12

, then ℘̃
L̂ 11

≈ ℘̃
L̂ 12

. 

As it is, T-SFHySS can encompass many fuzzy sets. Therefore, if different parameters in T-SFHySS assumed different values, it could 
largely encompass current fuzzy sets. Concerning this idea, Fig. 1 shows several fuzzy sets (Algebraic, Einstein, Hamacher, Frank, etc.) 
and environments (like T-SFSS, SFSS, PFSS, q-ROFSS, PyFSS, etc.). 

4. Sugeno-Weber operations of T-SFHySNs 

This section discusses the Sugeno-Weber (SW) operation and its notions in some fundamental operations. Suppose that the t-Ns, Tψ
SW 

and the t-CNs, Sψ
SW represent the SW sum and SW product, respectively, and the generalization of intersection and union of T-SFHySS 

turns into the SW sum ℘̃
L̂ 11

⊕SW℘̃
L̂ 12 

and the SW product ℘̃
L̂ 11

⊗SW℘̃
L̂ 12 

from the two T-SFHySNs, respectively which are presented as  

(i) ℘̃
L̂ 11

⊕SW℘̃
L̂ 12

= 〈Sψ
SW(μ11, μ12),T

ψ
SW(δ11, δ12)Tψ

SW(ν11, ν12)〉,  

(ii) ℘̃
L̂ 11

⊗SW℘̃
L̂ 12

= 〈Tψ
SW(μ11, μ12),S

ψ
SW(δ11, δ12),Sψ

SW(ν11, ν12)〉.  

Definition 9. Let ℘̃
L̂

= 〈μ, δ, ν〉, ℘̃
L̂ 11

= 〈μ11, δ11, ν11〉 and ℘̃
L̂ 12

= 〈μ12, δ12, ν12〉 be any three T-SFHySNs, and λ be a positive real 
number. Then, some basic operations of T-SFHySNs based on SW t-N&t-CNs are given as  

(i) ℘̃
L̂ 11

⊕SW℘̃
L̂ 12

= 〈
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
μτ

11 + μτ
12 −

ψ
1+ψμτ

11μτ
12

τ
√

,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
δτ

11+δτ
12 − 1+ψδτ

11δτ
12

1+ψ
τ
√

,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ντ

11+ντ
12 − 1+ψντ

11ντ
12

1+ψ
τ
√

〉;  

(ii) ℘̃
L̂ 11

⊗SW℘̃
L̂ 12

= 〈

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
μτ

11+μτ
12 − 1+ψμτ

11μτ
12

1+ψ
τ
√

,
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
δτ

11 + δτ
12 −

ψ
1+ψδτ

11δτ
12

τ
√

,
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ντ

11 + ντ
12 −

ψ
1+ψντ

11ντ
12

τ
√

〉;  

(iii) λ⊙SW℘̃
L̂

= 〈

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1+ψ

ψ

(
1 −

(
1 − μτ

( ψ
1+ψ
) )λ

)
τ

√

,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
(1 + ψ)

( ψδτ+1
1+ψ

)λ
− 1

)
1
ψ

τ

√

,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
(1 + ψ)

( ψντ+1
1+ψ

)λ
− 1

)
1
ψ

τ

√

〉;  

(iv) ℘̃
L̂

λ
= 〈

(
1
ψ

(

(1 + ψ)
(

ψμτ+1
1+ψ

)λ
− 1

))1
τ

,
(

1+ψ
ψ

(
1 −

(
1 − δτ( ψ

1+ψ
) )λ

))1
τ
,
(

1+ψ
ψ

(
1 −

(
1 − ντ( ψ

1+ψ
) )λ

))1
τ
〉. 

5. T-SFHyS Sugeno-Weber weighted averaging aggregation operators 

In a T-SFHyS environment, we now propose the T-SFHySSWWA operator. 
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Definition 10. Let ℘̃
L̂ i j

= 〈μi j , δi j , νi j 〉 be an accumulation of T-SFHySNs, where i = 1, 2,⋯,m and j = 1, 2, ⋯, n. If 
T − SFHySSWWA : Δn→Δ, then T-SFHySSWWA is defined as 

T − SFHySSWWA
(

℘̃
L̂ 11

, ℘̃
L̂ 12

,⋯, ℘̃
L̂ mn

)

= ⊕SW
n
j=1ωj

(

⊕SW
m
i=1Ωi ℘̃L̂ i j

)

(10) 

where Ωi > 0, 
∑m

i=1Ωi = 1 and ωj > 0, 
∑n

j=1ωj = 1 represent the weights of experts and attributes, respectively. 

Theorem 1. Let ℘̃
L̂ i j

= 〈μi j , δi j , νi j 〉 be the collection of T-SFHySNs, where i = 1, 2,⋯,m and j = 1,2,⋯, n. Then, the obtained aggregated 
values is also a T-SFHySN and 

T − SFHySSWWA
(

℘̃
L̂ 11

, ℘̃
L̂ 12

,⋯, ℘̃
L̂ mn

)

= ⊕SW
m
j=1ωj

(

⊕SW
n
i=1Ωi ℘̃L̂ i j

)

=

〈√√
√
√τ1 + ψ

ψ

(

1 −
∏n

j=1

(
∏m

i=1

(
1 −

ψ
1 + ψμi j

τ
)Ωi

)ωj
)

,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

(

(1 + ψ)
∏n

j=1

(
∏m

i=1

(ψδi j
τ + 1

1 + ψ

)Ωi

)ωj

− 1

)
τ

√
√
√
√ ,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

(

(1 + ψ)
∏n

j=1

(
∏m

i=1

(ψνi j
τ + 1

1 + ψ

)Ωi

)ωj

− 1

)
τ

√
√
√
√ 〉 (11) 

where Ωi and ωj represent the weight vectors of the experts and attributes, respectively, such as Ωi > 0, 
∑m

i=1Ωi = 1 and ωj > 0, 
∑n

j=1ωj = 1. 
Proof. The proof of the T-SFHySSWWA operator can be given by using mathematical induction and some basic operations, such as 

the following: 
We will prove for m = 2 and n = 2. Then we have 

T − SFHySSWWA
(

℘̃
L̂ 11

, ℘̃
L̂ 12

,⋯, ℘̃
L̂ mn

)

= ⊕SW
2
j=1ωj

(

⊕SW
2
i=1Ωj ℘̃L̂ i j

)

= ⊕SW
2
j=1ωj

(

Ω1℘̃
L̂ 1j

⊕SW Ω2℘̃
L̂ 2j

)

= ω1

(

Ω1℘̃
L̂ 11

⊕SW Ω2℘̃
L̂ 21

)

+ω2

(

Ω1℘̃
L̂ 12

⊕SW Ω2℘̃
L̂ 22

)

= ω1

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

〈√√
√
√τ1 + ψ

ψ

(

1 −
(

1 − μ11
τ
( ψ

1 + ψ

))Ω1
)

,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

(

(1 + ψ)
(

ψδ11
τ + 1

1 + ψ

)Ω1

− 1

)
τ

√
√
√
√ ,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

(

(1 + ψ)
(

ψν11
τ + 1

1 + ψ

)Ω1

− 1

)
τ

√
√
√
√ 〉⊕SW〈

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + ψ

ψ

(

1 −
(

1 − μ21
τ
( ψ

1 + ψ

))Ω2
)

τ

√

,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

(

(1 + ψ)
(

ψδ21
τ + 1

1 + ψ

)Ω2

− 1

)
τ

√
√
√
√ ,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

(

(1 + ψ)
(

ψν21
τ + 1

1 + ψ

)Ω2

− 1

)
τ

√
√
√
√ 〉

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⊕SW  

ω2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

〈√√
√
√τ1 + ψ

ψ

(

1 −
(

1 − μ12
τ
( ψ

1 + ψ

))Ω1
)

,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

(

(1 + ψ)
(

ψδ12
τ + 1

1 + ψ

)Ω1

− 1

)
τ

√
√
√
√ ,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

(1 + ψ)
(

ψν12
τ + 1

1 + ψ

)Ω1

− 1

)
1
ψ

τ

√
√
√
√ 〉⊕SW〈

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + ψ

ψ

(

1 −
(

1 − μ22
τ
( ψ

1 + ψ

))Ω2
)

τ

√

,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

(1 + ψ)
(

ψδ22
τ + 1

1 + ψ

)Ω2

− 1

)
1
ψ

τ

√
√
√
√ ,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

(

(1 + ψ)
(

ψν22
τ + 1

1 + ψ

)Ω2

− 1

)
τ

√
√
√
√ 〉

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= ω1〈

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + ψ
ψ

(

1 −
∏2

i=1

(
1 − μi 1

τ
( ψ

1 + ψ

))Ωi

)
τ

√
√
√
√ ,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

(
∏2

i=1
(1 + ψ)

(
ψδi 1

τ + 1
1 + ψ

)Ωi

− 1

)
τ

√
√
√
√ ,
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̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

(
∏2

i=1
(1 + ψ)

(
ψνi 1

τ + 1
1 + ψ

)Ωi

− 1

)
τ

√
√
√
√ 〉⊕SW ω2〈

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + ψ
ψ

(

1 −
∏2

i=1

(
1 − μi 2

τ
( ψ

1 + ψ

))Ωi

)
τ

√
√
√
√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

(
∏2

i=1
(1 + ψ)

(
ψδi 2

τ + 1
1 + ψ

)Ωi

− 1

)
τ

√
√
√
√ ,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

(
∏2

i=1
(1 + ψ)

(
ψνi 2

τ + 1
1 + ψ

)Ωi

− 1

)
τ

√
√
√
√ 〉

=

〈√√
√
√τ1 + ψ

ψ

(

1 −

(
∏2

i=1

(
1 − μi 1

τ
( ψ

1 + ψ

))Ωi

)ω1 )

,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

((
∏2

i=1
(1 + ψ)

(
ψδi 1

τ + 1
1 + ψ

)Ωi

)ω1

− 1

)
τ

√
√
√
√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

((
∏2

i=1
(1 + ψ)

(
ψνi 1

τ + 1
1 + ψ

)Ωi

)ω1

− 1

)
τ

√
√
√
√ 〉⊕SW〈

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + ψ
ψ

(

1 −

(
∏2

i=1

(
1 − μi 2

τ
( ψ

1 + ψ

))Ωi

)ω2
)

τ

√
√
√
√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

((
∏2

i=1
(1 + ψ)

(
ψδi 2

τ + 1
1 + ψ

)Ωi

)ω2

− 1

)
τ

√
√
√
√ ,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

((
∏2

i=1
(1 + ψ)

(
ψνi 2

τ + 1
1 + ψ

)Ωi

)ω2

− 1

)
τ

√
√
√
√ 〉

=

〈√√
√
√τ1 + ψ

ψ

(

1 −
∏2

j=1

(
∏2

i=1

(
1 − μi j

τ
( ψ

1 + ψ

))Ωi

)ωj
)

,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

(
∏2

j=1

(
∏2

i=1
(1 + ψ)

(ψδi j
τ + 1

1 + ψ

)Ωi

)ωj

− 1

)
τ

√
√
√
√ ,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

(
∏2

j=1

(
∏2

i=1
(1 + ψ)

(ψνi j
τ + 1

1 + ψ

)Ωi

)ωj

− 1

)
τ

√
√
√
√ 〉

This demonstrates that the acquired result is correct for m = 2 and n = 2. 
Assume that equation (1) is true for m = β1 and n = β2. Then 

T − SFHySSWWA
(

℘̃
L̂ 11

, ℘̃
L̂ 12

,⋯, ℘̃
L̂ mn

)

= ⊕SW
β2
j=1ωj

(

⊕SW
β1
i=1Ωi ℘̃L̂ i j

)

=

〈√√
√
√τ1 + ψ

ψ

(

1 −
∏β2

j=1

(
∏β1

i=1

(
1 − μi j

τ
( ψ

1 + ψ

))Ωi

)ωj
)

,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

(
∏β2

j=1

((
∏β1

i=1
(1 + ψ)

(ψδi j
τ + 1

1 + ψ

)Ωi j

))ωj

− 1

)
τ

√
√
√
√ ,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

(
∏β2

j=1

((
∏β1

i=1
(1 + ψ)

(ψνi j
τ + 1

1 + ψ

)Ωi j

))ωj

− 1

)
τ

√
√
√
√ 〉

Now, for m = β1 +1 and n = β2 + 1, we have 

T − SFHySSWWA
(

℘̃
L̂ 11

, ℘̃
L̂ 12

,⋯, ℘̃
L̂ mn

)

= ⊕SW
β2+1
j=1 γj

(

⊕SW
β1+1
i=1 Ωi ℘̃L̂ i j

)

= ⊕SW
β2+1
j=1 ωj

(

⊕SW
β1
i=1Ωi ℘̃L̂ i j

⊕SW Ωβ1+1℘̃
L̂ (β1+1)

)

= ⊕SW
β2+1
j=1 ωj

(

⊕SW
β1
i=1Ωi ℘̃L̂ i j

)

⊕SW
β2+1
j=1 γj Ωβ1+1℘̃

L̂ (β1+1)j  

=

〈√√
√
√τ1 + ψ

ψ

(

1 −
∏β2+1

j=1

(
∏β1

i=1

(
1 − μi j

τ
( ψ

1 + ψ

))Ωi

)ωj
)

,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

(
∏β2+1

j=1

((
∏β1

i=1
(1 + ψ)

(ψδi j
τ + 1

1 + ψ

)Ωi

))ωj

− 1

)
τ

√
√
√
√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

(
∏β2+1

j=1

((
∏β1

i=1
(1 + ψ)

(ψνi j
τ + 1

1 + ψ

)Ωi j

))ωj

− 1

)
τ

√
√
√
√ 〉⊕SW〈

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + ψ
ψ

(

1 −
∏β2+1

j=1

((
1 − μi j

τ
( ψ

1 + ψ

))Ωβ1+1
)ωj

)
τ

√
√
√
√ ,
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̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

(
∏β2+1

j=1

(

(1 + ψ)
(ψδi j

τ + 1
1 + ψ

)Ωβ1+1
)ωj

− 1

)
τ

√
√
√
√ ,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

(
∏β2+1

j=1

(

(1 + ψ)
(ψνi j

τ + 1
1 + ψ

)Ωβ1+1
)ωj

− 1

)
τ

√
√
√
√ 〉

=

〈√√
√
√τ1 + ψ

ψ

(

1 −
∏β2+1

i=1

(
∏β1

i=1

(
1 − μi j

τ
( ψ

1 + ψ

))Ωβ1+1

)ωj
)

,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + ψ
ψ

(

1 −
∏β2+1

j=1

((
1 − δi j

τ
( ψ

1 + ψ

))Ωβ1+1
)ωj

)
τ

√
√
√
√ ,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + ψ
ψ

(

1 −
∏β2+1

j=1

((
1 − νi j

τ
( ψ

1 + ψ

))Ωβ1+1
)ωj

)
τ

√
√
√
√ 〉⊕SW〈

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

(
∏β2+1

j=1

(
∏β1

i=1
(1 + ψ)

(ψμi j
τ + 1

1 + ψ

)Ωi

)ωj

− 1

)
τ

√
√
√
√ ,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

(
∏β2+1

j=1

(

(1 + ψ)
(ψδi j

τ + 1
1 + ψ

)Ωβ1+1
)ωj

− 1

)
τ

√
√
√
√ ,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

(
∏β2+1

j=1

(

(1 + ψ)
(ψνi j

τ + 1
1 + ψ

)Ωβ1+1
)ωj

− 1

)
τ

√
√
√
√ 〉

=

〈√√
√
√τ1 + ψ

ψ

(

1 −
∏β2+1

j=1

(
∏β1+1

i=1

(
1 − μi j

τ
( ψ

1 + ψ

))Ωi

)ωj
)

,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

(
∏β2+1

j=1

((
∏β1+1

i=1
(1 + ψ)

(ψδi j
τ + 1

1 + ψ

)Ωi

))ωj

− 1

)
τ

√
√
√
√ ,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

(
∏β2+1

j=1

((
∏β1+1

i=1
(1 + ψ)

(ψνi j
τ + 1

1 + ψ

)Ωi

))ωj

− 1

)
τ

√
√
√
√ 〉

This demonstrates that equation (1) holds for every n ≥ 1 and m ≥ 1. 
The most intriguing aspect is that the aggregated values produced using the T-SFHySSWWA operator are also T-SFHySN. To 

demonstrate this, assume ℘̃
L̂ i j

= 〈μi j , δi j , νi j 〉, where i = 1,2,⋯,m and j = 1, 2, ⋯, n, 0 ≤ μi j , δi j , νi j ≤ 1 and satisfies 
0 ≤ μi j

τ +δi j
τ +νi j

τ ≤ 1 where Ωi and ωj are the weight vectors for experts and attributes, respectively, and having conditions that 
Ωi > 0, 

∑n
i=1Ωi = 1 and ωj > 0, 

∑m
j=1ωj = 1. 

As we are all aware that 

0 ≤ μi j ≤ 1 ⇒ 0 ≤ μi j
τ ≤ 1 ⇒ 0 ≤

(
1 −

ψ
1 + ψμi j

τ
)Ωi

≤ 1  

⇒ 0 ≤
∏m

i=1

(
1 −

ψ
1 + ψμi j

τ
)Ωi

≤ 1  

⇒ 0 ≤
∏n

j=1

(
∏m

i=1

(
1 −

ψ
1 + ψμi j

τ
)Ωi

)ωj

≤ 1  

⇒ 0 ≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + ψ
ψ

(

1 −
∏n

j=1

(
∏m

i=1

(
1 −

ψ
1 + ψμi j

τ
)Ωi

)ωj )
τ

√
√
√
√ ≤ 1.

Similarly, 

0 ≤ δi j ≤ 1 ⇒ 0 ≤ (1+ψ)
(ψδi j

τ + 1
1 + ψ

)Ωi

≤ 1 

i.e., 0 ≤
∏m

i=1(1+ψ)
(

ψδi j
τ+1

1+ψ

)Ωi

≤ 1 

0 ≤
∏n

j=1

((
∏m

i=1
(1 + ψ)

(ψδi j
τ + 1

1 + ψ

)Ωi

))ωj

≤ 1  

0 ≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
∏n

j=1

((
∏m

i=1
(1 + ψ)

(ψδi j
τ + 1

1 + ψ

)Ωi

))ωj

− 1

)
1
ψ

τ

√
√
√
√ ≤ 1.

Similarly, 

0 ≤ νi j ≤ 1 ⇒ 0 ≤ νi j
τ ≤ 1 ⇒ 0 ≤ (1+ψ)

(ψνi j
τ + 1

1 + ψ

)Ωi

≤ 1 
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i.e., 0 ≤
∏m

i=1(1+ψ)
(

ψνi j
τ+1

1+ψ

)Ωi

≤ 1 

0 ≤
∏n

j=1

((
∏m

i=1
(1 + ψ)

(ψνi j
τ + 1

1 + ψ

)Ωi

))ωj

≤ 1  

0 ≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
∏n

j=1

((
∏m

i=1
(1 + ψ)

(ψνi j
τ + 1

1 + ψ

)Ωi

))ωj

− 1

)
1
ψ

τ

√
√
√
√ ≤ 1.

Therefore, 

0 ≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + ψ
ψ

(

1 −
∏m

j=1

(
∏n

i=1

(
1 −

ψμi j
τ

1 + ψ

)Ωi

)ωj
)

τ

√
√
√
√ +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

(
∏m

j=1

((
∏n

i=1
(1 + ψ)

(ψδi j
τ + 1

1 + ψ

)Ωi

))ωj

− 1

)
τ

√
√
√
√ +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

(
∏n

j=1

((
∏m

i=1
(1 + ψ)

(ψνi j
τ + 1

1 + ψ

)Ωi

))ωj

− 1

)
τ

√
√
√
√ ≤ 1 

So, it can be shown that the result of applying the T-SFHySSWWA operator is also a T-SFHySN. 

Example 2. Let U = {u1, u2, u3, u4} be a set of experts with weights Ωi = (0.218,0.304,0.162,0.316)T, who are going to describe the 
attractiveness of a house under the defined set of attributes a = {a1 : lawn, a2 : secutitysystem} with their corresponding sub-attributes  

(i) Lawn = a1 = {a11 = withgrass, a12 = withoutgrass};  
(ii) secutitysystem = a2 = {a21 = guards, a22 = careras}. 

Let A
⃛
= A1 × A2 × A3 = {a11, a12}× {a21, a22}

= {(a11, a21), (a11, a22), (a12, a21), (a12, a22) }

Let A
⃛
= {L̂ 1, L̂ 2, L̂ 3, L̂ 4} be a set of multi-sub-attributes with weights ω = (0.2, 0.25, 0.2, 0.35)T. The rating values of the 

experts for alternatives in the form of T-SFHySN 
(

F ,A
⃛ )

= μ(l), δ(l), ν(l)
4×4 is given as: 

(F ,A) =

⎡

⎢
⎣

〈0.2, 0.2, 0.6〉 〈0.5, 0.3, 0.2〉 〈0.5, 0.2, 0.3〉 〈0.4, 0.3, 0.2〉

〈0.3, 0.2, 0.6〉 〈0.3, 0.2, 0.5〉 〈0.4, 0.3, 0.3〉 〈0.3, 0.3, 0.5〉

〈0.4, 0.5, 0.2〉

〈0.3, 0.2, 0.7〉

〈0.7, 0.2, 0.2〉

〈0.5, 0.2, 0.3〉

〈0.3, 0.2, 0.8〉

〈0.8, 0.2, 0.1〉

〈0.4, 0.2, 0.4〉

〈0.6, 0.3, 0.5〉

⎤

⎥
⎦

The aggregated value, T − SFHySSWWA
(

℘̃
L̂ 11

, ℘̃
L̂ 12

,⋯, ℘̃
L̂ 34

)

(assigning τ = 3, ψ = 2) is obtained by using Eq. (5). 

T − SFHySSWWA
(

℘̃
L̂ 11

, ℘̃
L̂ 12

,⋯, ℘̃
L̂ 34

)

= ⊕SW
4
j=1ωj

(

⊕SW
4
i=1Ωi ℘̃L̂ i j

)

=

〈√√
√
√3

1 + 2
2

(

1 −
∏4

j=1

(
∏4

i=1

(

1 −
2μi j

3

1 + 2

)Ωi
)ωj

)

,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
2

(

(1 + 2)
∏4

j=1

(
∏4

i=1

(
2δi j

3 + 1
1 + ψ

)Ωi

)ωj

− 1

)
3

√
√
√
√ ,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
2

(

(1 + 2)
∏4

j=1

(
∏4

i=1

(
2νi j

3 + 1
1 + 2

)Ωi

)ωj

− 1

)
3

√
√
√
√ 〉

Aggregating MG 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + 2
2

(

1 −
∏4

j=1

(
∏4

i=1

(

1 −
2μi j

3

1 + 2

)Ωi
)ωj

)
3

√
√
√
√ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

3
2

(

1 −
∏4

j=1

((

1 −
2μ1j

3

3

)Ω1(

1 −
2μ2j

3

3

)Ω2(

1 −
2μ3j

3

3

)Ω3(

1 −
2μ4j

3

3

)Ω4
)ωj

)
3

√
√
√
√ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
3
2
(1 − M )

4

√
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where M =
∏4

j=1

((
1 − 2

3μ1j
3
)0.218(

1 − 2
3μ2j

3
)0.304(

1 − 2
3μ3j

3
)0.162(

1 − 2
3μ4j

3
)0.316

)ωj

. 

Now, A =
((

1 − 2
3μ11

3)0.218( 1 − 2
3μ21

3) 0.304( 1 − 2
3μ31

3)0.162( 1 − 2
3μ41

3)0.316
)0.2((

1 − 2
3μ12

3)0.218( 1 − 2
3μ22

3)0.304( 1 − 2
3μ32

3)0.162 

(
1 − 2

3μ42
3)0.316

)0.25((
1 − 2

3μ13
3)0.218( 1 − 2

3μ23
3)0.304( 1 − 2

3μ33
3)0.162( 1 − 2

3μ43
3)0.316

)0.2((
1 − 2

3μ14
3)0.218( 1 − 2

3μ24
3)0.304 

(
1 − 2

3μ34
3)0.162( 1 − 2

3μ44
3)0.316

)0.35
. 

=

((

1 −
2 × 0.23

1 + 2

)0.218(

1 −
2 × 0.33

1 + 2

)0.304(

1 −
2 × 0.43

1 + 2

)0.162(

1 −
2 × 0.33

1 + 2

)0.316)0.2((

1 −
2 × 0.53

1 + 2

)0.218(

1 −
2 × 0.33

1 + 2

)0.304 

(

1 −
2 × 0.73

1 + 2

)0.162(

1 −
2 × 0.53

1 + 2

)0.316)0.25((

1 −
2 × 0.53

1 + 2

)0.218(

1 −
2 × 0.43

1 + 2

)0.304(

1 −
2 × 0.33

1 + 2

)0.162(

1 −
2 × 0.83

1 + 2

)0.316)0.2 

((

1 −
2 × 0.43

1 + 2

)0.218(

1 −
2 × 0.33

1 + 2

)0.304(

1 −
2 × 0.43

1 + 2

)0.162(

1 −
2 × 0.63

1 + 2

)0.316)0.35  

=(0.6805 × 0.7051 × 0.4001 × 0.7190)0.2
(0.4182 × 0.7051 × 0.2126 × 0.5440)0.25

(0.4182 × 0.6167 × 0.4784 × 0.2880)0.2

(0.4972 × 0.7051 × 0.4001 × 0.4579)0.35
= 0.6730 × 0.4297 × 0.5130 × 0.3826 = 0.0568 

As a result, the aggregating MG = 0.4997. 
In a similarly way, integrated abstinence and NMG can be obtained as 

= 〈0.4997, 0.2768, 0.4749〉

Using the prior work of the T-SFHySSWWA operator, the following basic features for the accumulation of T-SFHySNs are provided: 

Theorem 2. (Idempotency) If, ℘̃
L̂ i j

= ℘̃
L̂

= 〈μi j , δi j , νi j 〉 where i = 1, 2,⋯,m and j = 1, 2,⋯, n be T-SFHySNs. Then, 

T − SFHySSWWA
(

℘̃
L̂ 11

, ℘̃
L̂ 12

,⋯, ℘̃
L̂ mn

)

= ℘̃
L̂ 

Proof. Let ℘̃
L̂ i j

= ℘̃â = 〈μi j , δi j , νi j 〉 (where i = 1,2,⋯,m and j = 1,2,⋯,n) be set of T-SFHSNs. Then, 

T − SFHySSWWA
(

℘̃
L̂ 11

, ℘̃
L̂ 12

,⋯, ℘̃
L̂ mn

)

=

〈√√
√
√τ1 + ψ

ψ

(

1 −
∏n

j=1

(
∏m

i=1

(
1 −

ψμi j
τ

1 + ψ

)Ωi

)ωj
)

,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

(1 + ψ)
∏m

j=1

(
∏n

i=1

(ψδi j
τ + 1

1 + ψ

)Ωi

)ωj

− 1

)
1
ψ

τ

√
√
√
√ ,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

(1 + ψ)
∏m

j=1

(
∏n

i=1

(ψνi j
τ + 1

1 + ψ

)Ωi

)ωj

− 1

)
1
ψ

τ

√
√
√
√ 〉

=

〈
√
√
√
√
√
√τ1 + ψ

ψ

⎛

⎝1 −

(
(

1 −
ψμi j

τ

1 + ψ

)
∑m

i=1
Ωi

)∑n

j=1
ωj

⎞

⎠,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

⎛

⎜
⎝(1 + ψ)

((ψδi j
τ + 1

1 + ψ

)∑m

i=1
Ωi

)
∑n

j=1
ωj

− 1

⎞

⎟
⎠

τ

√
√
√
√
√
√ ,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

⎛

⎜
⎝(1 + ψ)

((ψνi j
τ + 1

1 + ψ

)∑m

i=1
Ωi

)
∑n

j=1
ωj

− 1

⎞

⎟
⎠

τ

√
√
√
√
√
√ 〉

=

〈√√
√
√τ1 + ψ

ψ

(
1 − 1 +

ψμi j
τ

1 + ψ

)
,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

(

(1 + ψ)
(
ψδi j

τ + 1
)

(1 + ψ) − 1
)

τ

√

,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

(

(1 + ψ)
(
ψνi j

τ + 1
)

(1 + ψ) − 1
)

τ

√ 〉

=
〈
μi j , δi j , νi j

〉
= ℘̃

L̂  

Theorem 3. (Boundedness) Let ℘̃
L̂ i j

= 〈μi j , δi j , νi j 〉 be the collection of T-SFHySNs, where i = 1, 2,⋯,m and j = 1, 2,⋯, n and ℘̃−

âi j
= 〈

min
j

min
i

{
μi j

}
,max

j
max

i

{
δi j

}
,max

j
max

i

{
νi j

}〉
and ℘̃+

âi j
= 〈max

j
max

i

{
μi j

}
,min

j
min

i

{
δi j

}
,min

j
min

i

{
νi j

}〉
. Then, 
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℘̃−

L̂ i j
≤ T − SFHySSWWA

(

℘̃
L̂ 11

, ℘̃
L̂ 12

,⋯, ℘̃
L̂ mn

)

≤ ℘̃+

L̂ i j 

Proof. For each i = 1, 2,⋯,m and j = 1,2,⋯,n, we have 

min
j

min
i

μij
τ ≤ μi j

τ ≤ max
j

max
i

{
μi j

τ}

⇒ 1 − max
j

max
i

{
μi j

τ
( ψ

1 + ψ

)}
≤ 1 − μi j

τ
( ψ

1 + ψ

)
≤ 1 − min

j
min

i

{
μi j

τ
( ψ

1 + ψ

)}

⇔
(

1 − max
j

max
i

{
μi j

τ
( ψ

1 + ψ

)})Ωi

≤
(

1 − μi j
τ
( ψ

1 + ψ

))Ωi

≤

(

1 − min
j

min
i

{
μi j

τ
( ψ

1 + ψ

)})Ωi 

i.e., 
(

1 − max
j

max
i

{
μi j

τ( ψ
1+ψ

)}
)∑n

i=1
Ωi

≤
∏m

i=1

(
1 − μi j

τ( ψ
1+ψ

) )Ωi

≤

(

1 − min
j

min
i

{
μi j

τ( ψ
1+ψ

)}
)∑n

i=1
Ωi 

i.e., 
(

1 − max
j

max
i

{
μi j

τ ( ψ
1+ψ
)}
)∑n

j=1
ωj

≤
∏n

j=1

(
∏n

i=1

(
1 − μi j

τ( ψ
1+ψ
) )Ωi

)ωj

≤

(

1 − min
j

min
i

{
μi j

τ( ψ
1+ψ
)}
)∑n

j=1
ωj 

i.e., 1 − max
j

max
i

{
μi j

τ ( ψ
1+ψ
)}

≤
∏n

j=1

(
∏m

i=1

(
1 − μi j

τ ( ψ
1+ψ
) )Ωi

)ωj

≤ 1 − min
j

min
i

{
μi j

τ( ψ
1+ψ
)}

⇔ min
j

min
i

{
μi j

τ
( ψ

1 + ψ

)}
≤ 1 −

∏n

j=1

(
∏m

i=1

(
1 − μi j

τ
( ψ

1 + ψ

))Ωi

)ωj

≤ max
j

max
i

{
μi j

τ
( ψ

1 + ψ

)}

⇔ min
j

min
i

{
μi j

τ} ≤
1 + ψ

ψ

(

1 −
∏n

j=1

(
∏m

i=1

(
1 − μi j

τ
( ψ

1 + ψ

))Ωi

)ωj
)

≤ max
j

max
i

{
μi j

τ}

⇔ min
j

min
i

{
μi j

τ} ≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + ψ
ψ

(

1 −
∏n

j=1

(
∏m

i=1

(
1 − μi j

τ
( ψ

1 + ψ

))Ωi

)ωj
)

τ

√
√
√
√ ≤ max

j
max

i

{
μi j

τ}.

Similarly 

⇔ min
j

min
i

{
δi j

τ} ≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

(

(1 + ψ)
∏n

j=1

(
∏m

i=1

(ψδi j
τ + 1

1 + ψ

)Ωi

)ωj

− 1

)
τ

√
√
√
√ ≤ max

j
max

i

{
δi j

τ}

⇔ min
j

min
i

{
νi j

τ} ≤

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

(1 + ψ)
∏n

j=1

(
∏m

i=1

(ψνi j
τ + 1

1 + ψ

)Ωi

)ωj

− 1

)
1
ψ

τ

√
√
√
√ ≤ max

j
max

i

{
νi j

τ}

Then by comparing two T-SFHSNs, we obtain 

℘̃−

L̂ i j
≤ T − SFHySSWWA

(

℘̃
L̂ 11

, ℘̃
L̂ 12

,⋯, ℘̃
L̂ mn

)

≤ ℘̃+

L̂ i j  

Theorem 4. (Homogeneity) If λ be any positive real number, then 

T-SFHySSWWA
(

λ℘̃
L̂ 11

, λ℘̃
L̂ 12

,⋯, λ℘̃
L̂ mn

)

= λT-SFHySSWWA
(

℘̃
L̂ 11

, ℘̃
L̂ 12

,⋯, ℘̃
L̂ mn

)

. 

Proof. Let ℘̃
L̂ i j 

be a T-SFHySNs and λ > 0. Then, we get 

λ℘̃
L̂ i j

=

〈√√
√
√τ1 + ψ

ψ

(

1 −
(

1 −
ψμi j

τ

1 + ψ

)λ
)

,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

((ψδi j
τ + 1

1 + ψ

)λ

− 1

)
τ

√
√
√
√ ,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

((ψνi j
τ + 1

1 + ψ

)λ

− 1

)
τ

√
√
√
√

〉

So,T − SFHySSWWA
(

λ℘̃
L̂ 11

, λ℘̃
L̂ 12

,⋯, λ℘̃
L̂ mn

)

= ⊕SW
n
j=1ωj

(

⊕SW
m
i=1λΩi ℘̃L̂ i j

)

=

〈√√
√
√τ1 + ψ

ψ

(

1 −
∏n

j=1

(
∏m

i=1

(
1 −

ψμi j
τ

1 + ψ

)λΩi

)ωj
)

,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

(

(1 + ψ)
∏n

j=1

(
∏m

i=1

(ψδi j
τ + 1

1 + ψ

)λΩi

)ωj

− 1

)
τ

√
√
√
√

〉
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̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

(

(1 + ψ)
∏n

j=1

(
∏m

i=1

(ψνi j
τ + 1

1 + ψ

)λΩi

)ωj

− 1

)
τ

√
√
√
√ 〉

=

〈
√
√
√
√
√τ1 + ψ

ψ

⎛

⎝1 −

(
∏n

j=1

(
∏m

i=1

(
1 −

ψμi j
τ

1 + ψ

)Ωi

)ωj
)λ
⎞

⎠,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

⎛

⎝(1 + ψ)
(
∏n

j=1

(
∏m

i=1

(ψδi j
τ + 1

1 + ψ

)Ωi

)ωj
)λ

− 1

⎞

⎠
τ

√
√
√
√
√ ,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

⎛

⎝(1 + ψ)
(
∏n

j=1

(
∏m

i=1

(ψνi j
τ + 1

1 + ψ

)Ωi

)ωj
)λ

− 1

⎞

⎠
τ

√
√
√
√
√ 〉

= λT − SFHySSWWA
(

℘̃
L̂ 11

, ℘̃
L̂ 12

,⋯, ℘̃
L̂ mn

)

6. T-SFHyS Sugeno-Weber weighted geometric aggregation operators 

Definition 11. Let ℘̃
L̂ i j

= 〈μi j , δi j , νi j 〉 be an accumulation of q-ROFHySNs, where i = 1, 2,⋯, n and j = 1, 2, ⋯, m. If 

T − SFHySSWWG : Δn→Δ, then T-SFHySSWWG is defined as T − SFHySSWWG
(

℘̃
L̂ 11

, ℘̃
L̂ 12

,⋯, ℘̃
L̂ mn

)

= ⊗SW
m
j=1

(

⊗SW
n
i=1℘̃

L̂ i j

Ωi

)ωj

, 

where Ωi > 0, 
∑n

i=1Ωi = 1 and ωj > 0, 
∑m

j=1ωj = 1 represents the weights of experts and attributes. 

Theorem 5. Let ℘̃
L̂ i j

= 〈μi j , δi j , νi j 〉 be the collection of T-SFHySNs, where i = 1,2,⋯,m and j = 1,2,⋯, n. Then, the acquired aggregated 
values are also a T-SFHySN and 

T − SFHySSWWG
(

℘̃
L̂ 11

, ℘̃
L̂ 12

,⋯, ℘̃
L̂ mn

)

= ⊗SW
m
j=1

(

⊗SW
n
i=1℘̃

L̂ i j

Ωi

)ωj  

=

〈√√
√
√τ
(

(1 + ψ)
∏n

i j=1

(
∏m

i=1

(ψμi j
τ + 1

1 + ψ

)Ωi

)ωj

− 1

)
1
ψ ,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + ψ
ψ

(

1 −
∏n

j=1

(
∏m

i=1

(
1 −

ψδi j
τ

1 + ψ

)Ωi

)ωj
)

τ

√
√
√
√

〉

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + ψ
ψ

(

1 −
∏n

j=1

(
∏m

i=1

(
1 −

ψνi j
τ

1 + ψ

)Ωi

)ωj
)

τ

√
√
√
√ 〉

where Ωi and ωj represent the weights of the experts and attributes respectively, such as Ωi > 0, 
∑m

i=1Ωi = 1 and ωj > 0, 
∑m

j=1ωj =

1. 
Proof. Theorem 5 is obtained in the same manner as Theorem 1. 

Remark. 1. If μi j
τ +δi j

τ +νi j
τ ≤ 1 and τ = 2, then T-SFHySS was reduced to the spherical fuzzy HySS (yet needs to be introduced).  

2. If μi j
τ +δi j

τ +νi j
τ ≤ 1 and τ = 1, then T-SFHySS was reduced to the picture fuzzy HySS.  

3. If each attribute contains only one sub-attribute and the set contains only one attribute, then T-SFHySS is reduced to T-SFSS.  
4. If each attribute contains only one sub-attribute, the set contains only one attribute and τ = 2, then T-SFHySS is reduced to SFSS.  

Example 3. The same example is considered here. 

T − SFHySSWWG
(

℘̃
L̂ 11

, ℘̃
L̂ 12

,⋯, ℘̃
L̂ 44

)

= ⊗SW
4
j=1γj

(

⊗4
i=1Ωi ℘̃L̂ i j

)

=

〈√√
√
√3

1
ψ

(

(1 + ψ)
∏4

j=1

(
∏4

i=1

(ψμi j
3 + 1

1 + ψ

)Ωi
)γj

− 1

)

,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + ψ
ψ

(

1 −
∏4

j=1

(
∏4

i=1

(
1 −

ψ
1 + ψδi j

3
)Ωi

)γj
)

3

√
√
√
√ ,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + ψ
ψ

(

1 −
∏4

j=1

(
∏4

i=1

(
1 −

ψ
1 + ψνi j

3
)Ωi

)γj
)

3

√
√
√
√ 〉
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Fig. 2. Frame diagram of the proposed study.  
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= 〈0.4730, 0.2807, 0.5017〉

Using work done by the T-SFHySSWWG operator in the past, the following important aspects of the collection of T-SFHySNs are 
taken into account: 

Theorem 6. (Idempotency) If ℘̃
L̂ i j

= 〈μi j , δi j , νi j 〉 is the same as ℘̃
L̂

= 〈μ, δ, ν〉 for all i = 1, 2,⋯,m and j = 1,2,⋯,n, then 

T − SFHySSWWG
(

℘̃
L̂ 11

, ℘̃
L̂ 12

,⋯, ℘̃
L̂ mn

)

= ℘̃
L̂ 

Proof. Theorem 6 is obtained in the same manner as Theorem 2. 

Theorem 7. (Boundedness) Let ℘̃
L̂ i j

= 〈μi j , δi j , νi j 〉 be the collection of T-SFHySNs, where i = 1,2,⋯,m and j = 1, 2,⋯, n and ℘̃
L̂ i j

−
=

〈min
j

min
i

{
μi j

}
,max

j
max

i

{
δi j

}
,max

j
max

i

{
νi j

}〉
and ℘̃

L̂ i j

+
= 〈max

j
max

i

{
μi j

}
,min

j
min

i

{
δi j

}
,min

j
min

i

{
νi j

}〉
, then 

℘̃
L̂ i j

−
≤ T − SFHySSWWG

(

℘̃
L̂ 11

, ℘̃
L̂ 12

,⋯, ℘̃
L̂ mn

)

≤ ℘̃
L̂ i j

+

Proof. Theorem 7 is obtained in the same manner as Theorem 3. 

Theorem 8. (Homogeinity) If λ is any positive real number, then 

T − SFHySSWWG
(

λ℘̃
L̂ 11

, λ℘̃
L̂ 12

,⋯, λ℘̃
L̂ mn

)

= λT − SFHySSWWA
(

℘̃
L̂ 11

, ℘̃
L̂ 12

,⋯, ℘̃
L̂ mn

)

.

Proof. Theorem 8 is acquired in the same way that Theorem 4 was. 

7. Decision-making approach based on Sugeno-Weber aggregation operators in T-SFHyS setting 

The MCDM approach will be built into the section after using our established T-SFHyS AOs. In addition, a mathematical formula 
has also been given to show that the intended operators are correct. 

Consider A =
{
A1,A2,⋯,Ap

}
to be a finite set of alternatives and D = {D 1,D 2,⋯,D m} to be m number of experts. The weights of 

experts are given by Ω = (Ω1,Ω1,⋯,Ωm)
T such that 

∑m
i=1Ωi = 1 where Ωi ∈ [0, 1]. Assume C = {C 1,C 2,⋯,C n} is a set of criteria 

and ω = (ω1,ω2,⋯,ωn)
T is the weights of the criteria such that 

∑n
j=1ωj = 1 where ωj ∈ [0, 1]. Suppose experts provide the decision 

matrix, T-SFHyS decision matrix (T-SFHySDM), K (l) =

[

℘̃
L̂ i j

(l)
]

m×n
= 〈μ(l)

i j , δ(l)i j , ν
(l)
i j 〉m×n for each alternative in terms of T-SFHySNs. 

Where μ(l)
i j , δ(l)i j and ν(l)i j indicate, respectively, the MG, abstinence degree and NMG of i th alternative for j th criterion by the l th DM. 

Use the T-SFHySSWWA and T-SFHySSWWG operators to build the aggregated T-SFHySNs, ℘̃
L̂ i j

, based on the expert’s preference 
values for each option. Lastly, use Equation (1) to use the order of the options based on the score function. The steps listed below are a 
summary of the method as mentioned above: 

Step 1. Acquire a decision matrix 
[

℘̃
L̂ i j

(l)
]

m×n
= 〈μ(l)

i j , δ(l)i j , ν(l)i j 〉m×n in the form of T-SFHySNs for alternatives in accordance with 

experts. 
Step 2. Use the normalisation formula to turn the rating values of the cost-type parameters into benefit-type parameters. This is the 

second step of the collective information decision matrix. 

R(l) = r̃
L̂ i j

(l)
=

⎧
⎪⎨

⎪⎩

℘̃
L̂ i j

(l)for benefit type C j ,
(

℘̃
L̂ i j

(l)
)C

for cost types C j

(12) 

(

℘̃
L̂ i j

(l)
)C

= 〈ν(l)
i j , μ(l)

i j , δ(l)i j 〉m×n is the complement of ℘̃
L̂ i j

(l)
= 〈μ(l)

i j , δ(l)i j , ν(l)
i j 〉m×n. 

Step 3. Aggregate the normalized T-SFHySNs ̃r
L̂ i j

(l) for each alternative A = {A1,A2,⋯, As} into a collective T-SFHySN using the 
developed T-SFHySSWWA (or T-SFHySSWWG) operators presented in Definition 10 (or Definition 11). 

Step 4. Employing Equation (1), calculate the score values of ̃r
L̂ i j

(l) for each alternative. 
Step 5. Select the alternative with the highest possible score. 
Step 6. Examine the rankings. 
A frame diagram is shown in Fig. 2 to show how the proposed study will be done. 
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8. Illustrative example 

Agribusiness provides a way to overcome challenges and enhance the diversification of agricultural output. Agribusiness is the 
science and application of previous and existing activities related to production, processing, marketing, and trade, the distribution of 
raw and processed foods, feed, and fibre, and the provision of inputs and services for such activities. Green agribusiness emphasizes 
perceptions of agricultural science that are progressing sustainably, such as increasing food and fibre production, while considering 
societal and economic constraints to ensure the manufacturing industry’s long-term viability. Agribusiness is a vast sector with a wide 
range of businesses and operations. Agribusinesses include everything from small family farms and food producers to large multi-
national companies making food for the country. 

A revised version of a real-world case study made from an article described by Zulqarnain et al. [49] is known to set up the 
implementation potential for the simulation model. Five core alternates are interconnected in natural agribusinesses, such as Good 
crop production (A1; Environmental protection (A2); Natural resource availability (A3); Food security and productivity (A4); Avail-
ability of machines (A5). In addition, the five alternatives mentioned above are evaluated using four parameters. The attributes of 
robotic agriculture are as follows: ς = {a1 = Quality production, a2=Completion of a time − consuming project, a3=Consistency in 
completing a project, a4=Limiting the need for manual labour}. 

The conforming sub-attributes of the deliberated parameters 
Quality production=a1={L̂ 11 = High quality production, L̂ 12= low quality production}, 
Completion of a time-consuming project=a2={L̂ 21 = Short-term, L̂ 22=Long-term} 
Consistent role in project completion=a3={L̂ 31 = Project budgeting and forecasting} 
Reduce the need for manual labor=a4={L̂ 41 = Limiting the need for manual labor}. 

Let A
⃛
= A1 × A2 × A3 × A4 be a set of sub-attributes 

A
⃛
= A1 × A2 × A3 × A4 = {a11, a12} × {a21, a22} × {a31} × {a41}

= {(a11, a21, a31, a41), (a11, a22, a31, a41), (a12, a21, a31, a41), (a12, a22, a31, a41) }, A
⃛
= {L̂ 1, L̂ 2, L̂ 3, L̂ 4} be a set of all sub-attributes 

with weights ω = (0.2,0.2, 0.2, 0.4)T. Let A1, A2, A3 and A4 be a set of four experts with weights Ω = (0.1,0.3, 0.3, 0.3)T. 
Due to the fuzzy nature of the available data and the need for more precision in evaluating attributes, evaluating and choosing 

between different options has become more difficult over the past few years. Hence, decision-making systems must be improved to 
handle these circumstances. This T-SFHyS framework can consider many sub-attributes and both sides of the three-dimensional 
knowledge involved in satisfaction, abstinence, and dissatisfaction, which are all part of how people make decisions. Considering 
all these things, experts give their preferences in the form of T-SFHySNs to help decide which option is best. 

Here is a step-by-step explanation of how to solve the example using the proposed method to find the best alternative: 

8.1. By using T-SFHySSWWA operators 

Step 1: According to the expert, T-SFHyS decision matrices for all alternatives are given in Tables 1–5. 
Step 2: Because â1 and â3 represent the cost type parameters. Therefore, the normalized T-SFHyS decision matrices are obtained 

using the normalized formula in Tables 6–10. 
Step 3: The proposed T-SFHySSWWA operator was applied to the acquired data, and then we obtained the opinions of decision- 

makers on each alternative in the form of T-SFHySNs, ̃r
L̂ i j 

(i = 1,2, 3,4; j = 1, 2,3, 4) such as 

T − SFHySSWWA
(

r̃
L̂ 11

, r̃
L̂ 12

,⋯, r̃
L̂ 44

)

= ⊕SW
4
j=1ωj

(

⊕SW
4
i=1Ωi r̃L̂ i j

)

=

〈√√
√
√τ1 + ψ

ψ

(

1 −
∏4

j=1

(
∏4

i=1

(
1 −

ψ
1 + ψμi j

τ
)Ωi

)ωj
)

,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
ψ

(

(1 + ψ)
∏4

j=1

(
∏4

i=1

(ψδi j
τ + 1

1 + ψ

)Ωi

)ωj

− 1

)
τ

√
√
√
√ ,

Table 1 
T-SFHyS Decision Matrix for A1.

L̂ 1 L̂ 2 L̂ 3 L̂ 4 

D 1 〈0.8,0.22,0.5〉 〈0.7,0.63,0.5〉 〈0.6,0.5,0.4〉 〈0.7,0.3,0.4〉
D 2 〈0.6,0.2,0.5〉 〈0.9,0.3,0.1〉 〈0.7,0.25,0.3〉 〈0.4,0.4,0.5〉
D 3 〈0.8,0.6,0.4〉 〈0.7,0.34,0.5〉 〈0.6,0.3,0.4〉 〈0.3,0.6,0.5〉
D 4 〈0.7,0.3,0.3〉 〈0.6,0.2,0.5〉 〈0.4,0.4,0.5〉 〈0.5,0.63,0.7〉
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1
ψ

(

(1 + ψ)
∏4

j=1

(
∏4

i=1

(ψνi j
τ + 1

1 + ψ

)Ωi

)ωj

− 1

)
τ

√
√
√
√ 〉

For τ = 3 and ψ = 2, A1 = 〈0.5504,0.2157,0.5796〉, A2 = 〈0.5863,0.1579,0.5861〉, A3 = 〈0.5649,0.2378,0.5455〉, A4 = 〈0.5167,
0.3125,0.5956〉, A5 = 〈0.5857,0.2497,0.5937〉. 

Table 2 
T-SFHyS Decision Matrix for A2.

L̂ 1 L̂ 2 L̂ 3 L̂ 4 

D 1 〈0.7,0.2,0.5〉 〈0.8,0.2,0.5〉 〈0.6,0.2,0.4〉 〈0.8,0.2,0.4〉
D 2 〈0.6,0.1,0.3〉 〈0.9,0.3,0.2〉 〈0.8,0.2,0.3〉 〈0.7,0.2,0.5〉
D 3 〈0.5,0.2,0.4〉 〈0.6,0.05,0.5〉 〈0.6,0.3,0.3〉 〈0.3,0.1,0.6〉
D 4 〈0.7,0.2,0.4〉 〈0.6,0.1,0.4〉 〈0.7,0.3,0.5〉 〈0.5,0.3,0.7〉

Table 3 
T-SFHyS Decision Matrix for A3.

L̂ 1 L̂ 2 L̂ 3 L̂ 4 

D 1 〈0.7,0.2,0.5〉 〈0.7,0.3,0.4〉 〈0.6,0.3,0.4〉 〈0.8,0.1,0.4〉
D 2 〈0.6,0.2,0.6〉 〈0.9,0.4,0.1〉 〈0.6,0.2,0.3〉 〈0.4,0.4,0.5〉
D 3 〈0.8,0.1,0.3〉 〈0.7,0.1,0.2〉 〈0.6,0.2,0.5〉 〈0.4,0.3,0.5〉
D 4 〈0.7,0.2,0.6〉 〈0.3,0.2,0.5〉 〈0.4,0.1,0.5〉 〈0.5,0.1,0.6〉

Table 4 
T-SFHyS Decision Matrix for A4.

L̂ 1 L̂ 2 L̂ 3 L̂ 4 

D 1 〈0.8,0.3,0.5〉 〈0.7,0.2,0.5〉 〈0.7,0.2,0.4〉 〈0.6,0.1,0.4〉
D 2 〈0.6,0.2,0.4〉 〈0.8,0.2,0.1〉 〈0.7,0.1,0.3〉 〈0.4,0.2,0.7〉
D 3 〈0.7,0.2,0.4〉 〈0.7,0.1,0.5〉 〈0.6,0.2,0.4〉 〈0.3,0.25,0.5〉
D 4 〈0.6,0.3,0.3〉 〈0.6,0.3,0.3〉 〈0.8,0.1,0.5〉 〈0.5,0.15,0.6〉

Table 5 
T-SFHyS Decision Matrix for A5.

L̂ 1 L̂ 2 L̂ 3 L̂ 4 

D 1 〈0.6,0.1,0.5〉 〈0.6,0.05,0.5〉 〈0.6,0.17,0.4〉 〈0.5,0.2,0.4〉
D 2 〈0.6,0.2,0.4〉 〈0.8,0.1,0.1〉 〈0.8,0.4,0.3〉 〈0.7,0.1,0.5〉
D 3 〈0.6,0.15,0.4〉 〈0.7,0.25,0.3〉 〈0.6,0.3,0.4〉 〈0.6,0.2,0.5〉
D 4 〈0.7,0.12,0.4〉 〈0.7,0.3,0.5〉 〈0.4,0.1,0.5〉 〈0.5,0.1,0.8〉

Table 6 
Normalized T-SFHyS Decision Matrix for A1.

L̂ 1 L̂ 2 L̂ 3 L̂ 4 

D 1 〈0.5,0.22,0.8〉 〈0.7,0.63,0.5〉 〈0.4,0.5,0.6〉 〈0.7,0.3,0.4〉
D 2 〈0.5,0.2,0.6〉 〈0.9,0.3,0.1〉 〈0.3,0.25,0.7〉 〈0.4,0.4,0.5〉
D 3 〈0.4,0.6,0.8〉 〈0.7,0.34,0.5〉 〈0.4,0.3,0.6〉 〈0.3,0.6,0.5〉
D 4 〈0.3,0.3,0.7〉 〈0.6,0.2,0.5〉 〈0.5,0.4,0.4〉 〈0.5,0.63,0.7〉

Table 7 
Normalized q-ROFHyS Decision Matrix for A2.

L̂ 1 L̂ 2 L̂ 3 L̂ 4 

D 1 〈0.5,0.2,0.7〉 〈0.8,0.2,0.5〉 〈0.4,0.2,0.6〉 〈0.8,0.2,0.4〉
D 2 〈0.3,0.1,0.6〉 〈0.9,0.3,0.2〉 〈0.3,0.2,0.8〉 〈0.7,0.2,0.5〉
D 3 〈0.4,0.2,0.5〉 〈0.6,0.05,0.5〉 〈0.3,0.3,0.6〉 〈0.3,0.1,0.6〉
D 4 〈0.4,0.2,0.7〉 〈0.6,0.1,0.4〉 〈0.5,0.3,0.7〉 〈0.5,0.3,0.7〉
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Step 4: Use the score formula to calculate the score values for all alternatives. 
S(A1) = − 0.03, S(A2) = 0.0002, S(A3) = 0.0222, S(A4) = − 0.008, and S(A5) = − 0.0095. 
Step 5: After calculation, we get the ranking of alternatives 
S(A3)〉S(A2)〉S(A4)〉S(A5)〉S(A1). So, A3 ≻ A2 ≻ A4 ≻ A5 ≻ A1. 
Hence, the best alternative is A3. 
cusing the T-SFHySSWWG operator. 

8.2. By using T-SFHySSWWG operators 

Step 1′: This is similar to Step 1. 
Step 2′: This is similar to Step 2. 
Step 3′: The proposed T-SFHySSWWG operator was applied to the acquired data, and then we obtained the opinions of decision- 

makers on each alternative in the form of T-SFHySNs ℵeij such as 

T − SFHySSWWG
(

r̃
L̂ 11

, r̃
L̂ 12

,⋯, r̃
L̂ 44

)

= ⊗SW
4
j=1

(

⊗SW
4
i=1 r̃

L̂ i j

Ωi

)ωj  

=

〈√√
√
√τ
(

(1 + ψ)
∏4

i j=1

(
∏4

i=1

(ψμi j
τ + 1

1 + ψ

)Ωi

)ωj

− 1

)
1
ψ ,

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + ψ
ψ

(

1 −
∏4

j=1

(
∏4

i=1

(
1 −

ψδi j
τ

1 + ψ

)Ωi

)ωj
)

τ

√
√
√
√

〉

Table 8 
Normalised q-ROFHyS Decision Matrix for A3.

L̂ 1 L̂ 2 L̂ 3 L̂ 4 

D 1 〈0.5,0.2,0.7〉 〈0.7,0.3,0.4〉 〈0.4,0.3,0.6〉 〈0.8,0.1,0.4〉
D 2 〈0.6,0.2,0.6〉 〈0.9,0.4,0.1〉 〈0.3,0.2,0.6〉 〈0.4,0.4,0.5〉
D 3 〈0.3,0.1,0.8〉 〈0.7,0.1,0.2〉 〈0.5,0.2,0.6〉 〈0.4,0.3,0.5〉
D 4 〈0.6,0.2,0.7〉 〈0.3,0.2,0.5〉 〈0.5,0.1,0.4〉 〈0.5,0.1,0.6〉

Table 9 
Normalised q-ROFHyS Decision Matrix for A4.

L̂ 1 L̂ 2 L̂ 3 L̂ 4 

D 1 〈0.5,0.3,0.8〉 〈0.7,0.2,0.5〉 〈0.4,0.2,0.7〉 〈0.6,0.1,0.4〉
D 2 〈0.4,0.2,0.6〉 〈0.8,0.2,0.1〉 〈0.3,0.1,0.7〉 〈0.4,0.2,0.7〉
D 3 〈0.4,0.2,0.7〉 〈0.7,0.1,0.5〉 〈0.4,0.2,0.6〉 〈0.3,0.25,0.5〉
D 4 〈0.3,0.3,0.6〉 〈0.6,0.3,0.3〉 〈0.5,0.1,0.8〉 〈0.5,0.15,0.6〉

Table 10 
Normalized q-ROFHyS Decision Matrix for A5.

L̂ 1 L̂ 2 L̂ 3 L̂ 4 

D 1 〈0.5,0.1,0.6〉 〈0.6,0.05,0.5〉 〈0.4,0.17,0.6〉 〈0.5,0.2,0.4〉
D 2 〈0.4,0.2,0.6〉 〈0.8,0.1,0.1〉 〈0.3,0.4,0.8〉 〈0.7,0.1,0.5〉
D 3 〈0.4,0.15,0.6〉 〈0.7,0.25,0.3〉 〈0.4,0.3,0.6〉 〈0.6,0.2,0.5〉
D 4 〈0.4,0.12,0.7〉 〈0.7,0.3,0.5〉 〈0.5,0.1,0.4〉 〈0.5,0.1,0.8〉

Table 11 
Ranking results varying SW parameter ψ in the T-SFHySSWWA operator.  

Parameter S(A1) S(A2) S(A3) S(A4) S(A5) Rankings 

ψ = − 0.99  − 0.2773  − 0.1543  − 0.1367  − 0.1879  − 0.2006 A3 ≻ A2 ≻ A4 ≻ A5 ≻ A1 

ψ =

− 0.1905  
− 0.2365  − 0.0978  − 0.0879  − 0.1225  − 0.1225 A3 ≻ A2 ≻ A4 ≈ A5 ≻ A1 

ψ = 0.01  − 0.1829  − 0.0446  − 0.0456  − 0.1177  − 0.1160 A2 ≻ A3 ≻ A5 ≻ A4 ≻ A1 

ψ = 3  − 0.1314  − 0.0023  − 0.0037  − 0.0877  − 0.0739 A2 ≻ A3 ≻ A5 ≻ A4 ≻ A1 

ψ = 5  − 0.1162  0.0082  0.0079  − 0.0791  − 0.0616 A2 ≻ A3 ≻ A5 ≻ A4 ≻ A1 

ψ = 7  − 0.1059  0.0149  0.0158  − 0.0731  − 0.0531 A3 ≻ A2 ≻ A5 ≻ A4 ≻ A1 

ψ = 10  − 0.0950  0.0218  0.0241  − 0.0668  − 0.0439 A3 ≻ A2 ≻ A5 ≻ A4 ≻ A1  
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Without loss of generality here, the rung parameter and SW parameter values are considered as q = 3 and ψ = 2, respectively. 
A1 = 〈0.5167, 0.2234, 0.6009〉, A2 = 〈0.5438, 0.1296, 0.6070〉, A3 = 〈0.5262, 0.3215, 0.5655〉, A4 = 〈0.4929, 0.2598, 0.6154〉, 

A5 = 〈0.5662,0.3215,0.6046〉. 
Step 4′: Use the score formula to calculate the score values for all alternatives. 
S(A1) = − 0.1, S(A2) = − 0.07, S(A3) = − 0.04, S(A4) = − 0.1, S(A5) = − 0.05. 
Step 5′: After calculation, we get the ranking of alternatives 
S(A3)〉S(A5)〉S(A2)〉S(A4)〉S(A1). So, the ranking result of the alternatives is found as A3 ≻ A5 ≻ A2 ≻ A4 ≻ A1. 
Hence, the best alternative is A3. 

9. Impact of the Parameters on Decision Results 

This section investigates the influence of the WG parameter ψ and rung parameter q on the score values and the rankings of the 
alternatives. 

9.1. Impact of Sugeno-Weber parameter on decision results 

In the previous example, Steps 3 and 4 are done more than once, each time with a different value of SW parameter ψ , to show what 
effect ψ has. For accessibility, the rung parameter is set to q = 3 for both the averaging and geometric operator cases. The scores and 
rankings for the T-SFHySSWWA and T-SFHySSWWG operators are shown in Tables 11 and 12, respectively. From Tables 11 and 12, 
you can see that different values of the SW parameter ψ have led to different score values, which have led to different rankings. 

From Fig. 3, it is significantly noticeable that the alternatives’ score values increase with the SW parameter’s increasing values 
based on the T-SFHySSWWA operator. When using the same T-SFHySSWWA AO while maintaining the fixed value q = 3, many 
alternative orderings are discovered to vary the value of ψ from − 1 to 10. The alternatives are ranked in the following order: 
A3 ≻ A2 ≻ A4 ≻ A5 ≻ A1, when ψ ∈ ( − 1, − 0.3034). When the value of ψ lies in ( − 0.3034, − 0.1905), the ranking result slightly 
differs as A3 ≻ A2 ≻ A5 ≻ A4 ≻ A1, and for ψ ∈ ( − 0.1905, 5.5566) ordering is found as A2 ≻ A3 ≻ A5 ≻ A4 ≻ A1. In the reset range 
ranking A3 ≻ A2 ≻ A5 ≻ A4 ≻ A1 is obtained. Therefore, the best alternative is A2 or A3. 

Again, this can be seen by examining Fig. 4, where it can be seen that the score values of the alternatives decrease as the values of 
the SW parameter based on the T-SFHySSWWG operator increase; another way of putting this is to say that a gradual decrease in score 
values can be seen there. In Fig. 4, the variation in the score values of various alternatives is depicted for the case where q = 3 is held 
constant while ψ is varied within the range of [ − 1, 10]. It can be shown from Fig. 4 that the ranking presents itself as 
A3 ≻ A2 ≻ A5 ≻ A4 ≻ A1, A2 ≻ A3 ≻ A5 ≻ A4 ≻ A1, and A2 ≻ A3 ≻ A4 ≻ A5 ≻ A1 when ψ belongs to ( − 1, − 0.8475), 
( − 0.8475, 0.2353), and (0.2353, 0.4355), respectively. Because of this, utilizing the T-SFHySSWWG operator will result in the best 
alternative being either A2 or A3. 

As a result, a DM’s outlook can be either negative or positive based on their judgment. Therefore, decision-makers with a pessi-
mistic outlook on a potential alternative based on criteria ought to select a higher value of the SW parameter ψ . 

9.2. The influence of the parameter τ, on ranking results 

Tables 13 and 14 provide an in-depth analysis of how the rung parameter τ influences the decision made by the T-SFHySSWWA and 
T-SFHySSWWG operators, respectively. It is clear that by keeping the value of the SW parameter constant at ψ = 2, the orderings of the 
alternatives can be constructed for various τ values in [2,10]. These rankings are based on a variety of different performance factors. 

Figs. 5 and 6 show that based on both the operators T-SFHySSWWA and T-SFHySSWWG, several ranking results are found for 
varying rung parameters τ in [2,10]. 

Further, from the visualization of Figs. 5 and 6, it is apparent that the score values of the alternatives increase with increasing the 
value of the rung parameter τ, based on both averaging and geometric operators. 

Table 12 
Ranking results varying SW parameter ψ in the T-SFHySSWWG operator.  

Parameter S(A1) S(A2) S(A3) S(A4) S(A5) Rankings 

ψ =

− 0.99  
− 0.0154  0.0621  0.0955  − 0.0097  0.0284 A3 ≻ A2 ≻ A5 ≻ A4 ≻ A1 

ψ = 0.001  − 0.1833  − 0.0450  − 0.0459  − 0.1180  − 0.1164 A2 ≻ A3 ≻ A5 ≻ A4 ≻ A1 

ψ = 3  − 0.2258  − 0.0892  − 0.0853  − 0.1465  − 0.1537 A3 ≻ A2 ≻ A4 ≻ A5 ≻ A1 

ψ = 5  − 0.2357  − 0.1007  − 0.0950  − 0.1539  − 0.1628 A3 ≻ A2 ≻ A4 ≻ A5 ≻ A1 

ψ = 7  − 0.2420  − 0.1083  − 0.1012  − 0.1587  − 0.1687 A3 ≻ A2 ≻ A4 ≻ A5 ≻ A1 

ψ = 10  − 0.2482  − 0.1161  − 0.1074  − 0.1637  − 0.1745 A3 ≻ A2 ≻ A4 ≻ A5 ≻ A1  
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Fig. 3. Effect of SW parameter on score values based on T-SFHySSWWA operator (q = 3).  

Fig. 4. Effect of SW parameter on score values based on T-SFHySSWWG operator (q = 3).  

Table 13 
Ranking results varying rung parameter τ in T-SFHySSWWA operator.  

Parameter S(A1) S(A2) S(A3) S(A4) S(A5) Rankings 

τ = 2  − 0.2450  − 0.0529  − 0.0757  − 0.1279  − 0.1624 A2 ≻ A3 ≻ A4 ≻ A5 ≻ A1 

τ = 4  − 0.0793  0.0089  0.0148  − 0.0694  − 0.0458 A3 ≻ A2 ≻ A5 ≻ A4 ≻ A1 

τ = 6  − 0.0184  0.0241  0.0306  − 0.0359  − 0.0203 A3 ≻ A2 ≻ A1 ≻ A5 ≻ A4 

τ = 8  0.0040  0.0264  0.0301  − 0.0182  − 0.0130 A3 ≻ A2 ≻ A1 ≻ A5 ≻ A4 

τ = 10  0.0116  0.0243  0.0258  − 0.0093  − 0.0094 A3 ≻ A2 ≻ A4 ≻ A5 ≻ A1  

Table 14 
Ranking results varying rung parameter τ in T-SFHySSWWG operator.  

Parameter S(A1) S(A2) S(A3) S(A4) S(A5) Rankings 

τ = 2  − 0.3367  − 0.1329  − 0.1570  − 0.1889  − 0.2406 A2 ≻ A3 ≻ A4 ≻ A5 ≻ A1 

τ = 4  − 0.1348  − 0.0450  − 0.0348  − 0.1015  − 0.0906 A3 ≻ A2 ≻ A5 ≻ A4 ≻ A1 

τ = 6  − 0.0480  − 0.0063  0.0021  − 0.0495  − 0.0401 A3 ≻ A2 ≻ A1 ≻ A5 ≻ A4 

τ = 8  0.0040  0.0264  0.0021  − 0.0182  − 0.0130 A3 ≻ A2 ≻ A1 ≻ A5 ≻ A4 

τ = 10  0.0010  0.0134  0.0152  − 0.0116  − 0.0130 A3 ≻ A2 ≻ A1 ≻ A4 ≻ A5  
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10. Superiority and advantages of the suggested technique 

We have developed a novel technique that can be executed in a T-SFHySS environment by T-SFHySSWWA or T-SFHySSWWG 
operators. The technique that is anticipated to be utilised is reliable and practical. Our planned approach is superior to existing 

Fig. 5. Effect of rung parameter on score values based on T-SFHySSWWA operator (ψ = 2).  

Fig. 6. Effect of rung parameter on score values based on T-SFHySSWWG operator (ψ = 2).  

Table 15 
Characteristic analysis of different approaches.  

Operators Parametrization 
tool 

Sub- parametrization 
tool 

Neutral membership 
degree 

Capturing information by 
T-SF context 

AOs considering SW 
t-N&t-CNs 

IFS AOs [42] ✓ £ £ £ £

PyFS AOs [29] ✓ £ £ £ £

q-ROFS AOs [13] ✓ £ £ £ £

PFS AOs [23] ✓ £ ✓ £ £

SFS AOs [8] ✓ £ ✓ £ £

T-SFS AOs [7] ✓ £ ✓ ✓ £

IFHyS AOs [31] ✓ ✓ £ £ £

PFHyS AOs [49] ✓ ✓ £ £ £

q-ROFHyS AOs [9] ✓ ✓ £ £ £

Picture fuzzy HyS AOs  
[31] 

✓ ✓ ✓ £ £

SFHyS AOs (Yet to 
introduce) 

✓ ✓ ✓ £ ✓ 

Proposed operators ✓ ✓ ✓ ✓ ✓  
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methods and can handle the most delicate MCDM issues. The included model serves multiple functions and is more relaxed to 
accommodate differences in engagement and output from the development process. There are distinct differences between how the 
various models rank and judge the prescribed technique to be acceptable. Each evaluation system has its own rating algorithm. As a 
result of these scientific studies and analyses, we’ve determined that the conventional approach to building yields less consistent 
results than the hybrid method. Moreover, numerous hybrid forms of FS, IFHySS, and PFHySS have become uncommon for T-SFHySS 
due to many exceptional circumstances. Therefore, the method we’ve devised will be significantly more powerful, solid, and excellent 
than the numerous FS systems, as well as superior. Table 15 contrasts the proposed method with several previous designs based on the 
characteristics of those frameworks. 

The purposeful techniques and associated metrics benefit recent methods in that they prevent conclusions from being drawn based 
on factors that need to be more helpful. Due to this, this tool can also use the DM process to merge data that needs to be precise or 
clarified.  

• Compared with Zulqarnian et al.s’ (2022) method 

The framework described by Zulqarnian et al. [49] is contrasted with the method that is being proposed here. It is important to note 
that the ranking of the options stays the same regardless of which method is used. In addition, the suggested method is superior when 
the differences in the score values of the successive alternatives are determined; the suggested technique comes out on top. As seen in 
Fig. 7, the differences between the most recent two alternatives, which are consecutive to one another, are significantly greater than 
those between the conventional methods and each of the alternatives. 

11. Conclusions 

To conclude, it is necessary to classify potential solutions and select the most feasible options. DM is challenging because it varies 
from scene to scene. Therefore, it is essential to consider both the advantages and disadvantages of each option. Moreover, DM is more 
advantageous for your overall well-being and increases the likelihood of revealing the most suitable option. It is crucial to determine 
precisely how much fundamental information decision-makers require. In DM, the most effective strategy is to pay close attention to 
and concentrate on your objectives. The investigation’s primary objective is to introduce the concept of T-SFHySS to the scientific 
community. Certain newly established operational principles for T-SFHySS consider the SWt-N &t-CNs. Sugeno-Weber AOs, partic-
ularly the T-SFHySSWWA and T-SFHySSWWG operators, have already been designed based on the provided concept. Additionally, 
some of the essential characteristics of the suggested operators have been discussed. A DM concern is addressed within the context of 
T-SFHySS. The predicted model is the foundation of this challenge. Then, we use several existing methods to demonstrate the validity 
of the new method, and we conduct a character analysis to determine how much the new method influenced and dominated the initial 
research. The benefit of the solution is that it allows you to tackle practical problems by utilizing their parameterized characteristics. 
Consequently, the proven approach, as opposed to any of the existing operators in the T-SFHyS context, is the one that can resolve the 
DM issue. Several hybrid AOs for T-SFHySS and associated decision-making processes will be presented in the future. Moreover, 
applying these frameworks permits the extension of the created AOs to T-SFHyS contexts with decision-making strategies. 

Although the proposed model has the benefits mentioned above, it is possible to discuss its limitations. The proposed study can only 
address this situation if the weight of the DMs or criteria is known or partially known. The proposed model needs to account for the 
interdependencies between criteria. A model of unknown weight under T-SFHyS conditions may be developed to overcome such 

Fig. 7. Comparison with Zulqarnian et al.s’ [49] method.  
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limitations. The following issues may be examined as an extension of the developed method: This work is a foundation for future 
research. This work will probably lead academics and developers to work in a new direction. In the future, the suggested approaches 
can be extended to several environments, viz., linguistic information [11], indetermSoft sets and indetermHyperSoft sets, probabilistic 
linguistic term sets (Han et al., 2022), bipolar fuzzy sets (Mahmood et al., 2023), and other types of fuzzy sets. Also, several decision- 
making methodologies, viz., the bi-polar preference-based weights allocation method [16], the best-worst method [39], the multi-
plicative consistency preference relation approach [41], the bi-objective optimization model [3], etc., can be developed in this context. 
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Abstract

Dual hesitant q-rung orthopair fuzzy (DHq-ROF) set appears as a powerful tool in

compare to other variants of fuzzy sets to deal with uncertainties associated with

available information in various real-life decision-making cases. In order to make

DHq-ROF aggregation information process flexible, at first some operations viz.,

addition, multiplication, scalar multiplication, exponential laws based on Schweizer-

Sklar class of t-conorms and t-norms are defined. Subsequently, using these opera-

tions, weighted average and geometric operators and ordered weighted average and

geometric operators are introduced. But weighted average or geometric operators

and ordered weighted average or geometric operators consider only the weight of

the opinions and the weight of the ordered position of each given opinion respec-

tively. To resolve weights of the arguments, hybrid aggregation operators viz., DHq-

ROF Schweizer-Sklar hybrid averaging, DHq-ROF Schweizer-Sklar hybrid geometric

operators are developed and their properties are discussed. Afterwards, a new

method to deal with multicriteria group decision making problems under DHq-ROF

environment is framed. To illustrate the proposed method a decision making problem

related to investment company selection is considered and solved. To show the

advantages of the proposed study, a comparative analysis among the developed and

existing studies is discussed.

K E YWORD S

dual hesitant fuzzy set, dual hesitant q-rung orthopair fuzzy set, group decision making, hybrid
aggregation operators, Schweizer-Sklar t-conorms and t-norms

1 | INTRODUCTION

Multicriteria decision making (MCDM) refers to the problem for sorting alternatives based on numerous criteria and choosing the best one. In

actual decision-making circumstances, it is challenging to resolve MCDM problems having vague information due to the fuzziness of human cogni-

tion and the complexity of decision-making environments. Zadeh (1965) proposed the theory of fuzzy sets by introducing membership values

only. Importing the concept of non-membership, Atanassov (1986) originated intuitionistic fuzzy (IF) sets (IFSs) and Yagar (2013, 2014) expanded

the idea of IFS to create the Pythagorean fuzzy (PF) set (PFS), where the sum of the squares of membership and non-membership degrees is not

greater than 1. Sometimes PFS fails to describe evaluation information in multicriteria group decision making (MCGDM problems). For example,

PFS cannot consider 0:9,0:7ð Þ as a pair of membership and non-membership values. Because of 0:92þ0:72 >1. To overcome this situation, Yagar

(2017) defined q-rung orthopair fuzzy (q-ROF) set (q-ROFS), which is a generalized version of IFS and PFS satisfying the constraint 0≤ μqþνq ≤1
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where μ is membership degree and ν is non-membership degree and q≥ 1. When q¼1, q-ROFS reduces to IFS, and for q¼2, it reduces to PFS.

So q-ROFS can describe vague phenomena more widely than IFS and PFS.

To aggregate q-ROF arguments, Liu and Wang (2018) proposed q-ROF Archimedean t-conorms and t-norms based weighted averaging and

geometric operators. Rong et al. (2020) defined Schweizer-Sklar (SS) operations on q-ROF numbers (q-ROFNs) and proposed q-ROF SS weighted

average and q-ROF SS weighted geometric operators to solve MCGDM problems by COPRAS method. Later, Utilizing Maclaurin symmetric mean

(MSM) operator, Liu, Chen, and Wang (2020) introduced several q-ROF power MSM operators to aggregate q-ROFNs. Furthermore, various

MSM operation-based aggregation operators are proposed by several researchers (Liu and Wang (2020), Ali and Mahmood (2020)) under q-ROF

context. Next, extending the notion of Einstein norms operation, Akram et al. (2021) developed a series of Einstein geometric operators on q-ROF

environment for solving MADM problems. Further, Feng et al. (2022) defined the regular Minkowski distance and a generic class of score func-

tions viz., Minkowski score functions in q-ROF domain. Recently, Gayen et al., (2022) proposed Hamacher aggregation operators for aggregating

q-rung orthopair trapezoidal fuzzy numbers. Also, some research works (Mahamood et al., 2019; Liao et al., 2020; Liu et al., 2022; Riaz

et al., 2022; Paul et al., 2022, Mahamood et al., 2023) on IF, PF and q-ROF contexts are reviewed.

However, due to the increasing complexity in real-life decision-making, the above-mentioned decision-making methods sometimes fail to cap-

ture hesitant characteristics of the problems. In such situations, DMs could experience hesitation among a group of values in choosing the deci-

sion values corresponding to some options in view of criteria. By considering such hesitancy, Torra (2010) introduced the idea of hesitant fuzzy

set (HFS), where membership degree is represented by a set of possible discrete values in 0,1½ �. Afterwards, the disadvantage of HFS was then

brought out by Zhu et al. (2012) from the view point of non considering non-membership degrees. Later, they proposed the idea of dual hesitant

fuzzy set (DHFS), which assumes both possible membership and non-membership degrees. Combining the benefits of DHFS and q-ROFS, Xu

et al. (2018) introduced the concept of dual hesitant q-ROF (DHq-ROF) set (DHq-ROFS) where sum of qth q≥1ð Þ power of the maximum member-

ship and maximum non-membership degree to an element is not greater than 1. So, in this scenario, DMs are given more freedom to express their

assessment values of the problems. Thus, DHq-ROFS exhibits more flexibility and usefulness over HFS, IFS, PFS, DHFS, dual hesitant Pythagorean

fuzzy set (DHPFS) and q-ROFS, which is presented in Table 1. It is important to mention that almost all the current DHq-ROF information aggre-

gation operations are developed based on Heronian mean (Deb et al., 2022; Xu et al., 2018), Hamacher (Sarkar et al., 2023; Wang, Wei, Wang,

et al., 2019), Bonferroni mean (Sarkar & Biswas, 2021), Muirhead mean (Wang, Wei, Wei, & Wei, 2019) algebraic and geometric mean (Hussain

et al., 2020), etc.

To capture optimistic or pessimistic behaviour of the DMs, SS t-conorms and t-norms (SSt-CN&t-Ns) (Schweizer & Sklar, 1983) which satisfy

the properties of Archimedean t-conorms and t-norms are used. It is also much more adaptable than other operations, viz., algebraic t-conorms

and t-norms, Einstein t-conorm and t-norm, Hamacher t-conorm and t-norm, Aczel-Alsina t-conorms and t-norms, etc. Further, weighted average

or geometric operators consider only the weight of the opinions but disregard the importance of the ordered position of the opinions, while

ordered weighted average or geometric operators consider only the weight of the ordered position of each given opinion but ignore the impor-

tance of the individual opinion. To overcome this issue, Xu and Da, (2003) introduced the concept of hybrid aggregation operators, which consider

the weight of the argument values as well as its ordered positions. Afterwards, some researchers (Akram & Shazadi, 2021; Wang, Wei, Wang,

et al., 2019) paid their attentions to develop hybrid aggregation operators on different fuzzy domains.

Furthermore, Money investment is a hot topic in recent days. It is important to measure risk factors, profitability, growth analysis, environ-

mental impact, etc., for each company before investment. It is more complex to select best profitable company among various companies available

in the market based on the above aspect. The MCGDM technique is most suitable for solve the problem. Several researchers (Garg, 2019;

TABLE 1 Comparison of DHq-ROFS model with published models in the literature

Features Uncertainty Falsity Hesitation Capturing information by ‐ROF 

FS     

IFS     

PFS     

DHFS     

DHPFS     

DH -ROFS     
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Rahaman & Ali, 2020; Vijayakumar et al., 2022) worked on investment problems in various fuzzy domain. Viewing this, a real-life based money

investment MCGDM problem has been considered to solve in this paper under DHq-ROF environment.

The motivations of this research are summarized as follows:

1. q-ROFS is an impressive expansion of IFS and PFS that allows for more comprehensive modelling of scenarios than IFS and PFS. The DMs are

encouraged to use DHFSs when hesitating and uncertain situations occur. The advantages of both q-ROFS and DHFS are taken into account

to provide the acceptability zone of DHq-ROFS with greater flexibility in the evaluation of information.

2. The operational rules are crucial in processing decision-related data. By using a flexible parameter, SS operations established its efficiency to

make reasonable resolutions through aggregation processing. So, use of SS operations in the proposed method manages the risk level of the

DMs in decision making processes.

3. Weighted average/geometric and ordered weighted average/geometric operators are particular cases of hybrid averaging/geometric opera-

tors. There is no research work on SS operation-based hybrid aggregation operators on DHq-ROFS. So, it would be relevant research to con-

sider the advantages of hybrid aggregation operators and flexible characteristics of SSt-CN&t-Ns in DHq-ROF environment.

4. To overcome the limitation of the current operators in DHq-ROF context.

The following novelty and main contributions of this work are outlined:

1. The use of DHq-ROFNs is implemented so that uncertainty can be captured more effectively. The DHq-ROFNs have greater acceptance as q

rises, allowing the DMs more leeway when data are collected.

2. On the basis of SSt-CN&t-Ns, certain fundamental algebraic operational rules—scalar multiplication, exponential, sum, and product are

introduced.

3. Based on newly developed operational tools, DHq-ROF SS weighted average (DHq-ROFSSWA), DHq-ROF SS ordered weighted average

(DHq-ROFSSOWA), DHq-ROF SS weighted geometric (DHq-ROFSSWG), DHq-ROF SS ordered weighted geometric (DHq-ROFSSOWG),

DHq-ROF SS hybrid average (DHq-ROFSSHA), and DHq-ROF SS hybrid geometric (DHq-ROFSSHG) operators are proposed.

4. To diminish the limitation of the current operators, specific instances of the aforementioned proposed operators are presented by changing

the associated parameter.

5. This paper suggests a novel MCGDM technique using developed SS operation-based aggregation operators in a DHq-ROF environment. A

money investment problem has been resolved using the decision-making approach to demonstrate the efficacy and applicability of the

suggested approach. A comparison of the suggested technique with other current methodologies and existing operators shows the method's

validity.

The remaining part of the paper is prepared as: in Section 2, some basic definitions and properties are discussed. The developed aggregation

operators for DHq-ROF information, viz., DHq-ROFSSWA, DHq-ROFSSOWA, DHq-ROFSSWG, DHq-ROFSSOWG, DHq-ROFSSHA, DHq-

ROFSSHG based on newly defined operational laws are presented in Section 3. Based on the developed operators, a unique MCGDM method

discourses in Section 4. In Section 5, An illustrative example is discussed and solved. Further, sensitivity analysis, and comparative studies are also

presented, and in Section 6, conclusions and some future directions are given.

2 | PRELIMINARIES

In the present section, some basic definitions connected to q-ROFSs (Yager, 2017), DHq-ROFSs (Xu et al., 2018) and operations on them are

reviewed to develop the proposed methodology.

Definition 2.1 (Yager, 2017). Let X be a universal set, a q-ROFS ~P on X is presented as

~P ¼ x,μ ~P xð Þ,ν ~P xð Þ� �
│x�X� �

,

where μ ~P :X ! 0,1½ � and ν ~P :X ! 0,1½ � indicate the degree of membership and non-membership, respectively, of an element x�X to the set ~P,
and satisfies 0 ≤ μ ~P xð Þ� �qþ ν ~P xð Þ� �q

≤1, q≥1. The hesitancy degree is given by π ~P xð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� μ ~P xð Þ� �q� ν ~P xð Þ� �qq

q
.

For convenience, μ ~P xð Þ,ν ~P xð Þ� �
is known as a q-ROFN (Yager, 2017) and is symbolized by ~p¼ μ,νð Þ. For comparing q-ROFNs, Liu and Wang

(2018) and Wei et al. (2018) introduced score and accuracy functions in the following manners.

Definition 2.2. (Liu & Wang, 2018). For any q-ROFN ~p¼ μ,νð Þ, score function of ~p is described as S ~pð Þ¼ 1
2 1þμq�νqð Þ. The accuracy

function of ~p is described as A ~pð Þ¼ μqþνq.
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Liu and Wang (2018) suggested an ordering technique of q-ROFNs as follows.

Definition 2.3. (Liu & Wang, 2018). For any two q-ROFNs ~p1 and ~p2, the ranking of ~p1 and ~p2 is done by the following rules.

(i) If S ~p1ð Þ> S ~p2ð Þ, then ~p1 ≻ ~p2;

(ii) If S ~p1ð Þ¼ S ~p2ð Þ, then

• If A ~p1ð Þ>A ~p2ð Þ, then ~p1 ≻ ~p2;

• If A ~p1ð Þ¼A ~p2ð Þ, then ~p1 ≈ ~p2.

Based on q-ROFS (Liu & Wang, 2018; Yager, 2017) and DHFS (Zhu et al., 2012), Xu et al. (2018) introduced the idea and basic

operational rules on DHq-ROFS.

Definition 2.4. (Xu et al., 2018). Let X be a universal set. A DHq-ROFS ~K on X is described as:

~K¼ x,~h ~K xð Þ,~g ~K xð Þ
D E

│x�X
� �

,

where ~h ~K xð Þ¼Sγ � ~h ~K xð Þ γf g and ~g ~K xð Þ¼Sη � ~g ~K xð Þ ηf g are two discrete sets of real numbers in 0,1½ �, denoting the possible mem-

bership and non-membership degrees of an element x�X to the set ~K satisfying the conditions:

0≤ γ,η≤ 1 and 0≤ max γ � ~h ~K xð Þ γf g
� �q

þ maxη � ~g ~K xð Þ ηf g
� �q

≤1.

For convenience, pair ~K¼ ~h ~K xð Þ,~g ~K xð Þ
D E

is known as a DHq-ROF number (DHq-ROFN) which is denoted by ~κ¼ ~h,~g
D E

.

Definition 2.5. (Xu et al., 2018). The score function, S ~κð Þ of a DHq-ROFN ~κ¼ ~h,~g
D E

, is defined by

S ~κð Þ¼1
2

1þ1
l~h

X
γ � ~h

γq�1
l~h

X
η � ~g

ηq
	 


, ð1Þ

and accuracy function of ~κ, indicated by A ~κð Þ, is given by

A ~κð Þ¼ 1
l~h

X
γ � ~h

γqþ 1
l~h

X
η � ~g

ηq, ð2Þ

where l~h and l~g respectively, denoting the number of elements in ~h and ~g.

The following is the procedure for ordering DHq-ROFNs:

Let ~κ1 ¼ ~h1,~g1
� �

and ~κ2 ¼ ~h2,~g2
� �

be any two DHq-ROFNs,

(i) If S ~κ1ð Þ> S ~κ2ð Þ, then ~κ1 is superior to ~κ2, denoted by ~κ1 ≻~κ2;

(ii) If S ~κ1ð Þ¼ S ~κ2ð Þ, then

• If A ~κ1ð Þ>A ~κ2ð Þ, then ~κ1 ≻~κ2;

• If A ~κ1ð Þ¼A ~κ2ð Þ, then ~κ1 is equivalent to ~κ2, denoted by ~κ1 ≈ ~κ2.

Definition 2.6. (Xu et al., 2018). Let ~κ1 ¼ ~h1,~g1
� �

, ~κ2 ¼ ~h2,~g2
� �

and ~κ¼ ~h,~g
� �

be any three DHq-ROFNs and λ>0. Then,

(1)~κ1⊕~κ2 ¼
S

γi � ~hi
i¼1,2

γ1
qþ γ2

q� γ1
qγ2

qð Þ1q
n o

,
S

ηi � ~ki
i¼1,2

η1,η2f g
* +

,

(2)~κ1�~κ2 ¼
S

γi � ~hi
i¼1,2

γ1,γ2f g,S
ηi � ~ki
i¼1,2

η1
qþη2

q�η1
qη2

qð Þ1q
n o* +

,

(3) λ~κ¼ S
γ � ~h 1� 1� γqð Þλ

� �1
q

� �
,
S
η� ~k

ηλ
� � �

,

(4) ~κλ ¼ S
γ � ~h

γλ
� �

,
S
η� ~k

1� 1�ηqð Þλ
� �1

q

� � �
.

Definition 2.7. (Schweizer & Sklar, 1983). Assume α and β are any two real numbers in 0,1½ �. Then, SSt-CN, USS α,βð Þ and SSt-N,

ISS α,βð Þ are defined with the subsequent expressions
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USS α,βð Þ¼ ατþβτ�ατβτð Þ1τ ,
and ISS α,βð Þ¼1� 1�αð Þτþ 1�βð Þτ� 1�αð Þτ 1�βð Þτð Þ1τ ,
where α,βð Þ� 0,1½ �� 0,1½ �, and τ >0.

3 | DEVELOPMENT OF SSt-CNS&t-NS-BASED DHq-ROF HYBRID AGGREGATION OPERATORS

In this section, weighted average, ordered weighted average, weighted geometric, ordered weighted geometric, hybrid average and hybrid geo-

metric aggregation operators based on SSt-CN&t-Ns are developed to aggregate DHq-ROFNs.

3.1 | Basic operations on DHq-ROFNs based on SSt-CNs&t-Ns

According to SSt-CN&t-Ns, the mathematical operations of DHq-ROFNs are defined as follows.

Suppose ~κ1 ¼ ~h1,~g1
� �

, ~κ2 ¼ ~h2,~g2
� �

and ~κ¼ ~h,~g
� �

be any three DHq-ROFNs and τ >0 be a Schweizer & Sklar parameter, then the operational

rules, viz., addition “⊕SS”, multiplication “�SS”, scalar multiplication and exponent are defined as follows:

1ð Þ~κ1⊕SS~κ2 ¼[
γi � ~hi

i¼1,2

γ1
τqþ γ2

τq� γ1
τqγ2

τqð Þ 1
τq

n o* [
η� ~gi

i¼1,2

1� 1�η1
qð Þτþ 1�η2

qð Þτ� 1�η1
qð Þτ 1�η2

qð Þτð Þ1τ
� �1

q

� �+
;

2ð Þ~κ1�SS~κ2 ¼
[

γi � ~hi

i¼1,2

1� 1� γ1
qð Þτþ 1� γ2

qð Þτ� 1� γ1
qð Þτ 1� γ2

qð Þτð Þ1τ
� �1

q

� �
,

* [
ηi � ~gi

i¼1,2

η1
τqþη2

τq�η1
τqη2

τqð Þ 1
τq

n o+
;

3ð Þλ~κ¼
[

γ � ~h
1� 1� γqτð Þλ
� � 1

qτ

� �
,
[

η � ~g
1� 1� 1� 1�ηqð Þτð Þλ

� �1
τ

	 
1
q

( )* +
,λ>0;

4ð Þ~κλ ¼
[

γ � ~h
1� 1� 1� 1� γqð Þτð Þλ

� �1
τ

	 
1
q

( )
,
[

ϑ � ~g
1� 1�ϑqτð Þλ
� � 1

qτ

� �* +
,λ>0:

The following theorem illustrates different characteristics of the above operations.

Theorem 3.1. Let ~κ1 ¼ ~h1,~g1
� �

and ~κ2 ¼ ~h2,~g2
� �

be any two DHq-ROFNs and τ >0. Then the following properties hold.

1:~κ1⊕SS~κ2 ¼ ~κ2⊕SS~κ1

2:~κ1�SS~κ2 ¼ ~κ2�SS~κ1

3:n ~κ1⊕SS~κ2ð Þ¼ n~κ1⊕SSn~κ2, n≥0.

4:n1~κ1⊕SSn2~κ1 ¼ n1þn2ð Þ~κ1, n1,n2 ≥0.
5:~κn1�SS~κ

n
2 ¼ ~κ1�SS~κ2ð Þn, n≥0.

6:~κn11 �SS~κ
n2
1 ¼ ~κ1

n1þn2 .

Proof. Obvious.

3.2 | Development of aggregation operators using SSt-CN&t-N based operations on DHq-ROFNs

Now, based on the above-defined operations on DHq-ROFNs, several aggregation operators, viz., DHq-ROFSSWA, DHq-ROFSSOWA, DHq-

ROFSSWG, DHq-ROFSSOWG, DHq-ROFSSHA and DHq-ROFSSHG are developed in the subsection.

3.2.1 | DHq-ROFSSWA operator

Definition 3.1. Let ~κi ¼ ~hi ,~gi
D E

i¼1,2,…,nð Þ be a set of n DHq-ROFNs. If DHq�ROFSSWA ~κ1,~κ2,…,~κnð Þ¼ ⊕SSð Þni¼1 ωi~κið Þ. Then
DHq�ROFSSWA ~κ1,~κ2,…,~κnð Þ is called DHq-ROFSSWA operator, where ω¼ ω1,ω2,…,ωnð Þ be the weighted vector of ~κi i¼1,2,…,nð Þ,
ωi > 0,and

Pn
i¼1

ωi ¼1.
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The properties of the developed DHq-ROFSSWA operator are described as follows.

Theorem 3.2. Let ~κi ¼ ~hi ,~gi
D E

i¼1,2,…,nð Þ be a set of n DHq-ROFNs and τ >0, then the aggregated value using DHq-ROFSSWA is also

a DHq-ROFN and can be given as

DHq�ROFSSWA ~κ1,~κ2,…,~κnð Þ¼⊕SS
n
i¼1 ωi~κið Þ

¼
[

γi � ~hi
i¼1,2,…,nð Þ

1�
Yn

i¼1
1� γi

qτð Þωi

� � 1
τq

� �
,
[

ηi � ~gi
i¼1,2,…,nð Þ

1� 1�
Yn

i¼1
1� 1�ηi

qð Þτð Þωi

� �1
τ

	 
1
q

( )* +
, ð3Þ

where ω¼ ω1,ω2,…,ωnð Þ is the weighted vector of ~κi i¼1,2,…,nð Þ and ωi >0,
Pn
i¼1

ωi ¼1.

Proof. This Theorem is executed using the mathematical induction method.

ω1~κ1 ¼
[

γ1 � ~h1
1� 1� γ1

qτð Þω1ð Þ 1
qτ

n o
,
[

η1 � ~g1
1� 1� 1� 1�η1

qð Þτð Þω1
� �1

τ

� �1
q

� � �
,

ω2~κ2 ¼
[

γ � ~h2
1� 1� γ2

qτð Þω2ð Þ 1
qτ

n o
,
[

η2 � ~g2
1� 1� 1� 1�η2

qð Þτð Þω2
� �1

τ

� �1
q

� � �
;

Now,

⊕SS
2
i¼1 ωi~κið Þ¼ [

γ1 � ~h1,

γ2 � ~h2

1� 1� γ1
qτð Þω1ð Þþ 1� 1� γ2

qτð Þω2ð Þ� 1� 1� γ1
qτð Þω1ð Þ 1� 1� γ2

qτð Þððf
*

ÞÞ 1
qτg, [ η1 � ~g1,

η2 � ~g2

1� 1� 1� 1�η1
qð Þτð Þω1

� �þ 1� 1� 1�η2
qð Þτð Þω2

� �� 1� 1� 1�η1
qð Þτð Þω1

� �
1� 1� 1�η2

qð Þτð Þω2
� �� �� �1

τ

� �1
q

� �
i

¼ [
γ1 � ~h1,

γ2 � ~h2

1� 1� γ1
qτð Þω1 1� γ2

qτð Þω2f g, [ η1 � ~g1,

η2 � ~g2

1� 1� 1� 1�η1
qð Þτð Þω1 1� 1�η2

qð Þτð Þω2
� �1

τ

� �1
q

� �* +

¼
[

γ1 � ~h1,

γ2 � ~h2

1�
Y2

i¼1
1� γi

qτð Þωi

� � 1
τq

� �
,
[

η1 � ~g1,

η2 � ~g2

1� 1�
Y2

i¼1
1� 1�ηi

qð Þτð Þωi

� �1
τ

	 
1
q

( )* +
:

Therefore, it is valid for n¼2.

Now, let it is valid for n¼ v,

i.e., DHq�ROFSSWA ~κ1,~κ2,…,~κvð Þ¼⊕SS
v
i¼1 ωi~κið Þ

¼ S
γi � ~hi

i¼1,…,vð Þ
1�Qv

i¼1 1� γi
qτð Þωi

� �1
τq

n o
,
S

ηi � ~gi
i¼1,…,v

1� 1�Qv
i¼1 1� 1�ηi

qð Þτð Þωi
� �1

τ

� �1
q

� �* +
.

Then, DHq�ROFSSWA ~κ1,~κ2,…,~κv ,~κvþ1ð Þ¼⊕SS
v
i¼1 ωi~κið Þ⊕SS ωvþ1~κvþ1ð Þ

¼ S
γi � ~hi

i¼1,2,…,vþ1ð Þ
1�Qvþ1

i¼1 1� γi
qτð Þωi

� � 1
τq

� �
,
S

ηi � ~gi
i¼1,2,…,vþ1ð Þ

1� 1�Qvþ1
i¼1 1� 1�ηi

qð Þτð Þωi

� �1
τ

	 
1
q

( )* +
;

Therefore, it is valid for n¼ vþ1, and hence true for all n.

Now, it is to be shown that the aggregated value represents a DHq-ROFN.
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i.e., it is to be proved that

0≤ 1�
Yn

i¼1
1� γi

qτð Þωi

� �1
τ

	 

þ 1� 1�

Yn

i¼1
1� 1�ηi

qð Þτð Þωi

� �1
τ

	 

≤ 1,

now 0≤ γqi þηi
q ≤1 So, γqi ≤1�ηi

q for all i¼ 1,2,…,nð Þ,
, 1� 1�ηi

qð Þτð Þωi ≤ 1� γqτi
� �ωi

, 1�Qn
i¼1 1� γi

qτð Þωi ≤1�Qn
i¼1 1� 1�ηi

qð Þτð Þωi

, 1�Qn
i¼1 1� γi

qτð Þωi
� �1

τ � 1�Qn
i¼1 1� 1�ηi

qð Þτð Þωi
� �1

τ ≤0

, 1�Qn
i¼1 1� γi

qτð Þωi
� �1

τ

� �
þ 1� 1�Qn

i¼1 1� 1�ηi
qð Þτð Þωi

� �1
τ

� �
≤1

Also, 1�Qn
i¼1 1� γi

qτð Þωi
� �1

τ

� �
≥ 0, and 1� 1�Qn

i¼1 1� 1�ηi
qð Þτð Þωi

� �1
τ

� �
≥0,

So, 1�Qn
i¼1 1� γi

qτð Þωi
� �1

τ

� �
þ 1� 1�Qn

i¼1 1� 1�ηi
qð Þτð Þωi

� �1
τ

� �
≥0.

Thus, 0 ≤ 1�Qn
i¼1 1� γi

qτð Þωi
� �1

τ

� �
þ 1� 1�Qn

i¼1 1� 1�ηi
qð Þτð Þωi

� �1
τ

� �
≤1.

So, this is a DHq-ROFN.

This concludes the theorem's proof.

Theorem 3.3. (Idempotency) Let ~κi ¼ ~hi ,~gi
� �

j i¼1,2,…,n
n o

be a collection of DHq-ROFNs. If ~κi ¼ ~κ¼ ~h,~g
� �

8i,
then DHq�ROFSSWA ~κ1,~κ2,…,~κnð Þ¼~κ.

Proof. DHq�ROFSSWA ~κ1,~κ2,…,~κnð Þ¼⊕SS
n
i¼1ωi~κi

¼
[

γi � ~hi
i¼1,2,…,nð Þ

1�
Yn

i¼1
1� γi

qτð Þωi

� � 1
τq

� �
,
[

ηi � ~gi
i¼1,2,…,nð Þ

1� 1�
Yn

i¼1
1� 1�ηi

qð Þτð Þωi

� �1
τ

	 
1
q

( )* +

Since ~κi ¼ ~κ¼ ~h,~g
� �

8i¼1,2,…,n,

DHq�ROFSSWA ~κ,~κ,…,~κð Þ¼⊕SS
n
i¼1 ωi~κð Þ

¼
[

γ � ~h
1�

Yn

i¼1
1� γqτð Þωi

� � 1
τq

� �
,
[

η � ~g
1� 1�

Yn

i¼1
1� 1�ηqð Þτð Þωi

� �1
τ

	 
1
q

( )* +

¼ ~h,~g
D E

¼ ~κ

Theorem 3.4. (Monotonicity) Let ~κi ¼ ~hi,~gi
� �

and ~κ0i ¼ ~h
0
i ,~g

0
i

� �
i¼1,2,…,nð Þ be two collections of DHq-ROFNs and if γi ≤ γ

0
i and ϑi ≥ϑ

0
i

for all i, then

DHq�ROFSSWA ~κ1,~κ2,…,~κnð Þ≤DHq�ROFSSWA ~κ01,~κ
0
2,…,~κ

0
n

� �

Proof. Here, DHq�ROFSSWA ~κ1,~κ2,…,~κnð Þ

¼ S
γi � ~hi

i¼1,2,…,nð Þ
1�Qn

i¼1 1� γi
qτð Þωi

� � 1
τq

n o
,
S

ηi � ~gi
i¼1,2,…,nð Þ

1� 1�Qn
i¼1 1� 1�ηi

qð Þτð Þωi
� �1

τ

� �1
q

� �* +
,

and

�ROFSSWA ~κ01,~κ
0
2,…,~κ0n

� � ¼ S
γ0i � ~h

0
i

i¼1,2,…,nð Þ

1�Qn
i¼1 1� γ0i

qτ� �ωi
� � 1

τq

n o
,
S

η0i � ~g0i
i¼1,2,…,nð Þ

1� 1�Qn
i¼1 1� 1�η0i

q� �τ� �ωi
� �1

τ

� �1
q

� �* +
.

Now, for i¼1,2,…,n,

γi ≤ γ
0
i

, 1� γ0i
qτ� �ωi ≤ 1� γi

qτð Þωi ,

, Qn
i¼1 1� γ0i

qτ� �ωi ≤
Qn

i¼1 1� γi
qτð Þωi

Hence, 1�Qn
i¼1 1� γi

qτð Þωi
� � 1

τq ≤ 1�Qn
i¼1 1� γ0i

qτ� �ωi
� � 1

τq.

Similarly, it can be shown that if ηi ≥ η
0
i then

1� 1�Qn
i¼1 1� 1�ηi

qð Þτð Þωi
� �1

τ

� �1
q
≥ 1� 1�Qn

i¼1 1� 1�η0i
q� �τ� �ωi

� �1
τ

� �1
q

.
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Then by Definition 2.5.

DHq�ROFSSWA ~κ1,~κ2,…,~κnð Þ≤DHq�ROFSSWA ~κ01,~κ
0
2,…,~κ0n

� �

Theorem 3.5. (Boundedness) Let ~κi ¼ ~hi ,~gi
� �

j i¼1,2,…,n
n o

be a set of DHq-ROFNs. If ~κþ ¼ [ γi � ~hi ,ηi � ~gi
max

j
γj

� �
, min

j
ηj

� �� �
and

~κ� ¼ [ γi � ~hi ,ηi � ~gi
min

j
γj

� �
, max

j
ηj

� �� �
then

~κ� ≤DHq�ROFSSWA κ1,κ2,…,κnð Þ≤ ~κþ.
Proof. Since min

j
γj ≤ γj ≤ max

j
γj and min

j
ηj ≤ ηj ≤ max

j
ηj then

~κ� ≤ ~κi for i¼1,2,…,n.

Then by monotonicity, DHq�ROFSSWA ~κ�,~κ�,…,~κ�ð Þ≤DHq�ROFSSWA ~κ1,~κ2,…,~κnð Þ.
By idempotency, ~κ� ≤DHq�ROFSSWA ~κ1,~κ2,…,~κnð Þ.
Similarly, DHq�ROFSSWA ~κ1,~κ2,…,~κnð Þ≤ ~κþ.
So, ~κ� ≤DHq�ROFSSWA ~κ1,~κ2,…,~κnð Þ≤ ~κþ.

Note 1. If τ¼1 then DHq-ROFSSWA operator reduces to DHq-ROF weighted average (DHq-ROFWA (Wang, Wei, Wang,

et al., 2019)) as

DHq�ROFWA ~κ1,~κ2,…,~κnð Þ¼
[

γi � ~hi
i¼1,2,…,nð Þ

1�
Yn

i¼1
1� γi

qð Þωi

� �1
q

� �
,
[

ηi � ~gi
i¼1,2,…,nð Þ

Yn

i¼1
ηi
ωi

n o* +
:

3.2.2 | DHq-ROFSSOWA operator

In this subsection DHq�ROFSSOWA operator is developed.

Definition 3.2. Let ~κi ¼ ~hi,~gi
� �

j i¼1,2,…,n
n o

be a set of DHq-ROFNs. If DHq�ROFSSOWA ~κ1,~κ2,…,~κnð Þ¼⊕SS
n
i¼1 ωi~κσ ið Þ
� �

, then

DHq�ROFSSOWA ~κ1,~κ2,…,~κnð Þ is called DHq-ROFSSOWA operator, where σ is a permutation on 1,2,…,nf g in such a way that

~κσ i�1ð Þ ≥ ~κσ ið Þ 8i¼2,3,…,n. Here, ω¼ ω1,ω2,…,ωnð Þ be the weighted vector corresponding to the DHq-ROFNs such that ωi >0,

and
Pn
i¼1

ωi ¼1.

Theorem 3.6. Let ~κi ¼ ~hi,~gi
� �

j i¼1,2,…,n
n o

be a set of DHq-ROFNs and τ >0, then the aggregated value using DHq-ROFSSOWA is

also a DHq-ROFN and can be presented as follows:

DHq�ROFSSOWA ~κ1,~κ2,…,~κnð Þ¼⊕SS
n
i¼1 ωi~κσ ið Þ
� �

¼
[

γσ ið Þ � ~hσ ið Þ
i¼1,2,…,nð Þ

1�
Yn

i¼1
1� γσ ið Þ

qτ
� �ωi

� � 1
τq

� �
,

*

[
ησ ið Þ � ~gσ ið Þ
i¼1,2,…,nð Þ

1� 1�
Yn

i¼1
1� 1�ησ ið Þ

q
� �τ� �ωi

� �1
τ

	 
1
q

( )+
ð4Þ

where σ is a permutation on 1,2,…,nf g in such a way that ~κσ i�1ð Þ ≥ ~κσ ið Þ 8i¼2,3,…,n, and ω¼ ω1,ω2,…,ωnð Þ is the associated weight vec-

tor such that ωi >0 and
Pn
i¼1

ωi ¼1.

Proof. This proof is analogous to Theorem 3.2.

Note 2. The idempotency, monotonicity, and boundedness properties are also satisfied for the DHq-ROFSSOWA operator, which

can be proved similarly.
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Note 3. If τ¼1 then DHq-ROFSSOWA operator is reduced to DHq-ROF weighted ordered average (DHq-ROFOWA (Wang, Wei,

Wang, et al., 2019)) operator.

3.2.3 | DHq-ROFSSWG operator

In this subsection DHq�ROFSSWG operator is developed.

Definition 3.3. Let ~κi ¼ ~hi ,~gi
� �

j i¼1,2,…,n
n o

be a set of DHq-ROFNs. If

DHq�ROFSSWG ~κ1,~κ2,…,~κnð Þ¼�SS
n
i¼1 ~κið Þωi ,

then DHq�ROFSSWG ~κ1,~κ2,…,~κnð Þ is called DHq-ROFSSWG operator, where ω¼ ω1,ω2,…,ωnð Þ be the weighted vector of

~κ1,~κ2,…,~κnð Þ and ωi >0, and
Pn
i¼1

ωi ¼1.

Theorem 3.7. Let ~κi ¼ ~hi,~gi
� �

j i¼1,2,…,n
n o

be a set of DHq-ROFNs and τ >0, then aggregated value using DHq-ROFSSWG operator

is also a DHq-ROFN and can be presented as follows:

DHq�ROFSSWG ~κ1,~κ2,…,~κnð Þ¼�SS
n
i¼1 ~κið Þωi

¼
[

γi � ~hi
i¼1,2,…,nð Þ

1� 1�
Yn

i¼1
1� 1� γi

qð Þτð Þωi

� �1
τ

	 
1
q

( )
,
[

ηi � ~gi
i¼1,2,…,nð Þ

1�
Yn

i¼1
1�ηi

qτð Þωi

� � 1
τq

� �* +
, ð5Þ

where ω¼ ω1,ω2,…,ωnð Þ be the weighted vector of ~κi i¼1,2,…,nð Þ and ωi >0, and
Pn
i¼1

ωi ¼1.

Proof. This proof is analogous to Theorem 3.2.

Note 4. The idempotency, monotonicity, and boundedness properties are also satisfied for the DHq-ROFSSWG operator, which

can be proved in a similar way.

Note 5. If τ¼1 then DHq-ROFSSWG operator is reduced to DHq-ROF weighted geometric (DHq-ROFWG (Wang, Wei, Wang,

et al., 2019)) operator.

3.2.4 | DHq-ROFSSOWG operator

In this subsection DHq�ROFSSOWG operator is developed.

Definition 3.4. Let ~κi ¼ ~hi ,~gi
� �

j i¼1,2,…,n
n o

be a set of DHq-ROFNs. If

DHq�ROFSSOWG ~κ1,~κ2,…,~κnð Þ¼�SS
n
i¼1 ~κσ ið Þ
� �ωi ,

then DHq�ROFSSOWG ~κ1,~κ2,…,~κnð Þ is called DHq-ROFSSOWG operator, where σ is a permutation on 1,2,…nf g such that

~κσ i�1ð Þ ≥ ~κσ ið Þ 8i¼2,3,…,n, and ω¼ ω1,ω2,…,ωnð Þ be the associate weighted vector such that ωi >0, and
Pn
i¼1

ωi ¼1.

Theorem 3.8. Let ~κi ¼ ~hi,~gi
� �

j i¼1,2,…,n
n o

be a set of DHq-ROFNs and τ >0, then the aggregated value using DHq-ROFSSOWG is

also a DHq-ROFN and can be presented as follows:

DHq�ROFSSOWG ~κ1,~κ2,…,~κnð Þ¼�SS
n
i¼1 ~κσ ið Þ
� �ωi

GAYEN ET AL. 9 of 26



¼
[

γσ ið Þ � ~hσ ið Þ
i¼1,2,…,nð Þ

1� 1�
Yn

i¼1
1� 1� γσ ið Þ

q
� �τ� �ωi

� �1
τ

	 
1
q

( )
,

* [
ησ ið Þ � ~gσ ið Þ
i¼1,2,…,nð Þ

1�
Yn

i¼1
1�ησ ið Þ

qτ
� �ωi

� � 1
τq

� �+
,

where σ is a permutation on 1,2,…,nf g such that ~κσ i�1ð Þ ≥ ~κσ ið Þ 8i¼2,3,…,n, and ω¼ ω1,ω2,…,ωnð Þ be weighted vector such that ωi >0,

and
Pn
i¼1

ωi ¼1.

Proof. This proof is analogous to Theorem 3.2.

Note 6. The idempotency, monotonicity, and boundness properties are also satisfied for the DHq-ROFSSOWG operator, which can

be proved in a similar manner.

Note 7. If τ¼1 then the DHq-ROFSSOWG operator is reduced to DHq-ROF ordered weighted geometric (DHq-ROFOWG (Wang,

Wei, Wang, et al., 2019)) operator.

3.2.5 | DHq-ROFSSHA operator

In this subsection DHq�ROFSSHA operator is developed.

Definition 3.5. Let ~κi ¼ ~hi ,~gi
� �

j i¼1,2,…,n
n o

be a set of DHq-ROFNs. If

DHq�ROFSSHA ~κ1,~κ2,…,~κnð Þ¼⊕SS
n
i¼1 ωi

~_κσ ið Þ
� �

,

Then DHq�ROFSSHA ~κ1,~κ2,…,~κnð Þ is called DHq-ROFSSHA operator, where ω¼ ω1,ω2,…,ωnð Þbe associated weight vector such that ωi > 0,

and
Pn
i¼1

ωi ¼1.~_κσ ið Þ is the ith largest elements of the DHq-ROF arguments ~_κi ~_κi ¼ nΩi~κi ¼ nΩi
~hi,nΩi~gi

� �
, i¼1,2,…,n

� �
, Ω¼ Ω1,Ω2,…,Ωnð Þ is the

weighting vector of DHq-ROF arguments ~_κi with Ωi >0, and
Pn
i¼1

Ωi ¼1 and n is the balancing co-efficient.

Moreover, if ω¼ 1
n ,

1
n ,…,

1
n

� �
(or Ω¼ 1

n ,
1
n ,…, 1n

� �
) then DHq-ROFSSHA operator is reduced to DHq-ROFSSWA (or DHq-ROFSSOWA) operator,

respectively.

Theorem 3.9. Let ~κi ¼ ~hi,~gi
� �

j i¼1,2,…,n
n o

be a set of DHq-ROFNs and τ >0, then the aggregated value using DHq-ROFSSHA is also

a DHq-ROFN and can be presented as follows:

DHq�ROFSSHA ~κ1,~κ2,…,~κnð Þ¼⊕SS
n
i¼1 ωi

~_κσ ið Þ
� �

¼
[

_γi �
~_hi

i¼1,2,…,nð Þ

1�
Yn
i¼1

1� _γqτσ ið Þ
� �ωi

 ! 1
qτ

8<
:

9=
;,

*

[
_ηi � ~_gi

i¼1,2,…,nð Þ
1� 1�

Yn
i¼1

1� 1� _ηqσ ið Þ
� �τ� �ωi

 !1
τ

0
@

1
A

1
q

8><
>:

9>=
>;
+
, ð6Þ

where ~_κi ¼ nΩi~κi ¼ nΩi
~hi,nΩi~gi

� �
¼ ~_h,~_g
� �

.

Proof. The Theorem can be proved in an analogous way to Theorem 3.2.
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Note 8. The idempotency, monotonicity, and boundness properties are also satisfied for the DHq-ROFSSHA operator, which can

be proved in a similar way.

Note 9. If τ¼1 then the DHq-ROFSSHA operator is reduced to DHq-ROF hybrid average (DHq-ROFHA) operator.

3.2.6 | DHq-ROFSSHG operator

In this subsection DHq�ROFSSHG operator is developed.

Definition 3.6. Let ~κi ¼ ~hi ,~gi
� �

j i¼1,2,…,n
n o

be a set of DHq-ROFNs. If

DHq�ROFSSHG ~κ1,~κ2,…,~κnð Þ¼�SS
n
i¼1

~_κσ ið Þ
� �ωi ,

Then DHq�ROFSSHG ~κ1,~κ2,…,~κnð Þ is called DHq-ROFSSHG operator, where ω¼ ω1,ω2,…,ωnð Þbe the associate weighted vector such that

ωi >0, and
Pn
i¼1

ωi ¼1. ~_κσ ið Þ is the ith largest elements of the DHq-ROF arguments ~_κi ~_κi ¼ ~κnΩi
i ¼ ~h

nΩi

i ,~gnΩi
i

� �� �
, Ω¼ Ω1,Ω2,…,Ωnð Þ is the weighting

vector of DHq-ROF arguments ~_κi with Ωi >0, and
Pn
i¼1

Ωi ¼1 and n is the balancing co-efficient.

Moreover, if ω¼ 1
n ,

1
n ,…,

1
n

� �
then DHq-ROFSSHG operator is reduced to DHq-ROFSSWG operator. Again, DHq-ROFSSOWG operator can be

generated from the proposed operator DHq-ROFSSHG if Ω¼ 1
n ,

1
n ,…, 1n

� �
.

Theorem 3.10. Let ~κi ¼ ~hi ,~gi
� �

j i¼1,2,…,n
n o

be a set of DHq-ROFNs, τ >0, then the aggregated value using DHq-ROFSSHG is also a

DHq-ROFN and can be given as follows:

DHq�ROFSSHG ~κ1,~κ2,…,~κnð Þ¼�SS
n
i¼1 ωi

~_κσ ið Þ
� �

¼
[

_γi �
~_hi

i¼1,2,…,nð Þ

1� 1�
Yn
i¼1

1� 1� _γqσ ið Þ
� �t	 
ωi

 !1
t

0
@

1
A

1
q

8><
>:

9>=
>;,

*

[
_ηi � ~_g

i¼1,2,…,nð Þ
1�

Yn
i¼1

1� _ηqtσ ið Þ
� �ωi

 !1
qt

8<
:

9=
;
+
, ð7Þ

where ~_κi ¼ ~κnΩi
i ¼ ~h

nΩi

i ,~gnΩi
i

� �
¼ ~_h,~_g
� �

.

Proof. The Theorem can be proved in an analogous way to Theorem 3.2.

Note 8. The idempotency, monotonicity, and boundness properties are also satisfied for the DHq-ROFSSHA operator, which can

be proved in a similar way.

Note 9. If τ¼1 then the DHq-ROFSSHA operator is reduced to DHq-ROF hybrid geometric (DHq-ROFHG) operator.

4 | METHODOLOGICAL DEVELOPMENT OF MCGDM USING DHq-ROF HYBRID AGGREGATION
OPERATOR BASED ON SSt-CN&t-NS OPERATION

Let A¼ A1,A2,…,Amf g be a finite set of alternatives, C¼ C1,C2,…,Cnf g be a set of criteria and D¼ D 1ð Þ,D 1ð Þ,…,D pð Þ
n o

be p number of DMs. Let

w¼ w1,w2,…,wnð ÞT be the weight vector of criteria such that
Pn
i¼1

wi ¼1 where wi � 0,1½ � and W¼ W1,W1,…,Wnð ÞT represents the corresponding
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associated weighted vector. And ϖ¼ ϖ1,ϖ2,…,ϖpf g be the weight vector of the DMs such that
Pp
j¼1

ϖj ¼1 where ϖj � 0,1½ �. To reduced DMs' hes-

itation and uncertainity for judgement on each alternative w.r.t each criterion is suggested for giving their opinion in DHq-ROFNs. Let

K lð Þ ¼ ~κ lð Þ
ij

h i
m�n

¼ ~h
lð Þ
ij ,~g

lð Þ
ij

� �
m�n

is a DHq-ROF decision matrix (DHq-ROFDM). Where ~h
lð Þ
ij and ~g lð Þ

ij indicate, respectively, set of possible membership

and non-membership values of ith alternative for jth criterion by the lth DM. The main objective is to select the best alternative(s) using the pro-

posed method. The following is a step-by-step summary of the computing process. Also a flowchart of the developed methodology is shown in

Figure 1.

Step 1. Construct the decision matrices by figuring out the criteria and alternatives,

K lð Þ ¼ ~κ lð Þ
ij

h i
m�n

, where ~κ lð Þ
ij ¼ ~h

lð Þ
ij ,~g

lð Þ
ij

� �
m�n

l¼1,2,…p; i¼1,2,…,m; j¼1,2,…,nð Þ.
Step 2. In the decision-making problem, the criteria are two types cost type and benefit type. In cost type, the smaller value is better, and for

benefit type, the bigger value is better. So normalized the decision matrix in the following manner.

R lð Þ ¼~r lð Þ
ij ¼

~κ lð Þ
ij for benefit typeCj ,

~κ lð Þ
ij

� �c
for cost typesCj

8<
: ð8Þ

START 

Appoint a group of 

experts
Define the criteria

Define the 

alternatives

Construct DH -ROFDMs 

for each expert 

Aggregated value of DH -

ROFDMs,

Preference values of all 

alternative,

Score values of each alternative 

Rank the alternatives and 

choose the best one 

Aggregation operator 

(DH -ROFSSWA or DH -ROFSSWG) 

Normalized DH -ROFDMs  

 for each expert 

Aggregation operator 

(DH -ROFSSHA or DH -ROFSSHG) 

Score function 

STOP 

F IGURE 1 Flowchart of proposed method.
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where l¼1,2,…p; i¼1,2,…,n; j¼1,2,…,m, and ~κ lð Þ
ij

� �c
is the complement of ~κ lð Þ

ij , i.e. ~κ lð Þ
ij

� �c
¼ ~g lð Þ

ij ,
~h

lð Þ
ij

� �
.

Step 3. Utilize DHq-ROFSSWA (or DHq-ROFSSWG) operator to aggregate all individual DHq-ROFDM R lð Þ ¼ ~r lð Þ
ij

� �
n�m

into a single DHq-

ROFDM, R¼ ~rij
� �

n�m.

~rij ¼DHq�ROFSSWA ~r 1ð Þ
ij ,~r 2ð Þ

ij ,…,~r pð Þ
ij

� �
, ð9Þ

or

~rij ¼DHq�ROFSSWG ~r 1ð Þ
ij ,~r 2ð Þ

ij ,…,~r pð Þ
ij

� �
: ð10Þ

Step 4. To get overall ~di, utilize the DHq-ROFSSHA (or DHq-ROFSSHG) operator to aggregate all the attributes values ~rij j¼1,2,…,nð Þ of the
alternative Ai i¼1,2,…,mð Þ.

~di ¼DHq�ROFSSHA ~ri1,~ri2,…,~rinð Þ, ð11Þ
or

~di ¼DHq�ROFSSHG ~ri1,~ri2,…,~rinð Þ ð12Þ

Step 5. Using Equation (1), compute the scores S ~di
� �

i¼1,2,…,mð Þ of the overall DHq-ROFN ~di i¼1,2,…,nð Þ.
Step 6. Utilizing Definition 2.5, rank all the alternatives Ai i¼1,2,…:,mð Þ and select the best ones(s) in accordance with the scores

~di
� �

i¼1,2,…,mð Þ.

5 | ILLUSTRATIVE EXAMPLE

In this section, an illustrative example (Rahman & Ali, 2020) regarding selection of best suitable company for investment from a set of five avail-

able companies is adopted in DHq-ROF context and solved by the proposed methodology. The vision and mission of the companies are defined

as follows:

Based on some preliminary knowledge an investor finds out five profitable companies available in the market, viz., A1: Furniture Company,

A2: Mobile Company, A3: Chemical Company, A4: Computer Company, A5: Medicine Company. Further four DMs D lð Þ l¼1,2,3,4ð Þ, who are

experts on various types of marketing fields are assigned. The weight vector of DMs is ϖ¼ 0:1,0:2,0:3,0:4ð ÞT . According to board of experts, four

important and unavoidable criteria, viz., C1: Risk analysis, C2: Growth analysis, C3: Environmental impact, C4: Expected Benefit with weight vector

w¼ 0:1,0:2,0:3,0:4ð ÞT are taken into account. To overcome hesitancy / inaccuracy of DMs, DHq-ROFN are used to express their judgement

values to each company with respect to each criterion. Here risk analysis and environmental impact are considered as cost type criteria and

growth analysis and expected benefit are benefit type criteria. Based on experts' suggestion, the investor will invest his/ her wealth to the

selected company. To identify the best company for investing, the following steps are executed.

Step 1. The individual evaluation values of DMs are presented in Tables 2-5.

Step 2. Since risk analysis and environmental impact are cost-type criteria, normalization of the decision matrix by Equation (8) is required

and are given following Tables 6-9.

Step 3. Considering q¼3, τ¼2 and utilize DHq-ROFSSWA operator to aggregate all the individual DHq-ROF decision matrices

R lð Þ ¼ ~r lð Þ
ij

� �
n�m

into a collective DHq-ROFDM, R¼ ~rij
� �

n�m, shown in Table 10.

Step 4. Utilize the DHq-ROFSSHA operator to aggregate each company's collective evaluation values, ~rij i¼1,2,…,5; j¼1,2,…,4ð Þ, with

respect to given criteria to get the comprehensive decision values, ~di i¼1,2,3,4,5ð Þ, are as follows. It is also noted that the associated weight vec-

tor Ω is the same as w.

~d1 ¼
0:5537,0:5588,0:5559,0:5609,0:5593,0:5641,0:5614,0:5662,0:5588,0:5637,

0:5609,0:5657,0:5642,0:5688,0:5662,0:5707

� �
,

0:6001,0:6087,0:6022,0:6109,0:6083,0:6171,0:6105,0:6193,0:6071,0:6159

0:6093,0:6181,0:6154,0:6244,0:6177,0:6267,0:6099,0:6187,0:6121,0:6209

0:6182,0:6273,0:6205,0:6296,0:6171,0:6261,0:6193,0:6283,0:6256,0:6348

0:6279,0:6371,0:6085,0:6173,0:6107,0:6195,0:6168,0:6258,0:6191,0:6281

0:6157,0:6246,0:6179,0:6269,0:6242,0:6333,0:6264,0:6357,0:6185,0:6275

0:6207,0:6298,0:6270,0:6363,0:6293,0:6386,0:6258,0:6350,0:6281,0:6374

0:6346,0:6440,0:6369,0:6463

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

* +
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~d2 ¼ 0:6031,0:6117,0:6089,… 64 valuesð Þf g, 0:5648,0:5729,0:5689,… 32 valuesð Þf gh i

~d3 ¼
0:5557,0:5783,0:6130,0:6270,… 1024 valuesð Þf g,
0:5264,0:5552,0:5434,0:5734,… 192 valuesð Þf g

 �
;

~d4 ¼ 0:6454,0:6838,0:6496,… 384 valuesð Þf g, 0:5169,0:5776,0:5188,0:5798f gh i;
~d5 ¼ 0:5505,0:551,0:5529,… 8 valuesð Þf g, 0:6116,0:6168,0:6205,… 128 valuesð Þf gh i;
Step 5. The score value of each company is calculated from each ~di i¼1,2,3,4,5ð Þ using Equation (1) and are giving as follows.

S ~d1
� �

¼0:4682, S ~d2
� �

¼0:5189, S ~d3
� �

¼0:5502, S ~d4
� �

¼0:6071, S ~d5
� �

¼0:4472.

Step 6. Based on the score value, the ranking of each company for investment is given as A4 ≻A3 ≻A2 ≻A1 ≻A5.

From the above ranking, the most suitable company for investment is found as A4 i.e., computer company.

TABLE 3 DHq-ROFDM of D 2ð Þ

C1 C2 C3 C4

A1 0:5f g, 0:6f gh i 0:4f g, 0:8f gh i 0:4,0:7f g, 0:6f gh i 0:5f g, 0:6f gh i
A2 0:2,0:3f g, 0:7f gh i 0:4f g, 0:8f gh i 0:5f g, 0:7f gh i 0:5f g, 0:6f gh i
A3 0:6f g, 0:6,0:8f gh i 0:5f g, 0:6f gh i 0:3,0:6f g, 0:6,0:9f gh i 0:4,0:8f g, 0:5,0:7f gh i
A4 0:5f g, 0:7f gh i 0:6,0:8f g, 0:6f gh i 0:4f g, 0:7,0:8f gh i 0:5f g, 0:8f gh i
A5 0:4f g, 0:6f gh i 0:2f g, 0:7f gh i 0:4f g, 0:8f gh i 0:4f g, 0:8f gh i

TABLE 4 DHq-ROFDM of D 3ð Þ

C1 C2 C3 C4

A1 0:3,0:5f g, 0:6,0:7f gh i 0:4f g, 0:7f gh i 0:5,0:8f g, 0:3,0:6f gh i 0:4,0:5f g, 0:6f gh i
A2 0:3f g, 0:8f gh i 0:3,0:6f g, 0:7f gh i 0:1,0:3f g, 0:8f gh i 0:2f g, 0:9f gh i
A3 0:5f g, 0:6f gh i 0:6f g, 0:6f gh i 0:2,0:4f g, 0:7,0:9f gh i 0:3,0:7f g, 0:4,0:6,0:8f gh i
A4 0:5f g, 0:7,0:8f gh i 0:5,0:6,0:7f g, 0:8f gh i 0:1f g, 0:9f gh i 0:5f g, 0:6f gh i
A5 0:5f g, 0:7f gh i 0:2f g, 0:8f gh i 0:2,0:4f g, 0:8f gh i 0:3f g, 0:7,0:9f gh i

TABLE 5 DHq-ROFDM of D 4ð Þ

C1 C2 C3 C4

A1 0:3f g, 0:8f gh i 0:4f g, 0:7,0:8f gh i 0:4,0:5f g, 0:7f gh i 0:5f g, 0:7f gh i
A2 0:2,0:3f g, 0:7,0:8f gh i 0:3f g, 0:8f gh i 0:1,0:3f g, 0:8,0:9f gh i 0:2,0:5f g, 0:8f gh i
A3 0:6f g, 0:6f gh i 0:6,0:8f g, 0:8f gh i 0:4f g, 0:7,0:8f gh i 0:3,0:7f g, 0:6,0:8f gh i
A4 0:4f g, 0:7f gh i 0:6,0:8f g, 0:8f gh i 0:2f g, 0:8f gh i 0:5,0:9f g, 0:3,0:7f gh i
A5 0:4,0:6f g, 0:6f gh i 0:2f g, 0:8f gh i 0:2,0:5f g, 0:5,0:8f gh i 0:2,0:3f g, 0:8,0:9f gh i

TABLE 2 DHq-ROFDM of D 1ð Þ

C1 C2 C3 C4

A1 0:5f g, 0:8f gh i 0:4f g, 0:7,0:8f gh i 0:4f g, 0:7f gh i 0:3,0:5f g, 0:7f gh i
A2 0:4f g, 0:8,0:9f gh i 0:5f g, 0:7f gh i 0:5,0:6f g, 0:8f gh i 0:3f g, 0:8f gh i
A3 0:6f g, 0:5f gh i 0:5f g, 0:6f gh i 0:2,0:5f g, 0:7,0:9f gh i 0:3,0:8f g, 0:8f gh i
A4 0:5f g, 0:6,0:7f gh i 0:4f g, 0:6f gh i 0:3,0:4f g, 0:6,0:9f gh i 0:4f g, 0:8f gh i
A5 0:8f g, 0:6f gh i 0:6f g, 0:6,0:8f gh i 0:3f g, 0:7f gh i 0:2,0:5f g, 0:6,0:8f gh i
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5.1 | Results and discussions

The method is associated with rung parameter and SS parameter. Now the variation of results with the change of those parameters will be dis-

cussed in the next subsection. Further, the results are provided by DHq-ROFSSHG operator are also discussed here. a brief comparative analysis

with the existing methods is furnished in the next subsequent subsection.

5.1.1 | The impact of several parameters on the result of decision-making

Now, the impact of rung parameter, q and SS parameter, τ on decision making results are discussed. Those parameters play crucial roles in deter-

mining the decision making results. Different score values are obtained for each company by varying the values of the parameters. Varying the

TABLE 7 DHq-ROF normalized decision matrix R 2ð Þ

C1 C2 C3 C4

A1 0:6f g, 0:5f gh i 0:4f g, 0:8f gh i 0:6f g, 0:4,0:7f gh i 0:5f g, 0:6f gh i
A2 0:7f g, 0:2,0:3f gh i 0:4f g, 0:8f gh i 0:7f g, 0:5f gh i 0:5f g, 0:6f gh i
A3 0:6,0:8f g, 0:6f gh i 0:5f g, 0:6f gh i 0:6,0:9f g, 0:3,0:6f gh i 0:4,0:8f g, 0:5,0:7f gh i
A4 0:7f g, 0:5f gh i 0:6,0:8f g, 0:6f gh i 0:7,0:8f g, 0:4f gh i 0:5f g, 0:8f gh i
A5 0:6f g, 0:4f gh i 0:2f g, 0:7f gh i 0:8f g, 0:4f gh i 0:4f g, 0:8f gh i

TABLE 8 DHq-ROF normalized decision matrix R 3ð Þ

C1 C2 C3 C4

A1 0:6,0:7f g, 0:3,0:5f gh i 0:4f g, 0:7f gh i 0:3,0:6f g, 0:5,0:8f gh i 0:4,0:5f g, 0:6f gh i
A2 0:8f g, 0:3f gh i 0:3,0:6f g, 0:7f gh i 0:8f g, 0:1,0:3f gh i 0:2f g, 0:9f gh i
A3 0:6f g, 0:5f gh i 0:6f g, 0:6f gh i 0:7,0:9f g, 0:2,0:4f gh i 0:3,0:7f g, 0:4,0:6,0:8f gh i
A4 0:7,0:8f g, 0:5f gh i 0:5,0:6,0:7f g, 0:8f gh i 0:9f g, 0:1f gh i 0:5f g, 0:6f gh i
A5 0:7f g, 0:5f gh i 0:2f g, 0:8f gh i 0:8f g, 0:2,0:4f gh i 0:3f g, 0:7,0:9f gh i

TABLE 9 DHq-ROF normalized decision matrix R 4ð Þ

C1 C2 C3 C4

A1 0:8f g, 0:3f gh i 0:4f g, 0:7,0:8f gh i 0:7f g, 0:4,0:5f gh i 0:5f g, 0:7f gh i
A2 0:7,0:8f g, 0:2,0:3f gh i 0:3f g, 0:8f gh i 0:8,0:9f g, 0:1,0:3f gh i 0:2,0:5f g, 0:8f gh i
A3 0:6f g, 0:6f gh i 0:6,0:8f g, 0:8f gh i 0:7,0:8f g, 0:4f gh i 0:3,0:7f g, 0:6,0:8f gh i
A4 0:7f g, 0:4f gh i 0:6,0:8f g, 0:8f gh i 0:8f g, 0:2f gh i 0:5,0:9f g, 0:3,0:7f gh i
A5 0:6f g, 0:4,0:6f gh i 0:2f g, 0:8f gh i 0:5,0:8f g, 0:2,0:5f gh i 0:2,0:3f g, 0:8,0:9f gh i

TABLE 6 DHq-ROF normalized decision matrix R 1ð Þ

C1 C2 C3 C4

A1 0:8f g, 0:5f gh i 0:4f g, 0:7,0:8f gh i 0:7f g, 0:4f gh i 0:3,0:5f g, 0:7f gh i
A2 0:8,0:9f g, 0:4f gh i 0:5f g, 0:7f gh i 0:8f g, 0:5,0:6f gh i 0:3f g, 0:8f gh i
A3 0:5f g, 0:6f gh i 0:5f g, 0:6f gh i 0:7,0:9f g, 0:2,0:5f gh i 0:3,0:8f g, 0:8f gh i
A4 0:6,0:7f g, 0:5f gh i 0:4f g, 0:6f gh i 0:6,0:9f g, 0:3,0:4f gh i 0:4f g, 0:8f gh i
A5 0:6f g, 0:8f gh i 0:6f g, 0:6,0:8f gh i 0:7f g, 0:3f gh i 0:2,0:5f g, 0:6,0:8f gh i
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rung parameter q� 3,12½ � and SS parameter τ� 1,10½ � and using proposed operators the results are presented in Tables 11-14 and Figures 2-5. A

brief description of each situation is given below.

Firstly, if DHq-ROFSSWA and DHq-ROFSSHA operators are used in the proposed methodology by fixing SS parameter at τ¼3, the associ-

ated score values achieved through the developed method with respect to the companies under consideration are shown in Table 11 and

Figure 2 with the change of rung parameter q� 3,12½ �. From Figure 2, it is clear that the score values of A4 decrease when the values of the

parameter q are increased from 3 to 12. Whereas the score values of other companies initially increase but decrease in the later. Additionally, it is

found that when q� 3,8:2½ � the ordering of the five companies is A4 ≻A3 ≻A2 ≻A1 ≻A5 and when q� 8:2,12½ � the ordering is found as

A4 ≻A3 ≻A2 ≻A5 ≻A1. So, for both situation the computer sector is the best choice for investing the money.

Further, when fixed rung parameter q¼3 is considered and varying the SS parameter τ� 1,10½ �, the derived score values for the various

options are shown in Table 12 and Figure 3. From Figure 3, it is observed that the score values of all alternatives are increasing. Additionally, it is

noticed that when τ� 1,3:32½ � the ordering is found as A4 ≻A3 ≻A2 ≻A1 ≻A5. Again, the ordering is archived as A4 ≻A3 ≻A2 ≻A5 ≻A1 for

τ� 5:43,10½ � and elsewhere found as A4 ≻A2 ≻A3 ≻A5 ≻A1. So, considering all cases company A4 is the best choice for investing the money.

Secondly, if DHq-ROFSSWG and DHq-ROFSSHG operators are used with the consideration of the SS parameter τ¼2 and varying rung

parameter q� 3,12½ �, the associated score values for the various companies are shown in Table 13 and Figure 4. From Figure 4, it is noticed that

the score values are increasing. Additionally, it is found that when q� 3,3:24½ � the ordering became A4 ≻A3 ≻A1 ≻A2 ≻A5. Again for

q� 3:24,6:21½ �, the ranking appeared as A4 ≻A3 ≻A1 ≻A2 ≻A5. Also, the ordering is archived as A3 ≻A1 ≻A4 ≻A2 ≻A5 for q� 6:21,10:22½ �.

TABLE 10 Aggregated DHq-ROFDM R

C1 C2

A1 0:7378,0:7518f g,
0:3488,0:4062f g

 �
0:4000f g,

0:7177,0:7561,0:7269,0:7664f g

 �

A2 0:7504,0:7857,0:7740,0:8036f g,
0:2419,0:2845,0:2623,0:3087f g

 �
0:3777,0:5065f g,

0:7561f g

 �

A3 0:5933,0:6711f g,
0:5674f g

 �
0:5784,0:7128f g,
0:5078,0:6370f g

 �

A4 0:6930,0:7347,0:7000,0:7397f g,
0:4569f g

 �
0:5670,0:7094,0:5907,0:7169,

0:6332,0:7334,0:6585,0:7450,

0:6698,0:7507,0:6934,0:7633

8>><
>>:

9>>=
>>;,

0:7271f g

* +

A5 0:6397f g,
0:4553,0:5353f g

 �
0:4111f g,

0:7528,0:7772f g

 �

C3 C4

A1 0:6417,0:6602f g,
0:4274,0:4672,0:4838,0:5301,

0:4755,0:5208,0:5397,0:5932

( )* + 0:4694,0:4918,0:4797,0:5000f g,
0:6468f g

 �

A2 0:7857,0:8443f g,
0:1611,0:2501,0:2240,0:3488,

0:1638,0:2543,0:2278,0:3548

( )* + 0:3129,0:4393,0:3851,0:4602f g,
0:8000f g

 �

A3 0:6856,0:7412,0:7983,0:8227,

0:7785,0:8070,0:8423,0:8589,

0:7359,0:7751,0:8201,0:8404,

0:8041,0:8273,0:8571,0:8715

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
,

0:2857,0:3519,0:3266,0:4030,

0:3128,0:3858,0:3579,0:4424

( )
* +

0:3346,0:6067,0:5798,0:6627,

0:6249,0:6871,0:6743,0:7189,

0:5612,0:6540,0:6369,0:6943,

0:6665,0:7135,0:7033,0:7397

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
,

0:5231,0:5781,0:5929,0:6590,

0:6415,0:7173,0:5580,0:6182,

0:6346,0:7089,0:6889,0:7772

8>><
>>:

9>>=
>>;

* +

A4 0:8250,0:8352,0:8443,0:8528f g,
0:1939,0:1995f g

 �
0:4937,0:8028f g,
0:4843,0:6917f g

 �

A5 0:7345,0:7931f g,
0:2389,0:3435,0:2939,0:4242f g

 �
0:3199,0:3319,0:3717,0:3777f g,
0:7428,0:7701,0:7962,0:8297,

0:7664,0:7961,0:8251,0:8639

( )* +
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Moreover, when q� 10:22,11:64½ � the ordering is obtained as A1 ≻A3 ≻A4 ≻A2 ≻A5 and the ordering is found as A1 ≻A3 ≻A4 ≻A5 ≻A2

for q� 11:64,12½ �.
Further, when considering fixed rung parameter q¼3 and varying the parameter τ� 1,10½ �, the derived score values for the various compa-

nies are shown in Table 14 and Figure 5. From Figure 5, it is noticed that the score values are decreasing. Additionally, it is noticed that when

τ� 1,2:47½ � the ordering is found as A4 ≻A3 ≻A1 ≻A2 ≻A5. Again for τ� 2:47,5:15½ � the ordering is achieved A3 ≻A4 ≻A1 ≻A2 ≻A5. Moreover, the

ranking is A4 ≻A3 ≻A1 ≻A2 ≻A5 when τ� 5:15,8:3½ � and for τ� 8:3,10½ � the ranking is A4 ≻A3 ≻A1 ≻A5 ≻A2.

TABLE 11 The effect of the parameter q (fixed SS parameter τ¼3) utilizing DHq-ROFSSHA operator

Parameter S ~d1
� �

S ~d2
� �

S ~d3
� �

S ~d4
� �

S ~d5
� �

Ordering

q¼3 0:4920 0:5616 0:5791 0:6375 0:4883 A4 ≻A3 ≻A2 ≻A1 ≻A5

q¼4 0:5061 0:5673 0:5827 0:6345 0:5018 A4 ≻A3 ≻A2 ≻A1 ≻A5

q¼5 0:5141 0:5677 0:5812 0:6268 0:5096 A4 ≻A3 ≻A2 ≻A1 ≻A5

q¼6 0:5167 0:5650 0:5768 0:6171 0:5135 A4 ≻A3 ≻A2 ≻A1 ≻A5

q¼7 0:5165 0:5608 0:5712 0:6069 0:5150 A4 ≻A3 ≻A2 ≻A1 ≻A5

q¼8 0:5152 0:5559 0:5651 0:5969 0:5150 A4 ≻A3 ≻A2 ≻A1 ≻A5

q¼9 0:5135 0:5508 0:5591 0:5875 0:5141 A4 ≻A3 ≻A2 ≻A5 ≻A1

q¼10 0:5116 0:5458 0:5533 0:5788 0:5128 A4 ≻A3 ≻A2 ≻A5 ≻A1

q¼11 0:5098 0:5412 0:5480 0:5710 0:5113 A4 ≻A3 ≻A2 ≻A5 ≻A1

q¼12 0:5082 0:5369 0.5432 0:5638 0:5097 A4 ≻A3 ≻A2 ≻A5 ≻A1

TABLE 12 The effect of the SS parameter τ for fixed q¼3 utilizing DHq-ROFSSHA operator

Parameter S ~d1
� �

S ~d2
� �

S ~d3
� �

S ~d4
� �

S ~d5
� �

Ordering

τ¼1 0:4351 0:4640 0:5100 0:5648 0:3958 A4 ≻A3 ≻A2 ≻A1 ≻A5

τ¼2 0:4682 0:5189 0:5502 0:6071 0:4472 A4 ≻A3 ≻A2 ≻A1 ≻A5

τ¼3 0:4920 0:5616 0:5791 0:6375 0:4883 A4 ≻A3 ≻A2 ≻A1 ≻A5

τ¼4 0:5142 0:5943 0:6024 0:6616 0:5212 A4 ≻A3 ≻A2 ≻A5 ≻A1

τ¼5 0:5317 0:6200 0:6219 0:6811 0:5464 A4 ≻A3 ≻A2 ≻A5 ≻A1

τ¼6 0:5454 0:6405 0:6385 0:6973 0:5668 A4 ≻A2 ≻A3 ≻A5 ≻A1

τ¼7 0:5576 0:6575 0:6528 0:7110 0:5835 A4 ≻A2 ≻A3 ≻A5 ≻A1

τ¼8 0:5687 0:6717 0:6653 0:7226 0:5973 A4 ≻A2 ≻A3 ≻A5 ≻A1

τ¼9 0:5786 0:6839 0:6763 0:7327 0:6089 A4 ≻A2 ≻A3 ≻A5 ≻A1

τ¼10 0:5876 0:6944 0:6860 0:7415 0:6188 A4 ≻A2 ≻A3 ≻A5 ≻A1

TABLE 13 The effect of the parameter q (fixed SS parameter τ¼2) utilizing DHq-ROFSSHG operator

Parameter S ~d1
� �

S ~d2
� �

S ~d3
� �

S ~d4
� �

S ~d5
� �

Ordering

q¼3 0:3746 0:2606 0:4134 0:4152 0:2489 A4 ≻A3 ≻A1 ≻A2 ≻A5

q¼4 0:3977 0:2913 0:4229 0:4187 0:2839 A4 ≻A3 ≻A1 ≻A2 ≻A5

q¼5 0:4180 0:3211 0:4340 0:4269 0:3160 A4 ≻A3 ≻A1 ≻A2 ≻A5

q¼6 0:4355 0:3468 0:4448 0:4366 0:3431 A4 ≻A3 ≻A1 ≻A2 ≻A5

q¼7 0:4496 0:3683 0:4544 0:4464 0:3656 A3 ≻A1 ≻A4 ≻A2 ≻A5

q¼8 0:4606 0:3862 0:4627 0:4553 0:3842 A3 ≻A1 ≻A4 ≻A2 ≻A5

q¼9 0:4688 0:4010 0:4697 0:4632 0:3997 A3 ≻A1 ≻A4 ≻A2 ≻A5

q¼10 0:4753 0:4134 0:4754 0:4699 0:4127 A3 ≻A1 ≻A4 ≻A2 ≻A5

q¼11 0:4805 0:4239 0:4802 0:4755 0:4237 A1 ≻A3 ≻A4 ≻A2 ≻A5

q¼12 0:4845 0:4329 0:4840 0:4802 0:4330 A1 ≻A3 ≻A4 ≻A5 ≻A2
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So, from above situation, company A3 can be considered as a best company if τ� 2:47,5:15½ � and company A4 can be considered as a best

company if τ =2 2:47,5:15½ �.
So, considering all cases it can be said that company A4 is the most profitable company according to all DMs.

TABLE 14 The effect of the SS parameter τ for fixed q¼3 over DHqROFSSHG operator

Parameter S ~d1
� �

S ~d2
� �

S ~d3
� �

S ~d4
� �

S ~d5
� �

Ordering

τ¼1 0:3747 0:2707 0:4249 0:4352 0:2573 A4 ≻A3 ≻A1 ≻A2 ≻A5

τ¼2 0:3746 0:2606 0:4134 0:4152 0:2489 A4 ≻A3 ≻A1 ≻A2 ≻A5

τ¼3 0:3694 0:2511 0:3992 0:3986 0:2409 A3 ≻A4 ≻A1 ≻A2 ≻A5

τ¼4 0:3619 0:2426 0:3859 0:3849 0:2342 A3 ≻A4 ≻A1 ≻A2 ≻A5

τ¼5 0:3551 0:2349 0:3744 0:3742 0:2285 A3 ≻A4 ≻A1 ≻A2 ≻A5

τ¼6 0:3489 0:2279 0:3645 0:3657 0:2235 A4 ≻A3 ≻A1 ≻A2 ≻A5

τ¼7 0:3434 0:2215 0:3561 0:3588 0:2191 A4 ≻A3 ≻A1 ≻A2 ≻A5

τ¼8 0:3384 0:2158 0:3489 0:3531 0:2153 A4 ≻A3 ≻A1 ≻A2 ≻A5

τ¼9 0:3340 0:2107 0:3427 0:3484 0:2119 A4 ≻A3 ≻A1 ≻A5 ≻A2

τ¼10 0:3301 0:2061 0:3373 0:3444 0:2089 A4 ≻A3 ≻A1 ≻A5 ≻A2

F IGURE 2 Score value using variation of rung parameter q for fixed SS parameter τ¼3 (DHq-ROFSSHA).

F IGURE 3 Score value using variation of SS parameter τ for fixed q¼3 (DHq-ROFSSHA).
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5.2 | Comparative analysis

In this section, the developed method is compared with Rahman and Ali's (2020) method and some other existing aggregation operators (Wang,

Wei, Wang, et al., 2019; Wang, Wei, Wei, & Wei, 2019; Xu et al., 2018).

Firstly, the result is compared with the methodology developed by Rahman and Ali (2020) using Pythagorean fuzzy Einstein hybrid geometric

operator. It is well known that Pythagorean fuzzy set is a particular case with the consideration of the rung parameter q¼2. Table 15 describes

the score values and rankings of the companies using Rahman and Ali's (2020) method and the proposed method. In both methods, ranking

remains the same, i.e., A4 ≻A3 ≻A2 ≻A1 ≻A5. But the difference of score values between two consecutive companies (rank-wise) by the proposed

method is larger than Rahman and Ali's (2020) method. As a result, the proposed method can distinguish the rank of the alternatives more effec-

tively. So, the proposed method is better than the existing Rahman and Ali's (2020) method. A graphical representation of the differences of score

value is given in Figure 6.

To demonstrate validity and efficacy of the DHq-ROFSSHA and DHq-ROFSSHG operators, the results are compared with the existing DHq-

ROF Hamacher hybrid weighted average (DHq-ROFHHWA) (Wang, Wei, Wang, et al., 2019), DHq-ROF Hamacher hybrid weighted geometric

(DHq-ROFHHWG) (Wang, Wei, Wang, et al., 2019), DHq-ROF weighted Muirhead mean (DHq-ROFWMM) (Wang, Wei, Wei, & Wei, 2019) DHq-

ROF weighted dual Muirhead mean (DHq-ROFWDMM) (Wang, Wei, Wei, & Wei, 2019), q-rung dual hesitant fuzzy weighted Heronian mean

(q-RDHFWHM) (Xu et al., 2018) and q-rung dual hesitant fuzzy weighted geometric Heronian mean (q-RDHFWGHM) (Xu et al., 2018) operators.

For comparison, q¼3 is considered in all operators, viz., DHq-ROFSSHA, DHq-ROFSSHG, DHq-ROFHHWA and DHq-ROFHHWG operators.

Under this condition, the example is solved by the proposed method using these operators. The score value and ranking of the companies are

presented in Table 16.

F IGURE 4 Score value using variation of rung parameter q for fixed SS parameter τ¼2 (DHq-ROFSSHG).

F IGURE 5 Score value using variation of SS parameter τ for fixed q¼3 (DHq-ROFSSHG).
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From the above results, it is observed that the ranking of the companies by averaging operators viz., DHq-ROFSSHA, DHq-ROFHHWA

(Wang, Wei, Wang, et al., 2019), q-RDHFWHM (Xu et al., 2018) operators are the same. Also, the ranking of the companies by geometric opera-

tors, viz., DHq-ROFSSHG and DHq-ROFHHWG (Wang, Wei, Wang, et al., 2019) and DHq-ROFWMM (Wang, Wei, Wei, & Wei, 2019) operators

are same. Also, DHq-ROFWMM (Wang, Wei, Wei, & Wei, 2019) and q-RDHFWGHM (Xu et al., 2018) operators give the same ranking. But in all

above cases the computer company, A4 is the best choice for investing. So, it can be said that the proposed operators fused the data correctly.

Figure 7 represents the graphical representation of the difference of the score values between two consecutive companies (rank-wise). The

difference of score value between A4 and A3 is highest in DHq-ROFSSHA than other operators. As a result, the proposed method can distinguish

the rank of the companies more effectively. So, proposed operators are better than existing operators. Finally, it can be said that DHq-ROFSSHA

operator gives the best results as compared to other operators in this example.

TABLE 15 Comparison with Rahaman and Ali's (2020) method

Method

Score values

RankingS A1ð Þ S A2ð Þ S A3ð Þ S A4ð Þ S A5ð Þ
Rahman and Ali (2020) �0:221 �0:177 �0:154 �0:099 �0:225 A4 ≻A3 ≻A2 ≻A1 ≻A5

Proposed 0:4682 0:5189 0:5502 0:6071 0:4472 A4 ≻A3 ≻A2 ≻A1 ≻A5

F IGURE 6 Bar diagram of differences of the alternatives' score values.

TABLE 16 Comparison with existing operators

Operators

Score values

RankingS A1ð Þ S A2ð Þ S A3ð Þ S A4ð Þ S A5ð Þ
DHq-ROFHHWA (Wang, Wei, Wang, et al., 2019) 0:3250 0:3601 0:3789 0:4320 0:3161 A4 ≻A3 ≻A2 ≻A1 ≻A5

DHq-ROFHHWG

(Wang, Wei, Wang, et al., 2019)

0:5231 0:3851 0:5526 0:5591 0:3628 A4 ≻A3 ≻A1 ≻A2 ≻A5

DHq-ROFWMM

(Wang, Wei, Wei, & Wei, 2019)

0:4065 0:3955 0:4656 0:4907 0:3277 A4 ≻A3 ≻A1 ≻A2 ≻A5

DHq-ROFWDMM

(Wang, Wei, Wei, & Wei, 2019)

0:6203 0:7062 0:6692 0:7363 0:6026 A4 ≻A2 ≻A3 ≻A1 ≻A5

q-RDHFWHM

(Xu et al., 2018)

0:4804 0:5447 0:5767 0:6285 0:4717 A4 ≻A3 ≻A2 ≻A1 ≻A5

q-RDHFWGHM

(Xu et al., 2018)

0:4535 0:4530 0:5322 0:5579 0:3908 A4 ≻A3 ≻A1 ≻A2 ≻A5

DHq-ROFSSHA 0:4682 0:5189 0:5502 0:6071 0:4472 A4 ≻A3 ≻A2 ≻A1 ≻A5

DHq-ROFSSHG 0:3746 0:2606 0:4134 0:4152 0:2489 A4 ≻A3 ≻A1 ≻A2 ≻A5
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6 | CONCLUSION AND SCOPE OF FUTURE DIRECTIONS

It is well known that the notion of a DHq-ROFS generalizes the concept of fuzzy set to process complex uncertain information more accurately.

Thus, the developed operators, viz., DHq-ROFSSWA, DHq-ROFSSWG, DHq-ROFSSOWA, DHq-ROFSSOWG operators based on SSt-CN&t-Ns

will must add extra miles in the process of decision making. The main advantage of using these operators is that those operators possesses the

capability of controlling the optimistic and pessimistic nature of a DM through the flexible SS parameter. However, weighted average or geomet-

ric operators consider only the weight of the opinions but disregard the importance of the ordered position of the opinions, while ordered

weighted average or geometric operators consider only the weight of the ordered position of each given opinion but ignore the importance of the

individual opinion. To overcome this drawback and also importance of these operators in mind, the DHq-ROFSSHA and DHq-ROFSSHG opera-

tors is also proposed. The benefit of these operators is that those consider weight of DHq-ROF arguments and ordered positions of the DHq-

ROF arguments simultaneously. Also, using SSt-CN&t-Ns, all generalized cases are considered by varying SS parameter, τ. Therefore, these opera-

tors are more trustworthy than other existing operators on such sets and can be employed more effectively to handle decision-making problems.

It is obvious that proposed operators can compensate for human hesitancy and the connection between fused arguments; moreover, the newly

developed techniques may dynamically change to the parameter depending on the risk attitude of the DM. An investment problem is considered

and solved using the developed methods to validate the applicability of the proposed methodology. A sensitivity analysis is also performed to cap-

ture sensitive nature of the solutions with the change of SS and rung parameters. Four DMs' evaluation values in the form of DHq-ROFNs in

order to select the best company among five companies. It establishes that the proposed methodology is suitable for handling MCGDM problem

effectively. The proposed method and the suggested approach are compared, and it is demonstrated that the new method is more consistent and

useful than the existing method.

A limitation of the proposed study is that it is unable to handle such situation when the weight of the DMs or criteria are unknown. In the

future an unknown weight model under DHq-ROF environment may be developed to overcome the limitation. As an extension of the developed

method, the following issues may be studied in future. SS operation-based aggregation operators would be developed on probabilistic HFS

(Batool et al., 2020), picture fuzzy set (Ullah, 2021), complex q-ROFS, T-spherical fuzzy sets, etc. Linguistic DHq-ROFS power aggregation opera-

tors, Aczel-Alsina Aggregation operators on DHq-ROFS would also be developed. Some correlation coefficients, similarity measures on DHq-

ROFSs may also be considered. However, it is hoped that the proposed method would add an extra dimension in the field of making decision

under uncertain complex decision making situations.
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APPENDIX A

Symbol Description

X Universal set

~P q-ROFS

q Rung parameter

μ ~P Membership degree of ~P
ν ~P Non membership degree of ~P
~p q-ROFN

~K DHq-ROFS

~h ~K Possible membership degrees

~g ~K Possible non-membership degrees

~κ DHq-ROFN

~h Membership value of DHq-ROFN ~κ

~g Non-membership value of DHq-ROFN ~κ

S ~κð Þ Score function of DHq-ROFN ~κ

A ~κð Þ Accuracy function of DHq-ROFN ~κ

τ Schweizer & Sklar parameter

ISS Schweizer & Sklarr t-norm

USS Schweizer & Sklar t-conorm

λ A scaler

ω Weight vector
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APPENDIX B

Abbreviations Explanation

MCDM Multicriteria decision making

MCGDM Multicriteria group decision-making

DM Decision maker

IFS Intuitionistic fuzzy set

PFS Pythagorean fuzzy set

q-ROF q-rung orthopair fuzzy

q-ROFS q-rung orthopair fuzzy set

q-ROFN q-ROF number

MSM Maclaurin symmetric mean

SS Schweizer-Sklar

HFS hesitant fuzzy set HFS

DHFS dual hesitant fuzzy set DHFS

DHq-ROFS dual hesitant q-ROF set

DHPFS dual hesitant Pythagorean fuzzy set

SSt-CN&t-Ns Schweizer-Sklar t-conorms and t-norms

DHq-ROFSSWA DHq-ROF SS weighted average

DHq-ROFSSOWA DHq-ROF SS ordered weighted average

DHq-ROFSSWG DHq-ROF SS weighted geometric

DHq-ROFSSOWG DHq-ROF SS ordered weighted geometric

DHq-ROFSSHA DHq-ROF SS hybrid average

DHq-ROFSSHG DHq-ROF SS hybrid geometric

DHq-ROFHA DHq-ROF hybrid average

DHq-ROFHG DHq-ROF hybrid geometric

DHq-ROFDM DHq-ROF decision matrix

DHq-ROFHHWA DHq-ROF Hamacher hybrid weighted average

DHq-ROFHHWG DHq-ROF Hamacher hybrid weighted geometric

DHq-ROFWMM DHq-ROF weighted Muirhead mean

DHq-ROFWDMM DHq-ROF weighted dual Muirhead mean

q-RDHFWHM q-rung dual hesitant fuzzy weighted Heronian mean

q-RDHFWGHM q-rung dual hesitant fuzzy weighted geometric Heronian mean
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Abstract
A generalized orthopair fuzzy set (GOFS), also known as a q-rung orthopair fuzzy 
set (q-ROFS), is a higher variant of ordinary fuzzy sets by relaxing restrictions on 
the degrees of membership and non-membership. In fact, GOFSs generalize intui-
tionistic fuzzy sets (IFSs), Pythagorean fuzzy sets (PFSs), and Fermatean fuzzy sets 
(FFSs) with an improved ability to tackle vagueness. On the other hand, correla-
tion analysis measures the statistical relationships between two samples or variables. 
Certain approaches for measuring the correlation coefficient of GOFSs have been 
studied, however, with some setbacks. In this paper, we propose a new correlation 
coefficient that measures the interrelation between any two arbitrary GOFSs with a 
better rating. Some properties of the novel generalized orthopair correlation coeffi-
cient are presented to validate its appropriateness. In addition, the novel correlation 
coefficient is validated with some numerical examples and adjudged to outperform 
some existing approaches via comparative analysis. Finally, we discuss the applica-
tions of the novel approach in problems involving pattern recognition and medical 
diagnosis based on simulated data presented as generalized orthopair fuzzy values.

Keywords Correlation measure · Generalized orthopair fuzzy set · Generalized 
orthopair fuzzy value · Pattern recognition · Disease diagnosis

1 Introduction

Among the variants of fuzzy sets, viz., intuitionistic fuzzy set (IFS) [1], Pythagorean 
fuzzy set (PFS) [2–4], Fermatean fuzzy set (FFS) [5], etc., the q-rung orthopair fuzzy 
set ( q-ROFS) presented by Yager [6] is an indispensable and meaningful tool for dealing 
with uncertain information. In q-ROFS, membership degree, � , and non-membership 

 * Paul Augustine Ejegwa 
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degree, � , satisfy the condition that �q + �q ≤ 1 for all q ≥ 1 . q-ROFS is a general-
ized form of IFSs, PFSs, and FFSs with certain constraints as a more generic fuzzy 
set. By substituting the values of the rung parameter, q = 1, 2, 3 , q-ROFS reduces to 
IFS, PFS, and FFS, respectively. As a result, q-ROFS is the most valuable and refined 
extension of fuzzy sets, in which decision-makers (DMs) can change the range of their 
judgment values by altering the rung parameter q depending on various indeterminate 
degrees. A comparison among the domains of IFSs, PFSs, and q-ROFSs is portrayed in 
Fig. 1. Many scholars have conducted in-depth exploration and research on the q-ROFS 
because of its excellent characteristics and have produced a large number of results, 
including q-ROF multicriteria decision-making (MCDM) [7–10], measure theory 
[11–14], graph theory [15–17], multiattribute decision-making (MADM) [18], medical 
diagnosis [19, 20], and so on.

In decision-making, pattern recognition, data analysis, machine learning, and other 
fields, correlation is one of the most widely used indices. It assesses how effectively two 
samples or qualities move in a straight line. The idea of a correlation coefficient has been 
studied under IFSs with various applications [21–27]. Furthermore, the notions of correla-
tion and coefficient of correlation were applied to PFSs. Garg [28] proposed a novel cor-
relation coefficient and a weighted correlation coefficient formulation between two PFSs. 
Using these, some numerical examples of pattern recognition and medical diagnosis were 
solved. Thao [29] proposed a new correlation coefficient between PFSs and applied it to 
the pattern recognition problem. Considering membership and non-membership degrees, 
strength, and direction of commitments of a PFS, Lin et al. [30] developed some novel 
directional correlation coefficients between two PFSs. Singh and Ganie [31] introduced 
some novel correlation coefficients of PFSs, satisfying the condition that the correlation 
coefficient of two PFSs is one if and only if the two PFSs are equal. Other correlation coef-
ficients of PFSs have been developed and applied in various areas [32–34].

Fig. 1  Graphical representation 
of q-ROFS
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Nevertheless, whereas the q-ROFS theory has been successfully implemented in 
numerous decision-making processes, real-world situations frequently have many 
attribute values that are complicated to comprehend quantitatively. In such circum-
stances, it appears appropriate to convey things qualitatively. Under the q-ROF con-
text, Du [35] defined a correlation coefficient rule and investigated some of its basic 
properties. The correlation coefficient rule was applied in cluster analysis under q- 
ROF environments. After that, Singh and Ganie [36] introduced another kind of cor-
relation coefficient for q-ROFSs. Using a correlation-based closeness coefficient, 
they also proposed a novel approach for solving an MCDM problem in a q-ROF 
environment. In the q-ROF context, Bashir et al. [37] formulated some correlation 
coefficient methods as generalizations of correlation coefficients of IFSs and PFSs. 
Mahmood and Ali [38] studied entropy measures and the TOPSIS approach using 
the correlation coefficient with application to MADM based on complex q-rung 
fuzzy information. Li et al. [39] developed two new q-rung orthopair fuzzy correla-
tion coefficients and their applications in clustering analysis.

Although the outputs from the approach in ref. [35] seem to be accurate, it exhib-
its two weaknesses, namely, that its output violates the conditions of the correlation 
coefficient as q increase and that it does not capture the hesitation margin, yielding 
outputs that are reliable to error due to omission. In the same vein, in the course 
of the numerical verifications of the approaches in ref. [36], it is observed that the 
first approach can only measure the correlation of dissimilar q-ROFSs. Precisely, 
the first approach in ref. [36] is not a good approach to measuring correlation coef-
ficients. Though the second strategy is superior to the first, it is inconsistent in terms 
of satisfying the correlation measure’s requirements. The techniques of the correla-
tion coefficient for GOFSs in refs. [35–37, 39] lack consistency with a better per-
formance index. In addition to the techniques in ref. [36] that incorporate the com-
plete parametric features of GOFSs, the techniques in refs. [35, 37, 39] discarded the 
grades of hesitancy or hesitation margins of the GOFSs. This exclusion renders the 
outputs from these techniques unreliable because the nature of the hesitation margin 
of GOFSs is the chief factor that clearly differentiates GOFSs from IFSs, PFSs, and 
FFSs and positions it as a more competent soft computing tool. In fact, without hesi-
tation margin, a GOFS can be reduced to a fuzzy set, and thus relinquishes its ability 
to reasonably curb imprecision.

However, in a quest to remedy the setbacks in refs. [35–37, 39], a novel correla-
tion coefficient approach based on GOFSs/q-ROFSs is proposed with a better rating. 
In fact, the novel approach resolves the aforementioned drawbacks in refs. [35–37, 
39]. Succinctly speaking, the contributions of the works are as follows:

1) Appraisal of the correlation measuring approaches based on GOFSs in refs. 
[35–37, 39] to pinpoint their limitations for the justification of a new correlation 
measuring approach,

2) Propose a novel correlation measuring approach, which resolves the limitations 
in the hitherto approaches with better performance ratings,

3) Ascertain the advantages of the novel approach over the existing approaches via 
comparative analysis based on numerical illustrations,
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4) Characterizations of the novel approach to demonstrate its alignment with the 
properties of the correlation coefficient, and

5) Demonstrations of decision-making problems pertaining to pattern recognition 
and disease diagnosis based on the novel approach under generalized orthopair 
(GOF) information.

The remainder of this work is laid out as follows: We go through the essential con-
cepts of generalized orthopair fuzzy sets in Sect. 2. In Sect. 3, we reiterate some exist-
ing approaches to computing correlation coefficients under the GOF domain. Section 4 
discusses the novel approach to estimating the correlation coefficient between GOFSs 
and obtaining some of its properties. In Sect. 5, we discuss the applications of the novel 
approach pertaining to pattern recognition and disease diagnosis. The work is con-
cluded in Sect. 6 with recommendations for future research.

2  Preliminaries

With the inclusion of a non-membership degree, the idea of fuzzy sets was extended to 
IFS. We denote X as a universe of discourse (i.e., a non-empty set) throughout the work.

Definition 2.1 [1] An IFS Ñ in X is given by the structure

where �
Ñ
, �

Ñ
∶ X → [0, 1] denote the grade of membership and non-membership for 

x ∈ X to the set Ñ , such that.

The indeterminacy degree for IFS is presented by �
Ñ(x) = 1 − �

Ñ(x)−�Ñ(x) . For 
usefulness, 

(
�
Ñ(x), �Ñ(x)

)
 is taken as an intuitionistic fuzzy number (IFN) and is 

denoted by Ñ = (�, �).

Definition 2.2 [40] Let Ñ , Ñ1 , and Ñ2 represent any three IFSs in X , then some fun-
damental operational rules are defined below:

(i) Ñ =
�⟨x, �

Ñ(x),�Ñ(x)⟩�x ∈ X
�
;

(ii) Ñ1 = Ñ2 if �Ñ1
(x) = �

Ñ2
(x) and �

Ñ1
(x) = �

Ñ2
(x) ∀x ∈ X;

(iii) �N1 ⊆
�N2 if �Ñ1

(x) ≤ �
Ñ2
(x) and �

Ñ1
(x) ≥ �

Ñ2
(x) ∀x ∈ X;

(iv) Ñ1 ∩ Ñ2 =
�
⟨x,min

�
�
Ñ1
(x),�Ñ2

(x)
�
,max

�
�
Ñ1
(x), �Ñ2

(x)
�
⟩�x ∈ X

�
;

(v) Ñ1 ∪ Ñ2 =
�
⟨x,max

�
�
Ñ1
(x),�Ñ2

(x)
�
,min

�
�
Ñ1
(x), �Ñ2

(x)
�
⟩�x ∈ X

�
.

By extending IFS [1], Yager [2] presented a novel set called PFS, as defined in 
the following manner.

(1)Ñ =
�⟨x,�

Ñ(x), �Ñ(x)⟩�x ∈ X
�
,

(2)�
Ñ(x), �Ñ(x) ∈ [0, 1], and 0 ≤ �

Ñ(x)+�Ñ(x) ≤ 1
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  Definition 2.3 [2] A PFS symbolized by P̃ in X is the structure

where �
P̃(x), �P̃(x) ∈ [0, 1] denote the grade of membership and non-membership for 

x ∈ X to the set P̃ , such that

The indeterminacy degree for PFS is given by �
P̃(x) =

√
1 −

(
�
P̃(x)

)2
−
(
�
P̃(x)

)2 . 
For convenience, Zhang and Xu [41] named 

(
�
P̃(x), �P̃(x)

)
 as a Pythagorean fuzzy 

number (PFN) and is represented by p̃ = (�, �).
With the introduction of PFS, it is clearly realized that the spaces for consid-

ering membership and non-membership values have been extended. Yager and 
Abbasov [4] proposed score and accuracy functions for PFNs.

Definition 2.4 [4] Score and accuracy functions of any PFN, p̃ = (�, �) are denoted 
as S

(
p̃
)
 and A

(
p̃
)
 , respectively, presented by

where −1 ≤ S
(
p̃
)
≤ 1 and A

(
p̃
)
∈ [0, 1].

Yager and Abbasov [4] defined a method for ranking of PFNs as follows.

Definition 2.5 [4] The following principles are used for ordering between any two 
PFNs, p̃1 and p̃2.

 (i) If S
(
�p1
)
> S

(
�p2
)
 , then �p1 ≻ �p2;

 (ii) If S
(
p̃1
)
= S

(
p̃2
)
 , then

 (iii) �p1 ≻ �p2 when A
(
�p1
)
> A

(
�p2
)
 , if A

(
p̃1
)
= A

(
p̃2
)
 , then p̃1 ≈ p̃2.

Basic operations on PFNs as presented by Yager [2, 3] and Yager and Abbasov 
[4] are presented as follows:

Definition 2.6 [4] If any three PFNs are represented by p̃ = (�, �) , p̃1 =
(
�1, �1

)
 , and 

p̃2 =
(
�2, �2

)
 , then some basic operating principles of them are defined below (𝜆 > 0):

 (i) �p1 ⊕�p2 =
�√

𝜇1
2 + 𝜇2

2 − 𝜇1
2𝜇2

2, 𝜈1𝜈2

�
;

 (ii) �p1 ⊕�p2 =
�
𝜇1𝜇2,

√
𝜈1

2 + 𝜈2
2 − 𝜈1

2𝜈2
2

�

 (iii) �p̃ =

(√
1 −

(
1 − �2

)�
, ��

)
;

 (iv) p̃� =

(
��,

√
1 −

(
1 − �2

)�).

(3)P̃ =
�⟨x,�

P̃(x), �P̃(x)⟩�x ∈ X
�
,

(4)0 ≤
(
�
P̃(x)

)2
+
(
�
P̃(x)

)2
≤ 1.

(5)
S
(
p̃
)
= �2 − �2

A
(
p̃
)
= �2 + �2

}
,
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Definition 2.7 [4] Let P̃ , P̃1 , and P̃2 represent any three PFSs in X , then some funda-
mental operational rules are defined below:

(i) P̃ =
�⟨x, �

P̃(x),�P̃(x)⟩�x ∈ X
�

(ii) P̃1 = P̃2 iff �
P̃1
(x) = �

P̃2
(x) and �

P̃1
(x) = �

P̃2
(x) ∀x ∈ X.

(iii) (ii) �P1 ⊆
�P2 iff �

P̃1
(x) ≤ �

P̃2
(x) and �

P̃1
(x) ≥ �

P̃2
(x) ∀x ∈ X.

(iv) P̃1 ∪ P̃2 =
�
⟨x,max

�
�
P̃1
(x),�P̃2

(x)
�
,min

�
�
P̃1
(x), �P̃2

(x)
�
⟩�x ∈ X

�
.

(v) P̃1 ∩ P̃2 =
�
⟨x,min

�
�
P̃1
(x),�P̃2

(x)
�
,max

�
�
P̃1
(x), �P̃2

(x)
�
⟩�x ∈ X

�
.

Definition 2.8 [6] Let X be a universe of discourse. A GOFS symbolized by ℘̃ in X 
is represented by

where �℘̃(x) ∈ [0, 1] and �℘̃(x) ∈ [0, 1] denote the degree of membership and non-
membership, respectively, of the element x ∈ X to the set ℘̃ satisfying the condition that.

The degree of indeterminacy �℘̃(x) of x in ℘̃ is given as

For simplicity, 
(
�℘̃(x), �℘̃(x)

)
 is called a generalized orthopair fuzzy number (GOFN) 

and is symbolized by ℘̃ = (�, �).
Liu and Wang [18] proposed the following score and accuracy functions for q-ROFNs.

Definition 2.9 [18] For any GOFN ℘̃ = (�, �) , the score function, S
(
℘̃
)
 of ℘̃ is defined 

as follows:

where S
(
℘̃
)
∈ [0, 1].

For a q-ROFN ℘̃ = (�, �) , the accuracy function, A
(
℘̃
)
 of p is defined as

Liu and Wang [18] developed the following technique for ordering the GOFNs:

Definition 2.10 [18] Let ℘̃1 and ℘̃2 be any two GOFNs, then the ordering of these 
GOFNs are as follows:

• �℘1 ≻ �℘2 when S
(
�℘1

)
> S

(
�℘2

)
;

• For S
(
℘̃1

)
= S

(
℘̃2

)

(6)℘̃ =
�⟨x, �℘̃(x), �℘̃(x)⟩�x ∈ X

�
,

(7)0 ≤
(
�℘̃(x)

)q
+
(
�℘̃(x)

)q
≤ 1, q ≥ 1

(8)�℘̃(x) =
[
1 −

(
�℘̃(x)

)q
−
(
�℘̃(x)

)q] 1

q

S
(
℘̃
)
=

1

2
(1 + �q − �q)

A
(
℘̃
)
= �q + �q
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 (i) �℘1 ≻ �℘2 when A
(
�℘1

)
> A

(
�℘2

)
;

 (ii) ℘̃1 ≈ ℘̃2 for A
(
℘̃1

)
= A

(
℘̃2

)
.

Four basic operations on q-ROFNs were formulated by Liu and Wang [18], which 
we recall as follows:

Definition 2.11 [18] Let ℘̃ = (�, �) , ℘̃1 =
(
�1, �1

)
 , and ℘̃2 =

(
�2, �2

)
 be three q-ROFNs, 

and 𝜆 > 0 , then some fundamental operations are defined as follows:

(1) �℘1 ⊕ �℘2 =
�

q
√
𝜉1

q + 𝜉2
q − 𝜉1

q𝜉2
q, 𝜂1𝜂2

�
;

(2) �℘1 ⊗ �℘2 =
�
𝜉1𝜉2,

q
√
𝜂1

q + 𝜂2
q − 𝜂1

q𝜂2
q
�
;

(3) �℘̃ =
�

q
√
1 − (1 − �q)�, ��

�
;

(4) ℘̃� =
�
��,

q
√
1 − (1 − �q)�

�
.

Here, definitions of the correlation coefficient for GOFSs in the domains of [0, 1] 
and [−1, 1] are provided as follows:

Definition 2.12 If ℘̃1 and ℘̃2 are GOFSs in X =
{
x1, x2,… , xn

}
 , then the correlation 

coefficient from a statistical viewpoint for ℘̃1 and ℘̃2 denoted by Ω∗(℘̃1, ℘̃2) , is a 
function, �∗ ∶ ℘̃1 × ℘̃2 → [−1, 1] , which satisfies.

 (i) ρ∗(℘̃1, ℘̃2) ∈ [−1, 1],
 (ii) �∗(℘̃1, ℘̃2) = �∗(℘̃2, ℘̃1),

 (iii) �∗(℘̃1, ℘̃2) = 1℘̃1 = ℘̃2

As �∗(℘̃1, ℘̃2) moves closer to 1 , it shows that there is a strong positive correla-
tion. On the other hand, as �∗(℘̃1, ℘̃2) moves closer to −1 , it shows that there is a 
weak negative correlation. Whereas, �∗(℘̃1, ℘̃2) = 1 and �∗(℘̃1, ℘̃2) = −1 indicate a 
perfect positive correlation and a perfect negative correlation, respectively.

Definition 2.13 If ℘̃1 and ℘̃2 are GOFSs in X =
{
x1, x2,… , xn

}
 , then the correlation 

coefficient for ℘̃1 and ℘̃2 denoted by Ω(℘̃1, ℘̃2) , is a function, � ∶∶ ℘̃1 × ℘̃2 → [0, 1] , 
which satisfies.

 (i) ρ(℘̃1, ℘̃2) ∈ [0, 1],
 (ii) ρ(℘̃1, ℘̃2) = ρ(℘̃2, ℘̃1),
 (iii)  if and only if ℘̃1 = ℘̃2.

As ρ(℘̃1, ℘̃2) moves closer to 1, it shows that the correlation is strong. On the 
other hand, as ρ(℘̃1, ℘̃2) moves closer to 0, it shows that the correlation is very weak. 
Whereas, ρ(℘̃1, ℘̃2) = 1 and ρ(℘̃1, ℘̃2) = 0 indicate a perfect correlation and no cor-
relation, respectively.
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3  Some Existing Approaches of Measuring Correlation 
in Generalized Orthopair Fuzzy Domain

Here, we recall some approaches to measuring correlation coefficients represented 
in the domain of GOFSs.

3.1  Du’s Approach

Let ℘̃1 and ℘̃2 be two GOFSs in X =
{
x1, x2,… , xn

}
 , where X is a finite universe of 

discourse, then the correlation coefficient in ref. [35] between ℘̃1 and ℘̃2 is given by.

3.2  Singh and Ganie’s Approaches

Two approaches to computing the correlation coefficient between GOFSs were 
introduced in ref. [36]. Assume ℘̃1 and ℘̃2 are two GOFSs in X =

{
x1, x2,… , xn

}
 , 

where X is a finite universe of discourse, then the correlation coefficients between 
℘̃1 and ℘̃2 are given as follows:

First approach;

Where
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Second approach;

Where

3.3  Bashir et al.’s Techniques

Bashir et al. [37] introduced new techniques of CC q-ROFSs, which are presented as;
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for q ≥ 1 . Equation (9) equals Eq. (13) whenever q = 1.

3.4  Li et al.’s Techniques

In ref. [39], some novel techniques of computing CC q-ROFSs were introduced, which 
are presented as follows;

Where

for

wherein q ≥ 1 and � ∈ [0, 1].
Similarly,
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for

wherein q ≥ 1 and � ∈ [0, 1].

4  New Approach of Computing Correlation Coefficient 
in Generalized Orthopair Fuzzy Domain

Here, we introduce an efficient approach to calculating the correlation coefficient for 
GOFSs. The development of the new correlation coefficient for GOFSs is achieved 
by studying the approach in ref. [24] under the environment of GOFSs through the 
incorporation of the hesitation margins and the removal of the restriction of c > 2 . 
For GOFSs ℘̃1 and ℘̃2 in X =

{
x1, x2,… , xn

}
 where n < ∞ , the correlation coeffi-

cient between the GOFSs can be measured by
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The instance for which Δ�min + Δ�max = 1 , Δ�min + Δ�max = 1 , and Δ�min − Δ�max

= 1 is very uncommon for q = 1 . Howbeit, when it happens, q > 1 should be used. 
Therefore, there is no fear of the possibility of either �i , �i , or �i becoming unde-
fined. Although GOFSs generalize IFSs (i.e., GOFSs for q = 1 ), PFSs (i.e., GOFSs  
for q = 2 ), and FFSs (i.e., GOFSs for q = 3 ), the beauty and distinctiveness of  
GOFSs are expressed for q > 3 ( q ∈ ℕ).

In many cases, the weight of each element xi ∈ X is necessary to be taken into con-
sideration while computing the correlation coefficient. For instance, in multi-attribute 
decision-making cases, every attribute has a different significance and needs to be 
assigned a different weight. By putting that into consideration, Eq. (16) becomes

where the parameters are the same as in Eq. (16), and �i ≥ 0 for 
∑n

i=1
�i = 1 . If � =(

1

n
,
1

n
,… ,

1

n

)T

 , then Eqs. (16) and (17) are equivalent. The value of �i can be 
decided by expert opinion, statistical distribution, coefficient of variation method, or 
analytic hierarchy process.
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Again, suppose ℘̃1 = ℘̃2 . Then,

Consequently, Δ�i = Δ�i = Δ�i = 0 , Δ�min = Δ�min = Δ�min = 0 , and Δ�max =

Δ�max = Δ�max = 0 . Thus, �i = �i = �i = 1 , and so �
(
℘̃1, ℘̃2

)
= 1.

Conversely, assume �
(
℘̃1, ℘̃2

)
= 1 , then it is straightforward that ℘̃1 = ℘̃2 . 

Hence, (ii) holds.
Proposition 4.2. GOFSs ℘̃1 and ℘̃2 in X , ��
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 satisfies.
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= ��

(
℘̃2, ℘̃1

)
,

 (ii) ��
(
℘̃1, ℘̃2

)
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GOFSs ℘̃1 and ℘̃2 in X , then �
(
℘̃1, ℘̃2

)
, ��

(
℘̃1, ℘̃2

)
∈ [0, 1].

Proof. In this case, we need to first and foremost prove that 0 ≤ �
(
℘̃1, ℘̃2

)
≤ 1 , i.e., 

�
(
℘̃1, ℘̃2

)
≥ 0 and �

(
℘̃1, ℘̃2

)
≤ 1 . The fact that �

(
℘̃1, ℘̃2

)
≥ 0 is clear. So, it suffices 

to show that �
(
℘̃1, ℘̃2

)
≤ 1 . To establish this, let us assume that 

∑n

i=1
�i

�
1 − Δ�i

�
= A , ∑n

i=1
�i
�
1 − Δ�i

�
= B , 

∑n

i=1
�i

�
1 − Δ�i

�
= C.

We then apply the principle of Cauchy–Schwarz inequality, and so

Thus,

which implies that �
(
℘̃1, ℘̃2

)
≤ 1 . Hence, �

(
℘̃1, ℘̃2

)
∈ [0, 1] . The proof of ��

(
℘̃1,

℘̃2

)
∈ [0,1] is similar.

|||�
q

℘̃1

(
xi
)
− �

q

℘̃2

(
xi
)||| = 0,

|||�
q

℘̃1

(
xi
)
− �

q

℘̃2

(
xi
)||| = 0,

|||�
q

℘̃1

(
xi
)
− �

q

℘̃2

(
xi
)||| = 0.

�
(
℘̃1, ℘̃2

)
=

1

3n

∑n

i=1

(
�i

(
1 − Δ�i

)
+ �i

(
1 − Δ�i

)
+ �i

(
1 − Δ�i

))

≤

∑n

i=1
�i

�
1 − Δ�i

�
+
∑n

i=1
�i
�
1 − Δ�i

�
+
∑n

i=1
�i

�
1 − Δ�i

�
3n

=
A + B + C

3n
.

c�
(
℘̃1, ℘̃2

)
− 1 =

A + B + C

3n
− 1

=
A + B + C − 3n

3n

= −
(3n −A − B − C)

3n
≤ 0,

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



 Operations Research Forum (2023) 4:32

1 3

32 Page 14 of 23

4.1  Numerical Verification

Some numerical examples of GOFSs are provided to verify the new approach to 
computing the correlation coefficient.

Example 1. The following are GOFSs defined in X =
{
x1, x2, x3

}
:

The GOFSs are very similar, so the correlation coefficient is expected to approach 
1 . Now, we find the correlation coefficient using Eq. (16) as follows:

From Table  1, we have Δ�min = Δ�max = 0 , Δ�min = Δ�max = 0.1 , and Δ�min =

Δ�max = 0.1 . Clearly, �1 = �1 = �1 = 1 , �2 = �2 = �2 = 1 , and �3 = �3 = �3 = 1 . 
Thus, the correlation coefficient is.

From Table 2, we have Δ �min = Δ �max = 0 , Δ �min = 0.01 , Δ �max = 0.05 , Δ �min

= 0.0099 , and Δ �max = 0.05 . Thus, �1 = 1 , �1 = 0.9794 , �1 = 0.9793 , �2 = 1 , 
�2 = 0.9897 , �2 = 0.9896 , and �3 = �3 = �3 = 1 . Hence, �

(
℘̃1, ℘̃2

)
= 0.9869.

From Table 3, we have Δ�min = Δ�max = 0 , Δ�min = 0.01 , Δ�max = 0.019 , Δ�min

= 0.0009 , and Δ�max = 0.019 . Thus, �1 = 1 , �1 = 0.994 , �1 = 0.9939 , �2 = 1 , 
�2 = 0.998 , �2 = 0.9979 , and �3 = �3 = �3 = 1 . Hence, �

(
℘̃1, ℘̃2

)
= 0.9962.

From Table 4, we have Δ�min = Δ�max = 0 , Δ�min = 0.0001 , Δ�max = 0.0065 , Δ�min

= 0 , and Δ�max = 0.0068 . Thus, �1 = 1 , �1 = 0.9984 , �1 = 0.9983 , �2 = 1 , �2 =
0.9996 , �2 = 0.9996 , and �3 = �3 = �3 = 1 . Hence, �

(
℘̃1, ℘̃2

)
= 0.9988.

The results prove the similarity between ℘̃1 and ℘̃2 ; however, the correlation 
coefficient is better as q increases.

Example 2. Let ℘̃3 and ℘̃4 be GOFSs in X =
{
x1, x2

}
 defined as:

℘̃1 =
�⟨x1, 0.1, 0.2⟩, ⟨x2, 0.2, 0.1⟩, ⟨x3, 0.29, 0.0⟩

�
,

℘̃2 =
�⟨x1, 0.1, 0.3⟩, ⟨x2, 0.2, 0.2⟩, ⟨x3, 0.29, 0.1⟩

�
.

�
(
℘̃1, ℘̃2

)
=
1

9
(1(1 − 0) + 1(1 − 0.1) + 1(1 − 0.1) + 1(1 − 0) + 1(1 − 0.1)

+1(1 − 0.1) + 1(1 − 0) + 1(1 − 0.1) + 1(1 − 0.1)) = 0.9333.

℘̃3 =
�⟨x1, 0.4, 0.3⟩, ⟨x2, 0.3, 0.2⟩

�
,

℘̃4 =
�⟨x1, 0.3, 0.2⟩, ⟨x2, 0.2, 0.1⟩

�
,

Table 1  Computation for q = 1
X Δ�

i
Δ�

i
Δ�

i

x1 0 0.1 0.1
x2 0 0.1 0.1
x3 0 0.1 0.1
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Similarly, these GOFSs are very similar to each other, and it is expected that their 
correlation coefficient will be close to one but certainly not one since ℘̃3 ≠ ℘̃4 . 
Now, we find the correlation coefficient using Eqs. (9)-(15) and (16) for both of the 
examples and obtain the results in Table 5.

In Table 5, we observe that the new method of the correlation coefficient between 
GOFSs is more consistent with better performance indices. Though the results of 
the method in ref. [35] seem comparable to the new method, the results cannot be 
trusted because the method does not include the hesitation margins of the considered 
GOFSs. The results of the methods in refs. [36, 39] at q = 1 yield a perfect positive 
correlation coefficient, though the GOFSs are not equal in antithesis to the condition 
of the correlation coefficient. In addition, the methods in refs. [37, 39] also excluded 
the hesitation margins, so their outputs will not be reliable due to errors of omission.

In a nutshell, the new method upholds all the conditions of correlation measure and 
possesses accuracy and reliability. It resolves all the drawbacks in refs. [35–37, 39]. 
This present work is the extension and generalization of the intuitionistic fuzzy cor-
relation coefficient in ref. [24] by (i) taking into cognizance the significance of hesita-
tion margin to enhance reliable decision, (ii) removing the restriction in ref. [24], and  
(iii) generalizing the approach in ref. [24] to capture the properties of GOFSs.

5  Applications

In what follows, we discuss two applications of the novel approach, involving pat-
tern recognition and medical diagnosis, to demonstrate the practicability of the 
proposed approach. Pattern recognition and medical diagnosis are decision-making 
problems that are engrossed with uncertainties, and so the better way to resolve 
these uncertainties is by deploying the idea of GOFSs, which is proven to have the 
capacity to tackle uncertainties in decision-making. To achieve more reliable output, 
we restricted the GOFSs to q ≥ 3.

Table 2  Computation for q = 2
X Δ �

i
   Δ�

i
Δ�

i

x1 0 0.05 0.05
x2 0 0.03 0.03
x3 0 0.01 0.0099

Table 3  Computation for q = 3
X Δ�

i
Δ�

i
Δ�

i

x1 0 0.19 0.019
x2 0 0.007 0.0071
x3 0 0.001 0.0009
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5.1  Problem of Pattern Recognition

Here, we consider the case of pattern recognition discussed in refs. [42, 43]. There 
are three patterns, C1 , C2 , and C3 , which are represented by the following GOFSs in 
the given finite universe, X =

{
x1, x2, x3

}
 , respectively:

Given an unknown pattern Q , which is represented by the GOFS;

the task is to classify pattern Q into one of the classes: C1 , C2,and C3 . According 
to the recognition principle of the maximum degree of the correlation coefficient 
between GOFSs, the process of assigning the pattern Q to Cm is described by

By Eq.  (16), we compute the correlation coefficient between Ci (i = 1, 2, 3) and  
Q , as shown in Table 6.

We take �
(
C1,Q

)
= �1 , �

(
C2,Q

)
= �2 , and �

(
C3,Q

)
= �3 for simplicity’s sake. 

According to the recognition rule given by Eq. (19), the pattern Q should be clas-
sified with C3 . This result is consistent with that found in refs. [42, 43]. Figure 2 
shows the graphic picture of Table 6.

Similarly, from Fig. 2, we see that pattern Q is classified with C3.

5.2  Problem of Disease Diagnosis

Medical diagnosis (Dx) is the procedure of determining which ailment or disease 
describes a patient’s signs and symptoms. It is oftentimes called a “diagnosis’” with 
the medical context being understood. This procedure is often enmeshed with vague-
ness, which necessitates the deployment of GOFS technique.

C1 =
{(

x1, 1.0, 0.0
)
,
(
x2, 0.8, 0.0

)
,
(
x3, 0.7, 0.1

)}

C2 =
{(

x1, 0.8, 0.1
)
,
(
x2, 1.0, 0.0

)
,
(
x3, 0.9, 0.0

)}
,

C3 =
{(

x1, 0.6, 0.2
)
,
(
x2, 0.8, 0.0

)
,
(
x3, 1.0, 0.0

)}
.

Q =
{(

x1, 0.5, 0.3
)
,
(
x2, 0.6, 0.2

)
,
(
x3, 0.8, 0.1

)}
,

(19)m = argmax
1≤i≤3

{
�
(
Ci,Q

)}

Table 4  Computation for q = 4
X Δ�

i
Δ�

i
Δ�

i

x1 0 0.1065 0.0068
x2 0 0.0015 0.0068
x3 0 0.0001 0
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Table 5  Correlation coefficient 
values

Methods Example 1 Example 2

�

q = 1 0.9333 0.8667
q = 2 0.9869 0.9402
q = 3 0.9962 0.9760
q = 4 0.9988 0.9907
ρ1

q = 1 0.9531 0.9941
q = 2 0.9651 0.9944
q = 3 0.9666 0.9957
q = 4 0.9683 0.9968
ρ2

q = 1 0.7811 0.6842
q = 2 0.6877 0.5069
q = 3 0.6079 0.3859
q = 4 0.5441 0.2958
ρ3

q = 1 0.9531 0.9941
q = 2 0.9158 0.9891
q = 3 0.8610 0.9875
q = 4 0.8051 0.9880
ρ4

q = 1 1.0000 1.0000
q = 2 0.8685 0.9986
q = 3 0.7587 0.9962
q = 4 0.6826 0.9946
ρ5

q = 1 1.0000 1.0000
q = 2 0.7355 0.9991
q = 3 0.7626 0.9973
q = 4 0.7697 0.9955
ρ6

q = 1 1.0000 1.0000
q = 2 0.9881 0.9987
q = 3 0.9889 0.9959
q = 4 0.9936 0.9932
ρ7

q = 1 1.0000 1.0000
q = 2 0.7647 0.6598
q = 3 0.6707 0.4473
q = 4 0.6112 0.3093
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We consider the case of disease diagnosis discussed in ref. [44]. Let us consider a 
set of diagnoses.

and a set of symptoms

Each diagnosis Qi (i = 1, 2, 3, 4, 5) is represented by generalized orthopair fuzzy 
values in Table 7.

Assume that the following GOFS is used to represent a patient P called Bob in 
terms of all symptoms presented in Table 7.

Q =
{
Q1(viral fever), Q2(malaria), Q3(typhoid), Q4(stomach problem),

Q5(chest problem)
}
,

S =
{
s1(temperature), s2(headache), s3(stomach pain), s4(cough),

� s5(chest pain)
}
.

Table 6  Ranking results by 
varying q

Varying q �
(
C1,Q

)
�
(
C2,Q

)
�
(
C3,Q

)
Ranking order

q = 3 0.8628 0.8005 0.8744 𝜌3 ≻ 𝜌1 ≻ 𝜌2

q = 4 0.8074 0.7552 0.8485 𝜌3 ≻ 𝜌2 ≻ 𝜌1

q = 5 0.7821 0.7362 0.8405 𝜌3 ≻ 𝜌1 ≻ 𝜌2

q = 6 0.7741 0.7296 0.8351 𝜌3 ≻ 𝜌1 ≻ 𝜌2

q = 7 0.7736 0.7291 0.8309 𝜌3 ≻ 𝜌1 ≻ 𝜌2

q = 8 0.7763 0.7315 0.8273 𝜌3 ≻ 𝜌1 ≻ 𝜌2

q = 9 0.7800 0.7353 0.8241 𝜌3 ≻ 𝜌1 ≻ 𝜌2

q = 10 0.7838 0.7397 0.8211 𝜌3 ≻ 𝜌1 ≻ 𝜌2

Varying q
̅( 1, ) ̅( 2, ) ̅( 3, )

3 4 5 6 7 8 9 10 

0 . 75 

0 . 8 

0 . 85 

Fig. 2  Plot of Table 6
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The goal is to figure out which of the diseases Qi (i = 1, 2, 3, 4, 5) is afflicting 
patient P . We use the recognition rule, m = argmax

1≤i≤5

{
�
(
Qi,P

)}
 because the medical 

diagnosis problem is basically a pattern recognition problem. By Eq. (16), we obtain 
the results in Table 8.

From the results in Table  8, patient P can thus be assigned to the disease Q4 
(stomach problem), which agrees with the conclusion reached in ref. [44]. Figure 3 
shows the graphic picture of Table 8.

Similarly, from Fig. 3, we see that patient P should be treated for the disease Q4 
(stomach problem).

5.3  Comparative Analysis

Here, we present the comparative analysis of the new method of correlation coef-
ficient under GOFSs with the existing methods of correlation coefficient under 
GOFSs in terms of the application examples in Sects. 5.1 and 5.2, respectively, to 
authenticate the present method. For comparison purposes, we consider the GOFSs 
for q = 8 . For the application example in Sect.  5.1, we apply the new method of  
correlation coefficient under GOFSs with the existing methods of correlation coef-
ficient under GOFSs in refs. [35–37, 39] and obtain the results in Table 9.

All the methods in Table 9 show that the pattern Q should be classed with C3 . Among 
the existing methods of the correlation coefficient for GOFSs, the methods in [36] are 
the only ones that incorporate the hesitation margins into the computations, besides the 
newly developed method. Between the methods in [36] and the new method, it is certain 

P =
{(

s1, 0.0, 0.8
)
,
(
s2, 0.4, 0.4

)
,
(
s3, 0.6, 0.1

)
,
(
s4, 0.1, 0.7

)
,
(
s5, 0.1, 0.8

)}

Table 7  Disease presentations 
in generalized orthopair fuzzy 
values

s1 s2 s3 s4 s5

Q1 (0.4,0.0) (0.3,0.5) (0.1,0.7) (0.4,0.3) (0.1,0.7)
Q2 (0.7,0.0) (0.2,0.6) (0.0,0.9) (0.7,0.0) (0.1,0.8)
Q3 (0.3,0.3) (0.6,0.1) (0.2,0.7) (0.2,0.6) (0.1,0.9)
Q4 (0.1,0.7) (0.2,0.4) (0.8,0.0) (0.2,0.7) (0.2,0.7)
Q5 (0.1,0.8) (0.0,0.8) (0.2,0.8) (0.2,0.8) (0.8,0.1)

Table 8  Ranking results by 
varying q

Varying q �
(
Q1,P

)
�
(
Q2,P

)
�
(
Q3,P

)
�
(
Q4,P

)
�
(
Q5,P

)

q = 3 0.8969 0.9140 0.9084 0.9702 0.8943
q = 4 0.8990 0.9022 0.8968 0.9582 0.8788
q = 5 0.9143 0.9094 0.9032 0.9537 0.8866
q = 6 0.9302 0.9198 0.9145 0.9541 0.9005
q = 7 0.9439 0.9298 0.9295 0.9572 0.9154
q = 8 0.9552 0.9387 0.9411 0.9617 0.9293
q = 9 0.9643 0.9464 0.9500 0.9666 0.9415
q = 10 0.9714 0.9529 0.9571 0.9716 0.9520
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that the new method yields the most consistent, accurate, and reliable results. Though the 
method in [35] stands out, it is obvious due to the omission of hesitation margins.

Similarly, for the application example in Sect. 5.2, we apply the new method of 
correlation coefficient under GOFSs with the existing methods of correlation coef-
ficient under GOFSs in [35–37, 39] and obtain the results in Table 10.

From the results in Table 10, we see that all the methods indicate that patient P 
is suffering from a disease Q4 (stomach problem). It is only one of the methods in 
[37], i.e., �5 that indicates that patient P is suffering from a disease Q3 (typhoid). 
Again, we see that the newly developed method of correlation coefficient under 
GOFS yields the most consistent, accurate, and reliable results compare to the other 
methods. It is worth noting that the accuracy of the method in [35] is dependent on 
the nature of the data set because, while it yields somewhat better results in the first 

Varying q
̅( 1, ) ̅( 2, ) ̅( 3, ) ̅( 4, ) ̅( 5, )

3 4 5 6 7 8 9 10 

0 . 88 

0 . 9 

0 . 92 

0 . 94 

0 . 96 

0 . 98 

Fig. 3  Plot of Table 8

Table 9  Comparative results for 
Sect. 5.1

Methods
(
C1,Q

) (
C2,Q

) (
C3,Q

)

� 0.7763 0.7315 0.8273
ρ1 0.9438 0.9829 0.9993
ρ2  − 0.3484  − 0.0297 0.7668
ρ3  − 0.2540 0.3160 0.8760
ρ4 0.0159 0.0739 0.1659
ρ5 0.0957 0.4827 0.9978
ρ6  − 0.2011 0.5029 0.9984
ρ7  − 0.0329 0.0008 0.1051
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application example, it produces less accurate results in this example. This again 
justifies the advantage of the newly developed method of correlation coefficient 
under GOFSs in comparison to the existing methods.

6  Conclusion

The construct of generalized orthopair fuzzy correlation coefficient is a competent 
computational intelligence device applicable in cases of decision-making. Some 
approaches for measuring the correlation coefficient of GOFSs have been discussed 
in the literature, however, with certain drawbacks. In a quest to resolve these draw-
backs, we developed a novel generalized orthopair fuzzy correlation coefficient 
method, which was proven to be more reliable compared to the existing approaches 
of measuring the generalized orthopair fuzzy correlation coefficient. In fact, the 
novel approach resolves all the drawbacks observed with the existing approaches. In 
order to validate the novel approach, some properties of the correlation coefficient 
were discussed based on the new approach. The novel generalized orthopair fuzzy 
correlation coefficient method was applied to decision-making problems involving 
pattern recognition and medical diagnosis to demonstrate its usefulness in compu-
tational intelligence based on the recognition principle. The superiority of the novel 
approach was substantiated via comparative analysis. For further research, the novel 
generalized orthopair fuzzy correlation coefficient approach could be investigated in 
other higher fuzzy variants and applied to real-life problems.
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7 Abstract
8 The linguistic q-rung orthopair fuzzy (Lq-ROF) set (Lq-ROFS) is an important implement in the research area in modelling

9 vague decision information by incorporating the advantages of q-rung orthopair fuzzy sets with linguistic variables. To

10 effectively fuse the Lq-ROF information, this paper introduces a series of Lq-ROF power Heronian mean operators with

11 their weighted variants based on Archimedean operations. The defined operators meet certain important characteristics

12 such as they can provide generality and flexibility in the aggregation process, model uncertainty of decision-making with

13 interrelated attributes, and the influence of unreasonable attribute values can also be reduced by them. A generalized

14 distance measure and an entropy measure were defined for Lq-ROFSs, subsequently. Afterwards, a multi-attribute group

15 decision-making approach under Lq-ROF context, where the information about decision-makers’ and attribute weights

16 might be known or unknown, is designed utilizing individual expressions of the proposed operators. The developed

17 approach includes a TOPSIS-based algorithm and an entropy-based algorithm in order to compute the weight of decision-

18 makers’ and attributes, respectively. Finally, the proposed method’s feasibility is validated by solving a financial strategy-

19 making problem, and its superiority is demonstrated via some detailed comparisons.

20

21 Keywords Linguistic q-rung orthopair fuzzy sets � Power Heronian mean � Entropy measure � Distance measure �
22 Multi-attribute group decision-making � Unknown weight evaluation

23

24 1 Introduction

25 In decision theory, multi-attribute decision-making

26 (MADM) is one of the important branches. It is a process to

27 find an optimal solution from a set of feasible alternatives

28 satisfying multiple attributes. Due to increasing complex-

29 ities in daily life, it becomes hard for a single decision-

30 maker (DM) to make a proper decision by considering all

31 relevant aspects of a certain problem. Consequently, the

32assessment values provided by a single DM may be inac-

33curate. While the multi-attribute group decision-making

34(MAGDM) method can provide more accurate assessment

35results under ambiguous and complex situations consider-

36ing the cognition of a group of DMs instead of individual

37DM. MAGDM is used to organize and resolve planning

38and decision-making problems as well as to evaluate the

39most advantageous alternative based on expert(s) decision-

40supporting given attributes. Nevertheless, due to the

41imprecise cognition of human beings and the presence of

42ambiguities in decision problems, it is often difficult to

43handle decision-making processes using crisp numbers. To

44deal with such circumstances, fuzzy set theory (Zadeh

451965) in decision-making has been appeared as an efficient

46technique and has been successfully applied in various

47fields. Moreover, several extensions of fuzzy sets have

48been developed in the literature, viz. intuitionistic fuzzy set

49(IFS) (Atanassov 1986), Pythagorean fuzzy set (PFS)

50(Yager et al. 2013, 2014), and q-rung orthopair fuzzy set
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51 (q-ROFSs) (Yager 2017). All the above-mentioned variants

52 of fuzzy sets can deal with problems using quantitative

53 information. Sometimes, it seems insufficient and inade-

54 quate to express evaluation values using quantitative forms

55 when decision-making problems become more complex.

56 To deal with such situations, Zadeh (1975) introduced the

57 linguistic concept in fuzzy sets. It can reflect the DMs’

58 perception more rationally and comprehensively under

59 various vague situations. The notion of linguistic term set

60 (LTS) was first introduced by Herrera et al. (1996) for the

61 assessment of qualitative information. Several applications

62 of LTS are found in various fields (Teng et al. 2022; Luo

63 et al. 2022). Xu (2005) proposed the idea of continuous

64 LTS (CLTS) to reduce the loss of information in the

65 computation procedure. With the advancement of CLTS,

66 many researchers paid their attention to develop several

67 theories combining CLTS and variants of fuzzy sets. Zhang

68 (2014) developed linguistic intuitionistic fuzzy (LIF) sets

69 (LIFSs) imposing linguistic concepts on IFS. In LIFSs,

70 each element’s membership and non-membership degrees

71 satisfy the condition that the sum of their subscripts needs

72 to be less than or equal to the carnality of the LTS under

73 consideration. Kumar and Chen (Kumar and Chen 2022)

74 developed an approach to solve MAGDM problems under

75 LIF context. Garg and Kumar (Garg and Kumar 2018a)

76 utilized Einstein t-norm (t-N) and t-conorm (t-CN) opera-

77 tions to define a series of LIF aggregation operators for

78 developing MAGDM approach based on possibility degree

79 measures. LIFS theory has been further applied in a variety

80 of decision-making processes (Garg and Kumar 2018b; Liu

81 and Liu 2018a, 2020; Liu et al. 2018) successfully.

82 Apart from the advantages of LIFSs, there are some limi-

83 tations. For example, LIFS fails to handle situations when a

84 DM provides his/her decision information as s3; s4ð Þ under a

85

CLTS, sa a 2jf 0; 6½ �:g, as 3þ 4�6. To overcome this issue,
86

87 Garg (2018) proposed linguistic PFS (LPFS) by integrating

88 PFS with LTS. In LPFS, the square sum of subscripts of

89 membership and non-membership degrees is not beyond the

90 square of the cardinality of corresponding LTS. After the

91 inception of LPFS, several research works are going on. Lin

92 et al. (2018) extended the partition BM operator to LPFSs and

93 developed LPF-weighted interaction PBM operator along

94 with its geometric form. Based on the correlation coefficient

95 and entropy measure, Lin et al. (2019a) further proposed a

96 novel TOPSIS method to solve MADM problems under LPF

97 environment. Liu et al. (2019a) introduced a series of gener-

98 alized LPF aggregation operators. Liu et al. (Liu et al. 2020a)

99 introduced Pythagorean fuzzy linguistic-Muirhead mean and

100 dual Muirhead mean aggregation operators to deal with

101 MADM problems. Recently, Sarkar and Biswas (Sarkar and

102 Biswas 2021a) defined some distance and entropy measures

103 for LPFSs and introduced a TOPSIS method to solve

104MCGDM problems. Within a short span, the LPFS theory has

105attracted researchers to perform research works using this

106concept.

107Sometimes, the condition of LIFS or LPFS may be

108violated under some linguistic decision-making situations.

109To overcome that drawback, Liu and Liu (2018b) presented

110linguistic q-ROFS (Lq-ROFS). Using Lq-ROFS, the scope

111of selection of linguistic membership and non-membership

112grades is increased than LIFS and LPFS. Liu and Liu

113(2018b) further proposed generalized power BM operators

114and Hamming distance measures under Lq-ROF environ-

115ment. Moreover, incorporating Muirhead mean operator,

116Liu and Liu (Liu and Liu 2019) developed several aggre-

117gation operators on Lq-ROF environment. Considering the

118cosine similarity measure, Peng et al. (2016) constructed

119some new similarity measures of Lq-ROFSs. Lin et al.

120(2019b) investigated MADM problems by developing

121partitioned HM-based Lq-ROF operators.

122Since the complexity in real decision-making situations

123is constantly increasing, the following perspectives are

124needed to be considered for generating an efficient Lq-ROF

125information aggregation tool aiming to solve MAGDM

126problems: by reducing the effect of unduly low and unduly

127high arguments

128(1) When a biased DM is involved, the aggregate result is

129adversely affected by certain extreme assessment

130values that he/ she provided. To resolve that issue,

131Yager (2001) introduced power average (PA) aggre-

132gation operator, which has the ability to reduce the

133effect of unduly low and unduly high arguments. PA

134reinforces the unreasonable assessment values by

135calculating the support measures and assigning them

136to produce different power weights. Therefore, PA

137operators can be utilized as an effective tool to relieve

138such biasness in the evaluation computation processes

139under various fuzzy contexts (Biswas and Deb 2021).

140(2) In practical MAGDM problems, the attributes are not

141always independent, i.e. interrelationships between

142attributes are often found. The aggregation operators

143having an assumption that the aggregated arguments

144are independent fail to produce accurate decision

145results. Meanwhile, there exist some novel aggrega-

146tion operations, viz., Bonferroni mean (BM) and

147Heronian mean (HM), which can deal with interre-

148lated input arguments. However, due to the charac-

149teristics that it neglects the calculation redundancy

150and considers the association between an attribute

151and itself, HM is more beneficial than BM (Deb and

152Biswas 2021; Sarkar and Biswas 2021b).

153(3) To deal with MAGDM issues, the prerequisite

154aggregation operators must be general and
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155 adaptable enough to account for all DM preferences

156 while aggregating the evaluation values. The aggre-

157 gation operators combined with Archimedean t-N

158 and t-CN (Klir and Yuan 1995; Nguyen and Walker

159 1997) (At-N&t-CNs) are more flexible and more

160 versatile for aggregating fuzzy information (Sarkar

161 and Biswas 2019, 2021c; Sarkar et al. 2021).

162 However, most of the existing aggregation operators

163 under Lq-ROF environment are based on algebraic t-

164 N and t-CN, which are only a class of At-N&t-CNs.

165 So, involving Archimedean operations in the aggre-

166 gation function will result in the development of a

167 variety of flexible aggregation operators (Beliakov

168 et al. 2007) using algebraic, Einstein, Hamacher,

169 Dombi, Frank and more operations for the Lq-

170 ROFNs. Therefore, the aggregation operators incor-

171 porating such operational rules will generate flexible

172 and reasonable results in MAGDM context.

173 Therefore, with the view of the above discussions, this

174 paper is aimed to define some At-N&t-CN based Lq-ROF

175 PA aggregation operators, viz. Lq-ROF Archimedean PA

176 (Lq-ROFAPA) and Lq-ROF Archimedean power-weighted

177 average (Lq-ROFAPWA) operators. Also, combining PA

178 with HM operator, a series of aggregation operators, viz.

179 Lq-ROF Archimedean power HM (Lq-ROFAPHM) and

180 Lq-ROF Archimedean power-weighted HM (Lq-

181 ROFAPWHM) operators are introduced in order to develop

182 a MAGDM approach.

183 In the process of MAGDM, experts’ weights and attri-

184 butes’ weights play important roles according to different

185 abilities, interests, and situations. As per the authors’

186 knowledge, there are few researches on MAGDM with

187 unknown weights for both experts and attributes under Lq-

188 ROF environments that exist in the literature. To cope with

189 situations like this, a TOPSIS-based algorithm has been

190 presented in this paper to derive the DMs’ weights, and to

191 fix the attributes’ weights, an entropy-based algorithm is

192 also proposed. It is to be mentioned here that a generalized

193 distance measure and an entropy measure have been pre-

194 sented for generating DMs’ weights and attributes’

195 weights, respectively. Hence, the proposed MAGDM

196 methodology can help DMs to make a robust decision

197 despite the unavailability in weights of both experts and

198 attributes.

199 In order to acquire the above objectives, this paper is

200 organized as follows: Section 2 consists of some basic

201 concepts in connection with Lq-ROFSs. In Sect. 3, firstly,

202 At-N&t-CN-based operational laws of the Lq-ROFNs are

203 defined, and then, generalized distance measure and

204 entropy measure of Lq-ROFSs are established. Based on

205 the new operational rules of Lq-ROFNs and PA and HM

206 operators, several aggregation operators, viz. Lq-ROFAPA,

207Lq-ROFAPWA, Lq-ROFAPHM and Lq-ROFAPWHM

208operators, are introduced followed by discussing their

209properties and special cases in Sect. 4. Section 5 is devoted

210to construct MAGDM approach under Lq-ROF environ-

211ment. For calculating the DMs’ weights and attributes’

212weights, algorithm 1 and algorithm 2, respectively, are also

213provided in this section. Consequently, a practical example

214is provided in Sect. 6 to reveal the effectiveness and

215advantages of the proposed method. In Sect. 7, a compar-

216ative analysis with the existing approaches is presented,

217and some conclusions of this study are made in Sect. 8.

2182 Preliminaries

219In this section, some basic concepts of LTS, q-ROFS, At-

220N&t-CNs, PA and HM operators are briefly reviewed.

2212.1 LTS

222Definition 1 Herrera et al. (Herrera et al. 1996) Let S ¼
223S0;S1;S2; . . .;S‘f g be a finite-ordered discrete set with

224odd cardinality. The set S would represent LTS if the

225following conditions are satisfied:

226(i) The set is ordered: if i [ j, then Si [Sj, which

227means Si is superior to Sj.

228(ii) Negation operator: neg Sið Þ ¼ Sj, where j ¼ ‘� i.

229(iii) Min operator: if i� j, i.e. Si�Sj, then

230min Si;Sj

� �
¼ Si.

231(iv) Max operator: if i� j, i.e. Si�Sj then

232max Si;Sj

� �
¼ Si.

233The semantic of S0;S1;S2; . . .;S‘ depend on real situ-

234ations under consideration, for example, in the context of

235quality assessment of the mobile phone, the LTS that may

236be taken as

S ¼ S0;S1;S2;S3;S4;S5;S6f g
¼ extreme low; very low; low;medium; high; veryhigh;f

extreme highg

238238Xu (2005) extended the concept of discrete LTS, S, and

239introduced CLTS, S 0;‘½ �, in the form of S 0;‘½ � ¼
240ShjS0�Sh�S‘; h 2 0; ‘½ �f g satisfying all the conditions

241of discrete LTS.

242Combining the concept of CLTS with q-ROFS, Liu and

243Liu (2018b) introduced the notion of Lq-ROFSs as follows:
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244 2.2 Lq-ROFS

245 Definition 2 Liu and Liu (2018b) Let X ¼ x1; x2; . . .; xnf g
246 be a universe of discourse. An Lq-ROFS eA defined on X is

247 represented by:

~A ¼ x;Sn ~A
xð Þ;Sg ~A

xð Þ
� �

x 2 Xj
� �

; ð1Þ

249249 where Sn ~Ai
;Sg ~Ai

2 S½0;‘� express the linguistic membership

250 degree and linguistic non-membership degree of x 2 X,

251 respectively, satisfying the condition 0�ðn ~Ai
Þq þ

252 ðg ~Ai
Þq� ‘q q� 1ð Þ. ea ¼ hSn;Sgi is called as the Lq-ROFN

253 and Sp ~aðxÞ ¼ S
ð‘q�nq�gqÞ

1
q

is known as the linguistic inde-

254 terminacy degree of x to ea. The family of all Lq-ROFSs in

255 X is denoted by Lq-ROFS(X). The graphical representation

256 of Lq-ROFS is depicted in Fig. 1.

257 In Fig. 1, the triangular region joining the points 0; 0ð Þ,
258 0; ‘ð Þ and ‘; 0ð Þ represents the satisfying zone of LIFNs,

259 whereas the circular region in the first quadrant having

260 centred at the origin and radius ‘ designates the satisfying

261 region of LPFNs. Similarly, the elliptic region in first

262 quadrant having centre at 0; 0ð Þ represents the satisfying

263 region of Lq-ROFNs. From the figure, it is clear that the

264 satisfying zone of Lq-ROFNs fully covers the satisfying

265 zone of LIFNs as well as LPFNs, which is the advantage of

266 choosing Lq-ROFNs.

267 Liu and Liu (2018b) also defined the score function

268 LS eað Þ and the accuracy function LA eað Þ as follows.

269 Definition 3 Liu and Liu (2018b) Let ea ¼ hSn;Sgi be an

270 Lq-ROFN, the score function LS eað Þ and accuracy function

271 LA eað Þ of the Lq-ROFN can be defined as:

LS ~að Þ ¼ ‘q þ nq � gq

2

� 	1
q

; ð2Þ

273273and

LA ~að Þ ¼ nq þ gqð Þ
1
q: ð3Þ

275275To compare any two Lq-ROFNs, the following com-

276parison method is presented based on the above-defined

277functions.

278Definition 4 Liu and Liu (2018b) Let ea1 ¼ hSn1
;Sg1
i,

279ea2 ¼ hSn2
;Sg2
i be any two Lq-ROFNs.

280(i) If LS ea1ð Þ\LS ea2ð Þ, then ea1 � ea2

281(ii) If LS ea1ð Þ ¼ LS ea2ð Þ, then

282• if LA ea1ð Þ\LA ea2ð Þ, then ea1 � ea2 which

283means ea2 is better than ea1;

284• if LA ea1ð Þ ¼ LA ea2ð Þ, then ea1 � ea2, which

285means ea1 is equal to ea2.

286Example 1 An expert assesses the quality of steering

287system compliance for three cars and provides the evalu-

288ation information as ea1 ¼ hS5;S4i, ea2 ¼ hS6;S4i,
289ea3 ¼ hS4;S3i 2 S 0;8½ �, respectively. Let q ¼ 3, then, the

290score functions are calculated as:

LS ~a1ð Þ ¼ 6:5924;LS ~a2ð Þ ¼ 6:9244;LS ~a3ð Þ ¼ 6:4990

292292and then it follows that ea2	ea1	ea3.

2932.3 At-N&t-CNs

294Definition 5 Klir and Yuan (1995), Nguyen and Walker

295(1997) The Archimedean t-Ns (At-Ns) and Archimedean t-

296CNs (At-CNs) can be produced by the relative additive

297generators (Klement and Mesiar 2005). The At-N is char-

298acterized by I a; bð Þ ¼ f�1 f að Þ þ f bð Þð Þ, where f is a

299monotonically decreasing function and satisfies

300f að Þ : 0;m½ � ! Rþ, f�1 að Þ : Rþ ! 0;m½ �, lim
a!1

f�1 að Þ ¼ 0

301and f�1 0ð Þ ¼ 1. The At-CN is formed as

302U a; bð Þ ¼ g�1 g að Þ þ g bð Þð Þ, where g is a monotonically

303increasing function and satisfies g að Þ : 0;m½ � ! Rþ,

304g�1 að Þ : Rþ ! 0;m½ �, lim
a!1

g�1 að Þ ¼ 0 and g�1 0ð Þ ¼ 0 with

305g xð Þ ¼ f 1� xð Þ.

3062.4 HM operator

307Definition 6 Sykora (2009) Let ai i ¼ 1; 2; . . .; nð Þ be a

308collection of non-negative numbers. If

HM a1; a2; . . .; anð Þ ¼ 2

n nþ 1ð Þ
Xn

i; j ¼ 1

i� j

ffiffiffiffiffiffiffiffi
aiaj
p

Fig. 1 Graphical representation of Lq-ROFS
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310310 , then HM a1; a2; . . .; anð Þ is called the HM.

311 Sykora (2009) extended basic HM to a generalized form

312 by introducing two parameters / and w as follows:

HM/;w a1; a2; . . .; anð Þ ¼ 2

n nþ 1ð Þ
Xn

i; j ¼ 1

i� j

aið Þ/ aj

� �w

0

BBBB@

1

CCCCA

1
/þw

:

ð4Þ

314314 It is well known that HM has the advantage of considering

315 the interrelationships between any two input arguments.

316 2.5 The power average operator

317 The PA operator (Yager 2001) is an important aggregation

318 tool that can reduce the negative impacts of unreasonable

319 high or low input values given by any biased DM. It is

320 defined as follows:

321 Definition 7 Yager (2001) Let a1; a2; . . .; anð Þ be a set of

322 evaluated values; then, the PA operator is the mapping

323 defined by

PA a1; a2; . . .; anð Þ ¼
Xn

i¼1

1þ T aið Þð Þ
Pn

k¼1 1þ T akð Þð Þ ai; ð5Þ

325325 where T aið Þ ¼
Pn

j ¼ 1

i 6¼ j

Sup ai; aj

� �
, Sup ai; aj

� �
¼

326 1� d ai; aj

� �
and Sup ai; aj

� �
is the support degree for ai

327 from aj, which satisfies the following three properties:

328

329 (1) Sup ai; aj

� �
2 0; 1½ �;

330 (2) Sup ai; aj

� �
¼ Sup aj; ai

� �
;

331 (3) if dðai; ajÞ� dðal; arÞ; then Sup ðai; ajÞ�
332 Sup ðal; arÞ, where ai; aj

� �
represents the distance

333 between ai and aj.

334 3 At-N&t-CNs-based operational laws
335 and measures for Lq-ROFNs

336 In this section, some basic operational rules, distance and

337 entropy measures, are defined successively.

338 3.1 Fundamental operational laws for Lq-ROFNs
339 based on At-N&t-CNs

340 Following the concepts of At-N&t-CNs, the following

341 operational laws on Lq-ROFNs are defined.

342 Definition 8 Let S ¼ fSr : r 2 ½0; ‘�g be a CLTS,

343 ea1 ¼ hSn1
;Sg1
i, ea2 ¼ hSn2

;Sg2
i and ea ¼ hSn;Sgi be three

344Lq-ROFNs, k [ 0. Then, the Archimedean operational

345laws are defined as

346(i)

347

348

~a1 
A ~a2 ¼ SU n1;n2ð Þ;SI g1;g2ð Þ

¼ S
‘ g�1 g

n1
‘

� �q� �
þg

n2
‘

� �q� �� �� �1
q
;S

‘ f�1 f
g1
‘ð Þqð Þþf

g2
‘ð Þqð Þð Þð Þ

1
q

* +

;

350350
351

352(ii)

~a1 �A ~a2 ¼ SI n1;n2ð Þ;SU g1;g2ð Þ

¼ S
‘ f�1 f

n1
‘

� �q� �
þf

n2
‘

� �q� �� �� �1
q
;S

‘ g�1 g
g1
‘ð Þqð Þþg

g2
‘ð Þqð Þð Þð Þ

1
q

* +

354354
355

356
(iii) k�A ~a¼ S

‘ g�1 kg n
‘ð Þ

qð Þð Þð Þ
1
q
;S

‘ f�1 kf g
‘ð Þqð Þð Þð Þ

1
q
;

357
(iv) ~ak¼ S

‘ f�1 kf n
‘ð Þ

qð Þð Þð Þ
1
q
;S

‘ g�1 kg g
‘ð Þ

qð Þð Þð Þ
1
q
.

358In the following subsections, two information measures,

359viz. distance and entropy measures, for Lq-ROFSs are

360defined, and their necessary properties are examined.

3613.2 Generalized distance measure of Lq-ROFSs

362Distance measures are extensively used to calculate the

363closeness indices of various arguments. In this section, the

364distance between any two Lq-ROFNs is defined by utiliz-

365ing linguistic membership, non-membership, and indeter-

366minacy degrees.

367Definition 9 Let eai ¼ hSni
;Sgi
iji ¼ 1; 2; 3

� �
be any three

368Lq-ROFNs and e� 1. The generalized distance between ea1

369and ea2, denoted by dG ea1; ea2ð Þ, is defined as

dG ~a1; ~a2ð Þ ¼ 1

‘q

1

2
nq

1 � nq
2

�� ��eþ gq
1 � gq

2

�� ��eþ pq
~a1
� pq

~a2

���
���
e� � 	1

e

;

ð6Þ

371371satisfying the properties:

372

373(i) 0� dG ea1; ea2ð Þ� 1;

374(ii) If ea1 ¼ ea2, then dG ea1; ea2ð Þ ¼ 0;

375(iii) dG ea1; ea2ð Þ ¼ dG ea2; ea1ð Þ;
376(iv) dG ea1; ea2ð Þ þ dG ea2; ea3ð Þ� dG ea1; ea3ð Þ.

377Proof (i) dG ea1; ea2ð Þ ¼ 1
‘q

1
2

n1
q � n2

qj je þ g1
q � g2

qj jeþð
�

378p~a1

q�j p~a2

qjeÞÞ
1
ei.e.

dG ~a1; ~a2ð Þ� 1

‘q

1

2
max nq

1 � nq
2

�� ��eþmax gq
1 � gq

2

�� ��eþ pq
~a1
� pq

~a2

���
���
e� � 	1

e

ð7Þ

380380The expression in the R.H.S. is maximum when n1 ¼ ‘
381g1 ¼ 0ð Þ and n2 ¼ 0 g2 ¼ ‘ð Þ or, n1 ¼ 0 g1 ¼ ‘ð Þ and n2 ¼

Development of Archimedean power Heronian mean operators for aggregating linguistic q-rung…

123
Journal : Large 500 Dispatch : 20-6-2023 Pages : 36

Article No. : 8015
h LE h TYPESET

MS Code : SOCO-D-22-03902R1 h CP h DISK4 4



R
E

V
IS

E
D

PR
O

O
F

382 ‘ g2 ¼ 0ð Þ, then p~a1
¼ 0, p~a2

¼ 0, i.e.

383 0� dGð~a1; ~a2Þ� 1
‘q ð12 ð‘qe þ ‘qeÞÞ

1
e ¼ 1.

384 The proof of conditions (ii) and (iii) can be easily

385 derived from the definition of distance measure.

ðivÞ dG ~a1; ~a2ð Þ þ dG ~a2; ~a3ð Þ

¼ 1

‘q

1

2
nq

1 � nq
2

�� ��eþ gq
1 � gq

2

�� ��eþ pq
~a1
� pq

~a2

���
���
e� � 	1

e

þ 1

‘q

1

2
nq

2 � nq
3

�� ��eþ gq
2 � gq

3

�� ��eþ pq
~a2
� pq

~a3

���
���
e� � 	1

e

� 1

‘q2
1
e

nq
1 � nq

2 þ nq
2 � nq

3

�� ��eþ gq
1 � gq

2 þ gq
2

����

�gq
3

��eþ pq
~a1
� pq

~a2
þ pq

~a2
� pq

~a3

���
���
e1

e

	

Using Minkowski’s inequalityð Þ

¼ 1

‘q

1

2
nq

1 � nq
3

�� ��eþ gq
1 � gq

3

�� ��eþ pq
~a1
� pq

~a3

���
���
e� � 	1

e

¼ dG ~a1; ~a3ð Þ

387387 Therefore, dG ea1; ea2ð Þ þ dG ea2; ea3ð Þ� dG ea1; ea3ð Þ.
388 Now, three special cases of dG ea1; ea2ð Þ are discussed for

389 Lq-ROFNs:

390 1: If e ¼ 1, dG ~a1; ~a2ð Þ reduces to a Lq-ROF Hamming

391 distance

dH ~a1; ~a2ð Þ ¼ 1

‘q

1

2
nq

1 � nq
2

�� ��þ gq
1 � gq

2

�� ��þ pq
~a1
� pq

~a2

���
���

� � 	

393393
394

395 2.

396

397

398 If e ¼ 2, then dG ~a1; ~a2ð Þ is reduced to a Lq-ROF

399 Euclidean distance

dE ~a1; ~a2ð Þ ¼ 1

‘q

1

2
nq

1 � nq
2

�� ��2þ gq
1 � gq

2

�� ��2þ pq
~a1
� pq

~a2

���
���
2

� 	� 	1
2

401401
402

403 3.

404

405

406 If e! þ1, then dG ~a1; ~a2ð Þ is reduced to a Lq-ROF

407 Chebyshev distance

dþ1 ~a1; ~a2ð Þ ¼ 1

‘q
max nq

1 � nq
2

�� ��; gq
1 � gq

2

�� ��; pq
~a1
� pq

~a2

���
���

� 

409409
410

411 Example 2 Consider two Lq-ROFNs, ea1 ¼ hS7;S6i and

412 ea2 ¼ hS3;S5i, where Si xð Þ 2 S 0;8½ �. The generalized dis-

413 tance between ea1 and ea2 (assigning q ¼ 3, e ¼ 4) is

414 obtained by using Definition 9. Here, p~a1

3 ¼ 83 � 73 �
415 63 ¼ �47 and p~a2

3 ¼ 83 � 33 � 53 ¼ 360, then

dG ~a1; ~a2ð Þ ¼ 1

83

1

2
73 � 33
�� ��4þ 63 � 53

�� ��4þ �47� 360j j4
� � 	1

4

¼ 0:7226:

417417 On the basis of the concept of generalized distance

418 between Lq-ROFNs, in this subsection, the distance

419 measure among two Lq-ROFSs is defined as follows:

420Definition 10 Let eA and eB be two Lq-ROFSs in X rep-

421resenting the collection of Lq-ROFNs ~ai ¼ hSn ~ai
;Sg ~ai
i and

422
~bi ¼ hSn ~bi

;Sg ~bi
i, respectively, and eai; ebi 2 v 0;‘½ �,

423i ¼ 1; 2; . . .; nð Þ. Then, the generalized distance measure

424dG
eA; eB

� 
between two Lq-ROFSs eA and eB in X, is a

425mapping dG : Lq� ROFSðXÞ  Lq� ROFSðXÞ ! 0; 1½ � is

426defined as follows:

dG
~A; ~B
� �

¼ 1

n

Xn

i¼1

dG ~ai; ~bi

� 

¼ 1

n

Xn

i¼1

1

‘q

1

2
nq

~ai
� nq

~bi

���
���
e
þ gq

~ai
� gq

~bi

���
���
e
þ pq

~ai
� pq

~bi

���
���
e� � 	1

e

;

where e� 1

ð8Þ

428428

4293.3 Entropy measure of Lq-ROFSs

430Entropy is an effective tool to measure the uncertainties in

431a fuzzy set. In this subsection, an entropy measure for Lq-

432ROFSs is developed, which is presented as follows:

433Definition 11 Let eA ¼ ea1; ea2; . . .; eanf g, and eB ¼

434
eb1;
eb2; . . .; ebn

n o
be any two Lq-ROFSs. A real-valued

435function ELq�ROFS : Lq� ROFSðXÞ ! 0; 1½ � is called an

436entropy measure for Lq-ROFSs if it satisfies the following

437axiomatic requirements:

438(i) ELq�ROFS
eA

� 
¼ 0 if and only if eA is a crisp set,

439i.e. Sn ~ai
¼ S‘ and Sg ~ai

¼ S0, or Sn ~ai
¼ S0 and

440Sg ~ai
¼ S‘, for all i ¼ 1; 2; . . .; n;

441(ii) ELq�ROFS
eA

� 
¼ 1 if and only if p~ai

¼ ‘ for all

442i ¼ 1; 2; . . .; n;

443(iii) ELq�ROFS
eA

� 
¼ ELq�ROFS

eA
C

� 
; where eA

C ¼

444ea1
C; ea2

C; . . .; ean
C

n o
and eai

C
denotes the comple-

445ment of eai i.e. eai
C ¼ hSn ~ai

;Sg ~ai
i.

446(iv) ELq�ROFS
eA

� 
�ELq�ROFS

eB
� �

if eA is less fuzzy

447than eB, i.e.

448Sn ~ai
�Sn ~bi

and Sg ~ai
�Sg ~bi

for Sn ~bi
�Sg ~bi

,or Sn ~ai
�Sn ~bi

449and Sg ~ai
�Sg ~bi

for Sn ~bi
�Sg ~bi

, for all i ¼ 1; 2; . . .; n.

450In this subsection, a new entropy measure for Lq-ROFSs

451is introduced. For each eA 2 Lq� ROFSðXÞ, the entropy

452measure ELq�ROFS
eA

� 
for eA is defined by
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ELq�ROFS
~A
� �
¼ 1

2n

Xn

i¼1

1� dG ~ai; ~aC
i

� �� �
1þ p~ai

‘

� q� 

¼ 1

2n

Xn

i¼1

1� 1

‘q
nq

~ai
� gq

~ai

���
���

� 	
2�

nq
~ai
þ gq

~ai

‘q

� 	
:

ð9Þ

454454

455 Theorem 1 Let eA ¼ eai i ¼ 1; 2; . . .; njf g be a Lq-ROFS. A

456 real-valued function ELq�ROFS
eA

� 
on Lq-ROFS(X) defined

457 by Eq. (9) is an entropy for Lq-ROFSs.

458 Proof Definitely, as a meaningful entropy of Lq-ROFSs,

459 it should satisfy the axioms (i)–(iv) in Definition 11.

460 (i) Let eA be a crisp set, then either Sn ~ai
¼ S‘ and Sg ~ai

¼
461 S0 or Sn ~ai

¼ S0 and Sg ~ai
¼ S‘ for i ¼ 1; 2; . . .; n. So from

462 Eq. (9), it can be easily found that ELq�ROFS
eA

� 
¼ 0.

463 On the other hand, suppose ELq�ROFS
eA

� 
¼ 0.

464 Since 1þ p ~ai

‘

� �q 6¼ 0, it is clear from Eq. (9) that 1�
465 1

‘q n~ai

q � g~ai

q
�� �� ¼ 0 for all i ¼ 1; 2; . . .; n, which implies

466 Sn ~ai
¼ S‘ and Sg ~ai

¼ S0 or Sn ~ai
¼ S0 and Sg ~ai

¼ S‘.

467 Hence, eA is a crisp set.

468 (ii) Let p~ai
¼ ‘ for all i ¼ 1; 2; . . .; n. From Eq. (9), it is

469 obvious that ELq�ROFS
eA

� 
¼ 1.

470Again suppose ELq�ROFS
~A
� �
¼ 1. Then from Eq. (9),

1

2
1� 1

‘q
nq

~ai
� gq

~ai

���
���

� 	
1þ p~ai

‘

� q� 
¼ 1

472472, 1� 1

‘q
nq

~ai
� gq

~ai

���
���

� 	
1þ p~ai

‘

� q� 
¼ 2

474474, 1þ p~ai

‘

� q

� 1

‘q
nq

~ai
� gq

~ai

���
��� 1þ p~ai

‘

� q� 
¼ 2

476476, 1
‘q nq

~ai
�

��� gq
~ai
j 1þ p ~ai

‘

� �q� �
¼ � 1� p ~ai

‘

� �q� �
.

477Since 1þ p ~ai

‘

� �q [ 0 and n~ai

q � g~ai

q
�� �� is a non-negative

478number, the above equality holds only if both sides are

479zero. Thus, it is easily found that p~ai
¼ ‘.

480(iii) The proof is trivial from the definitions of eA and

481eA
C

.

482(iv) Let eA; eB 2 Lq� ROFSðXÞ be any two Lq-ROFSs

483with eA � eB, i.e. n~ai
� n~bi

and g~ai
� g~bi

so

484n~ai
� n~bi

� g~bi
� g~ai

for n~bi
� g~bi

.

485Now,

486Since n~ai
� n~bi

� g~bi
� g~ai

,

n~ai
� g~ai

^ n~bi
� g~bi

) n~ai

� �q� ‘q

2
^ n~bi

� q

� ‘q

2
;

488488i.e. n~ai

� �q þ n~bi

� q

� ‘q for i ¼ 1; 2; . . .; n.

489Thus, the expression (10) is non-negative, i.e.

490ELq�ROFS
eA

� 
�ELq�ROFS

eB
� �

holds.

ELq�ROFS
~B
� �
� ELq�ROFS

~A
� �

¼ 1

n

Xn

i¼1

1

2
2�

nq
~bi

þ gq
~bi

‘q

 !

1� 1

‘q
nq

~bi

� gq
~bi

���
���

� 	 !

¼ 1

n

Xn

i¼1

1

2
2�

nq
~bi

þ gq
~bi

‘q

 !

1� 1

‘q
nq

~bi

� gq
~bi

���
���

� 	
� 1

2
2�

nq
~ai
þ gq

~ai

‘q

� 	
1� 1

‘q
nq

~ai
� gq

~ai

���
���

� 	 !

¼ 1

n

Xn

i¼1

1þ
nq

~bi

‘q
�

gq
~bi

‘q

 !

1�
nq

~bi

2‘q
�

gq
~bi

2‘q

 !

� 1þ
nq

~ai

‘q
�

gq
~ai

‘q

� 	
1�

nq
~ai

2‘q
�

gq
~ai

2‘q

� 	 !

¼ 1

n

Xn

i¼1

1þ
nq

~bi

2‘q
�

3gq
~bi

2‘q
�

n2q
~bi

2‘2q
þ

g2q
~bi

2‘2q

0

@

1

A� 1þ
nq

~ai

2‘q
�

3gq
~ai

2‘q
�

n2q
~ai

2‘2q
þ

g2q
~ai

2‘2q

 !0

@

1

A

¼ 1

n

Xn

i¼1

1

2

nq
~bi

‘q
�

nq
~ai

‘q

 !

� 3

2

gq
~bi

‘q
�

gq
~ai

‘q

 !

� 1

2

nq
~bi

‘q

 !2

�
nq

~ai

‘q

� 	2
0

@

1

Aþ 1

2

gq
~bi

‘q

 !2

�
gq

~ai

‘q

� 	2
0

@

1

A

0

@

1

A

¼ 1

n

Xn

i¼1

1

2

nq
~bi

‘q
�

nq
~ai

‘q

 !

1�
nq

~bi

‘q
�

nq
~ai

‘q

 !

þ 1

2

gq
~bi

‘q
�

gq
~ai

‘q

 !
gq

~bi

‘q
þ

gq
~ai

‘q
� 3

 ! !

ð10Þ
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491 Similarly, as for eA � eB for n~bi
� g~bi

, it is obtained that

492 ELq�ROFS
eA

� 
�ELq�ROFS

eB
� �

.

493 Equation (9) expresses the degree of fuzziness for Lq-

494 ROFSs, which includes many single points (Lq-ROFNs).

495 For a single point (Lq-ROFN) belongs to the Lq-ROFS, the

496 entropy of Lq-ROFN ea based on Eq. (9) can be calculated

497 as

E ~að Þ ¼ 1

2
2� 1

‘q
nq þ gqð Þ

� 	
1� 1

‘q
nq � gqj j

� 	
ð11Þ

499499
500 4 Linguistic q-rung orthopair fuzzy
501 aggregation operators

502 4.1 Lq-ROF Archimedean PA operators

503 The PA operator is extended under Lq-ROF context to

504 propose Lq-ROFAPA operator and its weighted form Lq-

505 ROFAPWA operator as follows:

506 Definition 12 Let ea1; ea2; :::; eanf g be a set of Lq-ROFNs,

507 where eai ¼ hSni
;Sgi
i i ¼ 1; 2; . . .; nð Þ and q� 1. The Lq-

508 ROFAPA operator is defined as

Lq� ROFAPA ~a1; ~a2; :::; ~anð Þ ¼ 
A
n
i¼1

1þ T ~aið ÞPn
k¼1 1þ T ~akð Þð Þ ~ai

� 	
;

ð12Þ

510510 where T eaið Þ ¼
Pn

j ¼ 1

j 6¼ i

Sup eai; eaj

� �
, Sup eai; eaj

� �
is the

511 support for eai from eaj.

512 To express Eq. (12) in a simple way, put

513
Ti ¼ 1þT ~aið Þð ÞPn

k¼1
1þT ~akð Þð Þ

, then, Eq. (12) can be expressed as

Lq� ROFAPA ~a1; ~a2; :::; ~anð Þ ¼ 
n
Ai¼1Ti ~ai;

515515 where Ti can be regarded as the weight of the Lq-ROFNs

516 eai, and satisfies 0�Ti� 1 i ¼ 1; 2; . . .; nð Þ and

517
Pn

i¼1Ti ¼ 1.

518 Theorem 2 Let eai ¼ hSni
;Sgi
i i ¼ 1; 2; . . .; nð Þ be a set of

519 Lq-ROFNs. Then, the aggregated value using Lq-ROFAPA

520 operator is also a Lq-ROFN, where

Lq� ROFAPA ~a1; ~a2; :::; ~anð Þ ¼ 
A
n
i¼1Ti ~ai

¼ S

‘ g�1
Pn

i¼1

Tig
ni
‘ð Þ

q
� �� 	� 	1=q ;S

‘ f�1
Pn

i¼1

Tif
gi
‘ð Þ

qð Þ
� 	� 	1=q

* +

ð13Þ

522522

523 Proof Based on Definition 8,

524
Ti ~ai ¼ S

‘ g�1 Tig
ni
‘ð Þ

q
� �� �� �1

q
;S

‘ f�1 Ti f
gi
‘ð Þ

qð Þð Þð Þ
1
q

* +

.

525 Then, it is obtained that

T1 ~a1 
A T2 ~a2

¼ S
‘ g�1 T1g

n1
‘

� �q� �� �� �1
q
;S

‘ f�1 T1f
g1
‘ð Þ

qð Þð Þð Þ
1
q

* +


A S
‘ g�1 T2g

n2
‘

� �q� �� �� �1
q
;S

‘ f�1 T2f
g2
‘ð Þ

qð Þð Þð Þ
1
q

* +

¼ S

‘ g�1
P2

i¼1

Tig
ni
‘ð Þ

q
� �� 	� 	1=q ;S

‘ f�1
P2

i¼1

Tif
gi
‘ð Þ

qð Þ
� 	� 	1=q

* +

527527So, the Theorem is true for n ¼ 2.

528Now let the Theorem is true for n ¼ m, i.e., Lq�
529ROFAPA ~a1; ~a2; . . .; ~amð Þ ¼ 
A

m
i¼1Ti ~ai

530

¼ S

‘ g�1
Pm

i¼1

Tig
ni
‘ð Þ

q
� �� 	� 	1=q ;S

‘ f�1
Pm

i¼1

Tif
gi
‘ð Þ

qð Þ
� 	� 	1=q

* +

:

531Now it would be shown that it is true for n ¼ mþ 1;

Lq� ROFAPA ~a1; ~a2; :::; ~am; ~amþ1ð Þ
¼ 
A

m
i¼1Ti ~ai

� �

A Tmþ1 ~amþ1ð Þ

¼ S

‘ g�1
Pm

i¼1

Tig
ni
‘ð Þ

q
� �� 	� 	1=q ;S

‘ f�1
Pm

i¼1

Tif
gi
‘ð Þ

qð Þ
� 	� 	1=q

* +


A S
‘ g�1 Tmþ1g

nmþ1
‘

� �q� �� �� �1
q
;S

‘ f�1 Tmþ1f
gmþ1
‘ð Þqð Þð Þð Þ

1
q

* +

¼ S

‘ g�1
Pmþ1

i¼1

Tig
ni
‘ð Þ

q
� �

� 	� 	1=q ;S

‘ f�1
Pmþ1

i¼1

Tif
gi
‘ð Þ

qð Þ
� 	� 	1=q

* +

533533Since it is true for n ¼ mþ 1, the Theorem is proved for

534all n.

535In reality, it is not so logical to treat all the aspects of

536attributes that influence the decision-making process

537equally while dealing with a MAGDM situation. This

538implies that the attribute weights should be varied.

539However, in the process of aggregating DM’s perspective

540information, the Lq-ROFAPA operator does not evaluate

541the influence of weight on the result. Therefore, the weight

542component must be integrated further into Lq-ROFAPA, as

543shown in Definition 12.

544Definition 13 Let ea1; ea2; :::; eanf g be a set of Lq-ROFNs,

545and q� 1. x ¼ x1;x2; . . .;xnð ÞT is the weight vector of

546ea1; ea2; :::; eanð Þ, which satisfies
Pn

i¼1xi ¼ 1 and xi 2 0; 1½ �.
547The Lq-ROFAPWA operator of the Lq-ROFNs is defined

548as

Lq� ROFAPWA ~a1; ~a2; :::; ~anð Þ

¼ 
A
n
i¼1

xi 1þ T ~aið Þð Þ
Pn

k¼1 xk 1þ T ~akð Þð Þ ~ai

� 	
; ð14Þ

N. Deb et al.

123
Journal : Large 500 Dispatch : 20-6-2023 Pages : 36

Article No. : 8015
h LE h TYPESET

MS Code : SOCO-D-22-03902R1 h CP h DISK4 4



R
E

V
IS

E
D

PR
O

O
F

550550 where T eaið Þ ¼
Pn

j ¼ 1

j 6¼ i

Sup eai; eaj

� �
.,

551 For ease of expression, Eq. (14) may be written as.

Lq� ROFAPWA ~a1; ~a2; . . .; ~anð Þ ¼ 
A
n
i¼1Xi ~ai;

553553 where Xi is the weight of the Lq-ROFNs eai, that satisfies

554

Pn
i¼1Xi ¼ 1 and for Xi ¼

xi 1þT ea ið Þð ÞPn

k¼1
xk 1þT eakð Þð Þ, Xi 2 0; 1½ �.

555 Theorem 3 Let eai ¼ hSni
;Sgi
i i ¼ 1; 2; . . .; nð Þ be a col-

556 lection of Lq-ROFNs. Then, the aggregated result by using

557 Lq-ROF Archimedean power-weighted averaging (Lq-

558 ROFAPWA) operator is still a Lq-ROFN and

Lq� ROFAPWA ~a1; ~a2; :::; ~anð Þ

¼ 
A
n
i¼1

xi 1þ T ~aið Þð Þ
Pn

k¼1 xk 1þ T ~akð Þð Þ ~ai

� 	

¼ 
A
n
i¼1 Xi ~aið Þ ¼

S

‘ g�1
Pn

i¼1

Xig
ni
‘ð Þ

q
� �

� 	� 	1=q ;S

‘ f�1
Pn

i¼1

Xi f
gi
‘ð Þ

qð Þ
� 	� 	1=q

* +

ð15Þ

560560 where Xi ¼
xi 1þT ea ið Þð ÞPn

k¼1
xk 1þT eakð Þð Þ, and T eaið Þ ¼

561

Pn

j ¼ 1

j 6¼ i

Sup eai; eaj

� �
.

562 Proof The proof is the same as Theorem 2, so it is omitted

563 here.

564 The specific expressions of the Lq-ROFAPWA operator

565 are constructed as follows:

566 If Hamacher t-N&t-CNs are applied, i.e. f tð Þ ¼
567 log q

t þ 1� q
� �

is used in Eq. (15), Lq-ROFAPWA oper-

568 ator converted to Lq-ROF Hamacher power WA (Lq-

569 ROFHPWA) operator and is expressed as

Lq� ROFHPWA ~a1; ~a2; :::; ~anð Þ

¼ S

‘ 1� q

Qn

i¼1

q

1� ni
‘ð Þ

qþ1�q

� 	Xi

þq�1

0

BBB@

1

CCCA

1
q
;S

‘ q

Qn

i¼1

q
gi
‘ð Þq

þ1�q

� 	Xi

þq�1

0

BBB@

1

CCCA

1
q

* +

ð16Þ

571571 If Dombi t-N&t-CNs are applied, i.e. f tð Þ ¼ 1
t � 1
� �s

, is

572 put in Eq. (15), Lq-ROFAPWA operator converted to Lq-

573 ROF Dombi power WA (Lq-ROFDPWA) operator, which

574 can be expressed as:

Lq� ROFDPWA ~a1; ~a2; :::; ~anð Þ

¼ S

‘ 1� 1

1þ
Pn

i¼1
Xi

1

1� ni
‘ð Þ

q�1

� 	s� 	1
s

0

BBBB@

1

CCCCA

1=q ;S

‘ 1

1þ
Pn

i¼1
Xi

1
gi
‘ð Þ

q�1

� 	s� 	1
s

0

BBB@

1

CCCA

1=q

* +

:

ð17Þ

576576If Frank t-N&t-CNs are applied, i.e. put

577f tð Þ ¼ log f�1
ft�1

� 
, f[ 1 to Eq. (15), Lq-ROFAPWA oper-

578ator converted to Lq-ROF Frank power WA (Lq-

579ROFFPWA) operator can be obtained as:

Lq� ROFFPWA ~a1; ~a2; :::; ~anð Þ

¼ S

‘ 1�

log
f�1

Qn

i¼1

f�1

f
1� ni

‘ð Þ
q

�1

 !Xi
 !þ1

0

BBBBB@

1

CCCCCA

log f

0

BBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCA

1=q ;

*

S

‘

log
f�1

Qn

i¼1

f�1

f

gi
‘ð Þq�1

 !Xi
 !þ1

0

BBBBB@

1

CCCCCA

log f

0

BBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCA

1
q

i: ð18Þ

581581

5824.2 Archimedean HM-based power aggregation
583operators on Lq-ROF environment

584In this section, Lq-ROFAPHM and Lq-ROFAPWHM

585aggregation operators are developed based on power

586operational laws, At-N&t-CNs and HM operator under Lq-

587ROF context.

588Definition 14 Let /;w[ 0 and eai ¼ hSni
;Sgi
i ði ¼

5891; 2; . . .; nÞ be a collection of Lq-ROFNs, then the Lq-

590ROFAPHM aggregation operator is defined as fol-

591

lows:where T eaið Þ ¼
Pn

j ¼ 1

j 6¼ i

Sup eai; eaj

� �
;
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592 Sup eai; eaj

� �
¼ 1� d eai; eaj

� �
. To simplify Eq. (19), let

593
Ti ¼

1þT ea ið Þð ÞPn

k¼1
1þT eakð Þð Þ, then Eq. (19) can be denoted as:

Lq� ROFAPWHM/;w
x ~a1; ~a2; . . .; ~anð Þ

¼ 2

n nþ 1ð Þ
An
i;j¼1

i� j

nXi ~aið Þ/�A nXj ~aj

� �w� 
0

B@

1

CA

1
/þw

;

595595 where Ti means the power weights of eai.

596 Theorem 4 Let /;w[ 0 and eai ¼ hSni
;Sgi
i ði ¼

597 1; 2; . . .; nÞ be a group of Lq-ROFNs, then their fused

598 results by utilizing the Lq-ROFAPHM operator are also a

599 Lq-ROFN, and

600

601
where Ti ¼

1þT ea ið Þð ÞPn

k¼1
1þT eakð Þð Þ.

602Proof On the basis of the operational laws as defined in

603Definition 8,

nTi ~ai ¼ S
‘ g�1 nTig

ni
‘ð Þ

q
� �� �� �1

q
;S

‘ f�1 nTi f
gi
‘ð Þ

qð Þð Þð Þ
1
q

* +

;

605605
nTj ~aj ¼ S

‘ g�1 nTjg
nj
‘

� �q� �� �� �1
q
;S

‘ f�1 nTj f
gj
‘ð Þ

qð Þð Þð Þ
1
q

* +

:

607607Further, it is obtained

Lq� ROFAPHM/;w ~a1; ~a2; . . .; ~anð Þ ¼ 2

n nþ 1ð Þ
An
i;j¼1

i� j

nTi ~aið Þ/�A nTj ~aj

� �w� 
0

BB@

1

CCA

1
/þw

¼ S

‘ f�1 1
/þwf g�1 2

n nþ1ð Þ

Pn

i; j ¼ 1

i� j

g f�1 /f g�1 nTig
ni
‘ð Þ

q
� �� �� �

þwf g�1 nTjg
nj
‘

� �q� �� �� �� �� �

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

1
q
;

*

S

‘ g�1 1
/þwg f�1 2

n nþ1ð Þ

Pn

i; j ¼ 1

i� j

f g�1 /g f�1 nTi f
gi
‘ð Þ

qð Þð Þð Þþwg f�1 nTjf
gj
‘ð Þ

qð Þð Þð Þð Þð Þ

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

1
q

+

;

ð20Þ

Lq� ROFAPHM/;w ~a1; ~a2; . . .; ~anð Þ ¼ 2

n nþ 1ð Þ
An
i;j¼1

i� j

n 1þ T ~aið Þð Þ
Pn

k¼1 1þ T ~akð Þð Þ ~ai

� 	/

�A

n 1þ T ~aj

� �� �
Pn

k¼1 1þ T ~akð Þð Þ ~aj

� 	w
 !0

B@

1

CA

1
/þw

;

ð19Þ
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nTi ~aið Þ/�A nTj ~aj

� �w¼

S
‘ f�1 /f g�1 nTig

ni
‘ð Þ

q
� �� �� �� �� �1

q
;S

‘ g�1 /g f�1 nTi f
gi
‘ð Þ

qð Þð Þð Þð Þð Þ
1
q

* +

�A

609609
S
‘ f�1 wf g�1 nTjg

nj
‘

� �q� �� �� �� �� �1
q
;S

‘ g�1 wg f�1 nTjf
gj
‘ð Þ

qð Þð Þð Þð Þð Þ
1
q

* +

611611 ¼ S
‘ f�1 f f�1 /f g�1 nTig

ni
‘ð Þ

q
� �� �� �� �� �

þf f�1 wf g�1 nTjg
nj
‘

� �q� �� �� �� �� �� �� �1
q
;quad

*

S
‘ g�1 g g�1 /g f�1 nTi f

gi
‘ð Þ

qð Þð Þð Þð Þð Þþg g�1 wg f�1 nTj f
gj
‘ð Þ

qð Þð Þð Þð Þð Þð Þð Þ
1
q

�

613613

¼ S
‘ f�1 /f g�1 nTig

ni
‘ð Þ

q
� �� �� �

þwf g�1 nTjg
nj
‘

� �q� �� �� �� �� �1
q
;

*

S
‘ g�1 /g f�1 nTi f

gi
‘ð Þ

qð Þð Þð Þþwg f�1 nTjf
gj
‘ð Þ

qð Þð Þð Þð Þð Þ
1
q

� 	
i

615615 .

616 By mathematical induction method, it can be shown that


n

Ai;j¼1

i� j

nTi ~aið Þ/�A nTj ~aj

� �w� 

¼ S

‘ g�1
Pn

i; j ¼ 1

i� j

g f�1 /f g�1 nTig
ni
‘ð Þ

q
� �� �� �

þwf g�1 nTjg
nj
‘

� �q� �� �� �� �� �

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

1
q
;

*

S

‘ f�1
Pn

i; j ¼ 1

i� j

f g�1 /g f�1 nTif
gi
‘ð Þ

qð Þð Þð Þþwg f�1 nTjf
gj
‘ð Þ

qð Þð Þð Þð Þð Þ

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

1
q

+

618618Now,

619Finally,

2

nðnþ 1Þ
An
i;j¼1

i� j

nTi ~aið Þ/�A nTj ~aj

� �w� 
¼ S

‘ g�1 2
nðnþ1Þ

Pn

i; j ¼ 1

i� j

g f�1 /f g�1 nTig
ni
‘ð Þ

q
� �� �� �

þwf g�1 nTjg
nj
‘

� �q� �� �� �� �� �

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

1
q
;

*

S

‘ f�1 2
nðnþ1Þ

Pn

i; j ¼ 1

i� j

f g�1 /g f�1 nTi f
gi
‘ð Þ

qð Þð Þð Þþwg f�1 nTjf
gj
‘ð Þ

qð Þð Þð Þð Þð Þ

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

1
q

+
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620 Hence, the Theorem is proved.

621 Theorem 5 (Idempotency). Let ~ai ¼ Sni
;Sgi

� �

622 i ¼ 1; 2; . . .; nð Þ be a collection of n Lq-ROFNs. If ~ai ¼
623 ~a ¼ Sn;Sg

� �
for all i ¼ 1; 2; . . .; n, then

624 Lq� ROFAPHM/;w ~a1; ~a2; . . .; ~anð Þ ¼ ~a.

625Proof Since ~ai ¼ Sni
;Sgi

� �
¼ Sn;Sg
� �

¼ ~a for all

626i ¼ 1; 2; . . .; n;

627Sup ~ai; ~aj

� �
¼ 1, d ~ai; ~aj

� �
¼ 0for~ai ¼ ~aj

� �
for all

628i; j ¼ 1; 2; . . .; n;

629So Ti ¼ 1
n for all i ¼ 1; 2; . . .; n;

630Then,

2

n nþ 1ð Þ
2

nðnþ 1Þ
An
i;j¼1

i� j

nTi ~aið Þ/�A nTj ~aj

� �w� 
0

BB@

¼ S

‘ g�1 2
nðnþ1Þ

Pn

i; j ¼ 1

i� j

g f�1 /f g�1 nTig
ni
‘ð Þ

q
� �� �� �

þwf g�1 nTjg
nj
‘

� �q� �� �� �� �� �

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

1
q
;S

‘ f�1 2
nðnþ1Þ

Pn

i; j ¼ 1

i� j

f g�1 /g f�1 nTif
gi
‘ð Þ

qð Þð Þð Þþwg f�1 nTjf
gj
‘ð Þ

qð Þð Þð Þð Þð Þ

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

1
q

+

nTi ~aið Þ/�A nTj ~ajð Þw
� �

Þ
1

/þw

*

¼ S

‘ f�1 1
/þwf g�1 2

n nþ1ð Þ

Pn

i; j ¼ 1

i� j

g f�1 /f g�1 nTig
ni
‘ð Þ

q
� �� �� �

þwf g�1 nTjg
nj
‘

� �q� �� �� �� �� �

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

1
q
;

*

9
>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>;

S

‘ g�1 1
/þwg f�1 2

n nþ1ð Þ

Pn

i; j ¼ 1

i� j

f g�1 /g f�1 nTif
gi
‘ð Þqð Þð Þð Þþwg f�1 nTjf

gj
‘ð Þ

qð Þð Þð Þð Þð Þ

0

BBB
BB@

1

CCC
CCA

0

BBB
BB@

1

CCC
CCA

0

BBB
BB@

1

CCC
CCA

0

BBB
BB@

1

CCC
CCA

1
q

i:

Lq� ROFAPHM/;w ~a1; ~a2; . . .; ~anð Þ ¼ Lq� ROFAPHM/;w ~a; ~a; . . .; ~að Þ

¼ S

‘ f�1 1
/þwf g�1 2

n nþ1ð Þ

Pn

i; j ¼ 1

i� j

g f�1 /þwð Þf g�1 g n
‘ð Þ

qð Þð Þð Þð Þð Þ

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

1
q
;S

‘ g�1 1
/þwg f�1 2

n nþ1ð Þ

Pn

i; j ¼ 1

i� j

f g�1 /þwð Þg f�1 f g
‘ð Þ

qð Þð Þð Þð Þð Þ

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

1
q

* +

¼ S

‘ f�1 1
/þwf g�1 2

n nþ1ð Þ

Pn

i; j ¼ 1

i� j

g f�1 /þwð Þf n
‘ð Þ

qð Þð Þð Þ

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

1
q
;S

‘ g�1 1
/þwg f�1 2

n nþ1ð Þ

Pn

i; j ¼ 1

i� j

f g�1 /þwð Þg g
‘ð Þ

qð Þð Þð Þ

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

1
q

* +

¼ S
‘ f�1 1

/þwf g�1 2
n nþ1ð Þ

n nþ1ð Þ
2

g f�1 /þwð Þf n
‘ð Þ

qð Þð Þð Þ
� � � � 1

q
;S

‘ g�1 1
/þwg f�1 2

n nþ1ð Þ
n nþ1ð Þ

2
f g�1 /þwð Þg g

‘ð Þ
qð Þð Þð Þ

� � � � 1
q

* +

¼ S
‘ f�1 f n

‘ð Þ
qð Þð Þð Þ

1
q
;S

‘ g�1 g g
‘ð Þ

qð Þð Þð Þ
1
q

� �
¼ S

‘ n
‘ð Þ

qð Þ
1
q
;S

‘ g
‘ð Þ

qð Þ
1
q

� �
¼ Sn;Sg

� �
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631 This completes the proof of the Theorem.

632 Theorem 6 (Boundedness). Let eai ¼ hSni
;Sgi
i ði ¼

633 1; 2; . . .; nÞ be a collection of Lq-ROFNs, and

634 n� ¼ min
i

nif g, nþ ¼ max
i

nif g, g� ¼ min
i

gif g, gþ ¼

635 max
i

gif g then

~a� �Lq� ROFAPHM/;w ~a1; ~a2; . . .; ~anð Þ� ~aþ;

637637 where

638And

639Proof Since g is an increasing function for all

640i ¼ 1; 2; . . .; n;

g
n�

‘

� 	q� 	
� g

ni

‘

� 	q� 	

642642i.e. g�1 nTig
n�

‘

� �q
� � 

� g�1 nTig
ni

‘

� q� � 
.

643Again since f is a decreasing function, it is observed that

~a� ¼ S

‘ f�1 1
/þwf g�1 2

n nþ1ð Þ

Pn

i; j ¼ 1

i� j

g f�1 /f g�1 nTig
n�
‘ð Þ

qð Þð Þð Þþwf g�1 nTjg
n�
‘ð Þ

qð Þð Þð Þð Þð Þ

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

1
q
;

*

S

‘ g�1 1
/þwg f�1 2

n nþ1ð Þ

Pn

i; j ¼ 1

i� j

f g�1 /g f�1 nTif
gþ
‘

� �q� �� �� �
þwg f�1 nTjf

gþ
‘

� �q� �� �� �� �� �

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

1
q

+

~aþ ¼ S

‘ f�1 1
/þwf g�1 2

n nþ1ð Þ

Pn

i; j ¼ 1

i� j

g f�1 /f g�1 nTig
nþ
‘

� �q� �� �� �
þwf g�1 nTjg

nþ
‘

� �q� �� �� �� �� �

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

1
q

*

S

‘ g�1 1
/þwg f�1 2

n nþ1ð Þ

Pn

i; j ¼ 1

i� j

f g�1 /g f�1 nTif
g�
‘ð Þ

qð Þð Þð Þþwg f�1 nTj f
g�
‘ð Þ

qð Þð Þð Þð Þð Þ

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

0

BBBBB@

1
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0
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q
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/f g�1 nTig
n�

‘

� 	q� 	� 	� 	
�/f g�1 nTig

ni

‘

� 	q� 	� 	� 	
:

645645 Similarly, wf g�1 nTjg
n�
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659 Similarly, it can be shown that

660 Therefore from Eqs. (21) and (22), it is found that

~a� �Lq� ROFAPHM/;w ~a1; ~a2; . . .; ~anð Þ:

662662 In a similar way, it can be shown that

Lq� ROFAPHM/;w ~a1; ~a2; . . .; ~anð Þ� ~aþ:

664664 Hence, Theorem is proved.

665 Definition 15 Let /;w[ 0 and eai ¼ hSni
;Sgi
i ði ¼

666 1; 2; . . .; nÞ be a collection of Lq-ROFNs whose weighted

667 vectors are x ¼ x1;x2; . . .;xnð ÞT , which satisfies xi 2
668 0; 1½ � and

Pn
i¼1xi ¼ 1, and then, the Lq-ROFAPWHM

669 aggregation operator is defined as follows:where

670

T eaið Þ ¼
Pn

j ¼ 1

j 6¼ i

Sup eai; eaj

� �
; Sup eai; eaj

� �
¼ 1� d eai; eaj

� �
.

671
To simplify Eq. (23), let Xi ¼

xj 1þT ea jð Þð ÞPn

k¼1
xk 1þT eakð Þð Þ; then,

672 Eq. (23) can be denoted as:

Lq� ROFAPHM/;w ~a1; ~a2; . . .; ~anð Þ

¼ 2

n nþ 1ð Þ
An
i;j¼1

i� j

nTi ~aið Þ/�A nTj ~aj

� �w� 
0

B@

1

CA

1
/þw

;

674674where Xi means the power weights of eai.

675Theorem 7 Let eai ¼ hSni
;Sgi
i ði ¼ 1; 2; . . .; nÞ be a col-

676lection of Lq-ROFNs, whose weighted vectors are

677x ¼ x1;x2; . . .;xnð ÞT , satisfies xi 2 0; 1½ � and

678
Pn

i¼1xi ¼ 1. Let /;w[ 0 be any numbers. Then, the

679aggregated value using Lq-ROFAPWHM is also a Lq-

680ROFN and
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Lq� ROFAPWHM/;w
x ~a1; ~a2; . . .; ~anð Þ

¼ 2

n nþ 1ð Þ
An
i;j¼1
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682 where �i ¼ !j 1þ T e�j
� �� �Pn

k¼1!k 1þ T e�kð Þð Þ.
683 Proof The proof is similar to Theorem 4.

684 Theorem 7 presents a generalized form of the Lq-ROF

685 aggregation operator. If specific functions are assigned to f

686 and g in Eq. (24), then particular operators can be

687 constructed.

688Case 1: If the additive generators of algebraic t-N&t-

689CNs are, respectively, assigned to f and g, i.e. f tð Þ ¼ �logt

690and g tð Þ ¼ �log 1� tð Þ, then a Lq-ROF power-weighted

691HM (Lq-ROFPWHM) operator is constructed:

692Case 2: If the additive generators of Einstein t-N&t-

693CNs are, respectively, assigned to f and g, i.e. f tð Þ ¼
694log 2�t
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, then a Lq-ROF Einstein

Lq� ROFAPWHM/;w
x ~a1; ~a2; . . .; ~anð Þ ¼ 2

n nþ 1ð Þ
An
i;j¼1

i� j

nxi 1þ T ~aið Þð Þ
Pn

k¼1 xk 1þ T ~akð Þð Þ ~ai

� 	/

�A

nxj 1þ T ~aj

� �� �
Pn

k¼1 xk 1þ T ~akð Þð Þ ~aj

� 	w
 !

0

BB@

1

CCA

1
/þw

¼ S

‘ f�1 1
/þwf g�1 2

n nþ1ð Þ

Pn

i; j ¼ 1

i� j

g f�1 /f g�1 nXig
ni
‘ð Þ

q
� �� �� �

þwf g�1 nXjg
nj
‘

� �q� �� �� �� �� �

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

1
q

*

S

‘ g�1 1
/þwg f�1 2

n nþ1ð Þ

Pn

i; j ¼ 1

i� j

f g�1 /g f�1 nXif
gi
‘ð Þ

qð Þð Þð Þþwg f�1 nXjf
gj
‘ð Þ

qð Þð Þð Þð Þð Þ

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

0

BBBBB@

1

CCCCCA

1
q

+

ð24Þ

Lq� ROFPWHM/;w
x ~a1; ~a2; . . .; ~anð Þ ¼ S

‘ 1�
Qn

i; j ¼ 1

i� j

1� 1� 1� ni
‘ð Þ

q
� �nXi

� /

1� 1� nj
‘

� �q� �nXj
� w

� 	

0

BBBBB@

1

CCCCCA

2
n nþ1ð Þ

0

BBBBBB@

1

CCCCCCA

1
q /þwð Þ

;

*

S

‘ 1�
Qn

i; j ¼ 1

i� j

1� 1� 1� ni
‘ð Þ

q
� �nXi

� /

1� 1� nj
‘

� �q� �nXj
� w

� 	

0

BBBBB@

1

CCCCCA

2
n nþ1ð Þ

0

BBBBBB@

1

CCCCCCA

1
q /þwð Þ

+ ð25Þ

N. Deb et al.

123
Journal : Large 500 Dispatch : 20-6-2023 Pages : 36

Article No. : 8015
h LE h TYPESET

MS Code : SOCO-D-22-03902R1 h CP h DISK4 4



R
E

V
IS

E
D

PR
O

O
F

695 power-weighted HM (Lq-ROFEPWHM) operator is

696 constructed:
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703703 Case 3: If the additive generators of Hamacher t-N&t-

704 CNs are, respectively, assigned to f and g, i.e. f tð Þ ¼
705 log q

t þ 1� q
� �

and g tð Þ ¼ log q
1�t þ 1� q
� �

, then a Lq-

706ROF Hamacher power-weighted HM (Lq-ROFHPWHM)

707operator is constructed:
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714Case 4: If the additive generators of Dombi t-N&t-CNs

715are, respectively, assigned to f and g, i.e. f tð Þ ¼ 1
t � 1
� �s

716and g tð Þ ¼ 1
1�t � 1
� �s

, then a Lq-ROF Dombi power-
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717 weighted HM (Lq-ROFDPWHM) operator is constructed:
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720 Case 5: If the additive generators of Frank t-N&t-CNs

721 are, respectively, assigned to f and g, i.e. f tð Þ ¼ log f�1
ft�1

� 

722 and g tð Þ ¼ log f�1

f1�t�1

� 
, f [ 1, then a Lq-ROF Frank

723 power-weighted HM (Lq-ROFFPWHM) operator is con-
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and

Fig. 2 Flowchart of the proposed methodology

Table 1 The Lq-ROFDM eX
1ð Þ

provided by the DM D 1ð Þ

C1 C2 C3 C4

A1 S6;S1ð Þ S3;S1ð Þ S3;S3ð Þ S1;S6ð Þ
A2 S3;S4ð Þ S3;S4ð Þ S2;S5ð Þ S2;S4ð Þ
A3 S1;S3ð Þ S2;S3ð Þ S3;S2ð Þ S6;S1ð Þ
A4 S6;S2ð Þ S4;S3ð Þ S5;S1ð Þ S7;S1ð Þ

Table 2 The Lq-ROFDM eX
2ð Þ

provided by the DM D 2ð Þ

C1 C2 C3 C4

A1 S3;S2ð Þ S4;S1ð Þ S3;S4ð Þ S2;S3ð Þ
A2 S5;S2ð Þ S2;S1ð Þ S3;S4ð Þ S2;S5ð Þ
A3 S2;S3ð Þ S3;S3ð Þ S1;S2ð Þ S3;S3ð Þ
A4 S5;S2ð Þ S3;S3ð Þ S5;S2ð Þ S4;S1ð Þ

Table 3 The Lq-ROFDM eX
3ð Þ

provided by the DM D 3ð Þ

C1 C2 C3 C4

A1 S3;S3ð Þ S3;S5ð Þ S6;S1ð Þ S2;S6ð Þ
A2 S3;S2ð Þ S2;S4ð Þ S2;S1ð Þ S3;S4ð Þ
A3 S6;S1ð Þ S2;S5ð Þ S3;S4ð Þ S1;S3ð Þ
A4 S5;S1ð Þ S4;S4ð Þ S6;S2ð Þ S5;S2ð Þ
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728728 For each of the above cases Xi ¼
xj 1þT ~ajð Þð ÞPn

k¼1
xk 1þT ~akð Þð Þ

is

729 considered.

7305 An MAGDM method based on Lq-ROF
731information with unknown attributes
732and expert weights

733In this section, an effective approach for solving MAGDM

734problems under Lq-ROF environments is designed with

735unknown attributes and unknown expert weights. The

736problem is described as follows.

737Consider D ¼ D 1ð Þ;D 2ð Þ; . . .;D tð Þ
n o

as the set of DMs,

738A ¼ A1;A2; . . .;Amf g as a finite set of alternatives, and let

739C ¼ C1; C2; . . .; Cnf g be the set of n attributes. Assume that

740the DM D kð Þ k ¼ 1; 2; . . .; tð Þ provides his/her judgement

741information for the alternative Ai i ¼ 1; 2; . . .;mð Þ in regard

742to the attribute Cj j ¼ 1; 2; . . .; nð Þ, in the form of Lq-

743ROFNs, which are presented in a Lq-ROF decision matrix

744
(Lq-ROFDM) eX

kð Þ ¼ ea kð Þ
ij

h i

mn
, where ea kð Þ

ij ¼ hSn kð Þ
~aij

;S
g kð Þ

~aij

i

745
are Lq-ROFNs. Here, for the DM D kð Þ; S

n kð Þ
~aij

indicates the

746degree that the alternative Ai satisfies the attribute Cj and

747
S

g kð Þ
~aij

indicates the degree that the alternative Ai fails to

748satisfy the attribute Cj. It is to be mentioned here that the

749weights of DMs and attributes are unknown. In this

750method, the unknown weight vector of the DMs X ¼
751X1;X2; . . .;Xtð ÞT and weight vector of the attributes H ¼
752H1;H2; . . .;Hnð ÞT are determined first. If those weight

753vectors are known, the steps relating to these weight

754evaluations may be skipped.

755The aim of this MAGDM method is to select the most

756desirable alternative(s) on the basis of given Lq-ROFDMs.

757An algorithm of the MAGDM with Lq-ROF information is

758provided as follows.
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Lq� ROFFPWHM/;w
x ~a1; ~a2; . . .; ~anð Þ

¼ S

‘ log f�1ð Þ= f�1

f
1�

log
f�1

Qn

i; j ¼ 1

i� j

f�1

f
1�

log
f�1
Fij
þ1

� 

log f �1

0

BBB@

1

CCCA

0

BBB@

1

CCCA

2
n nþ1ð Þ

þ1

0

BBBBBBBBBBBBB@

1

CCCCCCCCCCCCCA

log f �1

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

1
/þw

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

þ1

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

= log fð Þ

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

1
q
;

*

S

‘ 1� log f�1ð Þ= f�1

f
1�

log
f�1

Qn

i; j ¼ 1

i� j

f�1

f
1�

log
f�1
Gij
þ1

� 

log f �1

0

BBB@

1

CCCA

0

BBB@

1

CCCA

2
n nþ1ð Þ

þ1

0

BBBBBBBBBBBBB@

1

CCCCCCCCCCCCCA

log f �1

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

1
/þw

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

þ1

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

= log f

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

1
q

+

;
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759 Step 1 Convert the individual Lq-ROFDM eX
kð Þ ¼

760 ea kð Þ
ij

h i

mn
into normalized Lq-ROFDM eR

kð Þ

761
¼ er kð Þ

ij

h i

mn
¼ hS

n kð Þ
~rij

;S
g kð Þ

~rij

i
� �

mn

. The normalization pro-

762 cess is done as follows:

er kð Þ
ij ¼

hS
n kð Þ

~aij

;S
g kð Þ

~aij

i for benefit attributes;

hS
g kð Þ

~aij

;S
n kð Þ

~aij

i for cost attributes:

8
<

:
ð30Þ

764764 Step 2: On the basis of Eq. (6), calculate the support

765 degrees between the Lq-ROFN er kð Þ
ij with other Lq-ROFNs

766 er lð Þ
ij k; l ¼ 1; 2; . . .; t; k 6¼ lð Þ, shown as follows:

Sup ~r
kð Þ

ij ; ~r
lð Þ

ij

� 
¼ 1

� d ~r
kð Þ

ij ; ~r
lð Þ

ij

� 
; i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; nð Þ:

ð31Þ

768768Calculated support degrees, Sup er kð Þ
ij ; er

lð Þ
ij

� 
, are arran-

769ged in a matrix form, i.e. Sup er kð Þ
ij ; er

lð Þ
ij

� h i

mn
and for

770simplicity, the support degree matrices

771Sup er kð Þ
ij ; er

lð Þ
ij

� h i

mn
are represented by dSup

kl

772k; l ¼ 1; 2; . . .; t; k 6¼ lð Þ.

773Step 3: Determine the sum of supports, T er kð Þ
ij

� 
corre-

774sponding to er kð Þ
ij , as

T ~r
kð Þ

ij

� 
¼
Xt

l¼1;l6¼k

Sup ~r
kð Þ

ij ; ~r
lð Þ

ij

� 
;

i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; n; k 6¼ lð Þ;
ð32Þ

776776and for convenience, the formulated matrix T er kð Þ
ij

� h i

mn
777is denoted as T kð Þ.

778Step 4: In this step, the unknown weights Xk of DMs are

779determined using Algorithm 1.
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780 It is to be noted here that Step 4 is to be skipped if the

781 weights of DMs are known.

782 Step 5: Calculate the power weights - kð Þ
ij corresponding

783 to the Lq-ROFN er kð Þ
ij k ¼ 1; 2; . . .; tð Þ as.

- kð Þ
ij ¼

Xk 1þ T ~r
kð Þ

ij

� � 

Pt
k¼1 Xk 1þ T ~r

kð Þ
ij

� �  ; i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; nð Þ:

ð33Þ

785785For simplicity, the constructed power weight matrix

786- kð Þ
ij

h i

mn
is denoted as - kð Þ.

787Step 6: For the alternative Ai, aggregate the decision

788values of attributes Cj provided by DM D kð Þ

789k ¼ 1; 2; . . .; tð Þ based on Lq-ROFAPWA operator as

~rij ¼ Lq� ROFAPWA ~r
1ð Þ

ij ; ~r
2ð Þ

ij ; . . .; ~r
tð Þ

ij

� 

¼ 
t
Ak¼1 - kð Þ

ij �A ~r
kð Þ

ij

� 
ð34Þ

791791and obtain the comprehensive decision matrix

792eR ¼ erij

� �
mn

.

793Step 7: Calculate the support degree Sup erij; eriu

� �

794j; u ¼ 1; 2; . . .; n; j 6¼ uð Þ of each element of the matrix eR
795as

Sup ~rij; ~riu

� �
¼ 1� d ~rij; ~riu

� �
; i ¼ 1; 2; . . .;mð Þ: ð35Þ

797797For convenience, the column matrix Sup erij; eriu

� �� �
m1

798is denoted by dSupju.

799Step 8: Calculate the sum of supports corresponding to

800erij, T erij

� �
i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; nð Þ as

T ~rij

� �� �
m1
¼

Xn

u¼1;j6¼u

dSupju; for j ¼ 1; 2; . . .; n; ð36Þ

802802and form a matrix as T ¼ T erij

� �� �
mn

.

803Step 9: In this step, unknown weights of attributes Hj

804are calculated using Algorithm 2.

Table 4 The matrix for ideal

solution eR
��  C1 C2 C3 C4

A1 S4:3739;S1:8693ð Þ S3:4044;S1:7033ð Þ S4:3902;S2:3774ð Þ S1:7698;S4:9756ð Þ
A2 S3:8767;S2:5402ð Þ S2:4281;S2:5780ð Þ S2:4358;S2:7963ð Þ S2:4294;S4:3124ð Þ
A3 S4:0351;S2:1675ð Þ S2:4328;S3:5600ð Þ S2:6294;S2:5217ð Þ S4:1963;S2:1557ð Þ
A4 S5:3667;S1:5816ð Þ S3:7221;S3:3051ð Þ S5:3667;S1:5816ð Þ S5:6160;S1:2842ð Þ

Table 5 The left ideal solution matrix eR
�� 

C1 C2 C3 C4

A1 S3;S3ð Þ S3;S5ð Þ S3;S4ð Þ S1;S6ð Þ
A2 S3;S4ð Þ S2;S4ð Þ S2;S5ð Þ S2;S5ð Þ
A3 S1;S3ð Þ S2;S5ð Þ S1;S2ð Þ S1;S3ð Þ
A4 S5;S2ð Þ S3;S3ð Þ S5;S2ð Þ S4;S1ð Þ

Table 6 The right ideal solution matrix eR
þ� 

C1 C2 C3 C4

A1 S6;S1ð Þ S4;S1ð Þ S6;S1ð Þ S2;S3ð Þ
A2 S5;S2ð Þ S2;S1ð Þ S2;S1ð Þ S3;S4ð Þ
A3 S6;S1ð Þ S3;S3ð Þ S3;S2ð Þ S6;S1ð Þ
A4 S6;S2ð Þ S4;S3ð Þ S6;S2ð Þ S7;S1ð Þ
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805 It is to be mentioned here that Step 9 is to be skipped if

806 the weights of attributes are known.

807 Step 10: Calculate the power weights as:

Nij ¼
Hj 1þ T ~rij

� �� �

Pn
j¼1 Hj 1þ T ~rij

� �� � ; i ¼ 1; 2; . . .;m; j ¼ 1; 2; . . .; nð Þ

ð37Þ

809809 and form the power weight matrix N ¼ Nij

� �
mn

.

810 Step 11: Utilizing power weights Nij, calculate the

811 overall performance value of the alternative Ai

812 i ¼ 1; 2; . . .;mð Þ as

~ri ¼ Lq� ROFAPWHM ~ri1; ~ri2; . . .; ~rinð Þ

¼ 2

n nþ 1ð Þ 

n

Au;v¼1

u� v

nNiu �A ~rivð Þ/�A nNiu �A ~rivð Þw
� 

0

BB@

1

CCA

1
/þw

:

ð38Þ

814814 Step 12: Calculate the score function of alternatives and

815 rank the alternatives based on the comparison rule pre-

816 sented in Sect. 2.

817 The flowchart of the above methodology is presented in

818 Fig. 2.

8196 Case example

820To illustrate the use of the newly proposed MAGDM

821method, a case example (Garg 2018) is provided in this

822section. Further, the effectiveness and superiority of the

823proposed method are demonstrated by comparing it with

824different existing methods.

825Example 3 Assume that a multinational company wanted

826to adopt a strategy among four available strategies Ai

827i ¼ 1; 2; 3; 4ð Þ for the planning of financial matters of next

828year and invites three experts D 1ð Þ, D 2ð Þ and D 3ð Þ to pro-

829vide their preferences on the strategies based on four

830general characteristics Cj j ¼ 1; 2; 2; 4ð Þ. The experts

831evaluated each alternative under each attribute using the

832LTS S ¼ S0 ¼ extremely poor;S1 ¼ very poor;S2 ¼f
833poor;S3 ¼ slightly poor;S4 ¼ fair;S5 ¼
834slightly good;S6 ¼ good;S7 ¼ very good;S8 ¼
835extremely goodg.

836The Lq-ROFDMs eX
kð Þ ¼ ea kð Þ

ij

h i

mn
k ¼ 1; 2; 3ð Þ of

837three experts D kð Þ k ¼ 1; 2; 3ð Þ are presented in Tables 1,

8382, 3, respectively. Then, the developed methodology is

839applied to obtain the most eligible strategy.

Table 7 Aggregated Lq-

ROFDM eR
C1 C2 C3 C4

A1 S4:3491;S1:8728ð Þ S3:4205;S1:6830ð Þ S4:3667;S2:4069ð Þ S1:7754;S4:9281ð Þ
A2 S3:9088;S2:5263ð Þ S2:4199;S2:5252ð Þ S2:4520;S2:8193ð Þ S2:4216;S4:3271ð Þ
A3 S4:0067;S2:1840ð Þ S2:4490;S3:5465ð Þ S2:6101;S2:5089ð Þ S4:1735;S2:1734ð Þ
A4 S5:3585;S1:5900ð Þ S3:7085;S3:2981ð Þ S5:3590;S1:5905ð Þ S5:5877;S1:2769ð Þ
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840 Step 1 Since all the attributes are benefit types,

841 normalization is not required. So, eX
kð Þ ¼ eR

kð Þ ¼

842 er kð Þ
ij

h i

44
k ¼ 1; 2; 3ð Þ.

843 Step 2 Calculate the support degrees of each element

844 er kð Þ
ij , i ¼ 1; 2; 3; 4; j ¼ 1; 2; 3; 4; k ¼ 1; 2; 3ð Þ on the basis of

845 Eq. (31) (for convenience, take q ¼ 3). Then, the support

846 degree matrices dSup
kl

k; l ¼ 1; 2; 3; k 6¼ lð Þ are formulated

847 as:

dSup12 ¼dSup21

¼
0:6376 0:9277 0:9277 0:6376

0:8357 0:8556 0:8953 0:8809
0:9863

0:8223

0:9629

0:9277

0:9492

0:9863

0:6542

0:4551

2

64

3

75;

849849 dSup13 ¼dSup31

¼
0:6542 0:7578 0:6542 0:9863

0:8906 0:9629 0:7578 0:9629
0:6037

0:8152

0:8086

0:9277

0:8906

0:8152

0:6037

0:5809

2

64

3

75;

851851 dSup23 ¼dSup32

¼
0:9629 0:7864 0:6775 0:6309

0:8086 0:8770 0:8556 0:8953
0:6173

0:9863

0:8249

0:8764

0:8595

0:8223

0:9492

0:8736

2

64

3

75:

853853 Step 3: Calculate the sum of supports corresponding to

854 er kð Þ
ij , T er kð Þ

ij

� 
i ¼ 1; 2; 3; 4; j ¼ 1; 2; 3; 4; k ¼ 1; 2; 3ð Þ based

855 on Eq. (32). Then, the matrices T kð Þ ¼ T er kð Þ
ij

� h i

44
are

856 determined as.

T 1ð Þ ¼
1:2918 1:6855 1:5819 1:6239

1:7263 1:8185 1:6531 1:8438
1:5900

1:6374

1:7715

1:8555

1:8398

1:8015

1:2579

1:0360

2

64

3

75;

858858

T 2ð Þ ¼
1:6005 1:7141 1:6053 1:2684

1:6443 1:7326 1:7509 1:7762
1:6036

1:8086

1:7878

1:8042

1:8087

1:8086

1:6034

1:3287

2

64

3

75;

860860and

861

T 3ð Þ ¼
1:6171 1:5442 1:3317 1:6172

1:6992 1:8398 1:6134 1:8582
1:2210

1:8015

1:6335

1:8042

1:7501

1:6374

1:5529

1:4546

2

64

3

75:

862

863Fig. 3 Score values of alternatives using Lq-ROFHPWHM operator

varying q

Fig. 4 Score values of alternatives using Lq-ROFDPWHM operator

varying q

Fig. 5 Score values of alternatives using Lq-ROFFPWHM operator

varying q
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864 Step 4 Since the weights of DMs are completely

865 unknown, Algorithm 1 is followed in order to compute

866 weight X ¼ X1;X2;X3ð Þ of DMs.

867 Initially assume that weights of three DMs are equal, i.e.

868 x ¼ x1;x2;x3ð Þ ¼ 1
3
; 1

3
; 1

3

� �
.

869 Utilizing Eq. (33), calculate the intuitive power weights

870 w
kð Þ

ij corresponding to Lq-ROFN er kð Þ
ij and w kð Þ

871 i ¼ 1; 2; 3; 4; j ¼ 1; 2; 3; 4; k ¼ 1; 2; 3ð Þ are obtained as

w 1ð Þ ¼
0:3052 0:3381 0:3434 0:3494

0:3378 0:3359 0:3309 0:3354
0:3493

0:3198

0:3383

0:3374

0:3381

0:3397

0:3045

0:2986

2

64

3

75;

873873

w 2ð Þ ¼
0:3463 0:3417 0:3465 0:3021

0:3277 0:3257 0:3431 0:3275
0:3511

0:3405

0:3403

0:3313

0:3344

0:3405

0:3511

0:3415

2

64

3

75;

875875and

876

w 3ð Þ¼
0:3485 0:3203 0:3101 0:3485

0:3345 0:3384 0:3260 0:3371
0:2995

0:3397

0:3214

0:3313

0:3274

0:3198

0:3443

0:3599

2

64

3

75.

Fig. 6 Scores of Ai based on Lq-ROFHPWHM operator varying /, w in 0; 10ð �

Fig. 7 Scores of Ai based on Lq-ROFDPWHM operator varying /, w in 0; 10ð �

Fig. 8 Scores of Ai based on Lq-ROFFPWHM operator varying /, w in 0; 10ð �
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877 Then, utilizing the calculated power weights and Lq-

878 ROFAPWA operator, the matrices corresponding to ideal

879 solutions, left ideal solutions, and right ideal solutions are

880 calculated and presented in Tables 4, 5, 6, respectively.

881On the basis of Eq. (6), calculate the distance measures

882of individual matrix eR
kð Þ

from ideal solution matrix, left

883ideal solution matrix and right ideal solution matrix, S�k ,

884S�k and Sþk , k ¼ 1; 2; 3ð Þ, respectively, as follows:

S�1 ¼ d ~R 1ð Þ; ~R�
� 

¼ 1

16

X4

i¼1

X4

j¼1

d ~r
1ð Þ

ij ; ~r�ij

� 
¼ 0:1220:

886886Similarly, S�2 ¼ 0:0892 and S�3 ¼ 0:1249.

S�1 ¼ 0:1415;S�2 ¼ 0:0778;S�3 ¼ 0:1107:

888888Sþ1 ¼ 0:1242;Sþ2 ¼ 0:1679;Sþ3 ¼ 0:1625:

890890Next, the relative closeness index CIk k ¼ 1; 2; 3ð Þ of

891the DMs are calculated as:

CI1 ¼
S�1 þSþ1

S�1 þS�1 þSþ1
¼ 0:6852:

893893Similarly, CI2 ¼ 0:7336, CI3 ¼ 0:6862.

894Thus, the weight of the kth k ¼ 1; 2; 3ð Þ DM is found as

X1 ¼
CI1

P3
k¼1 CIk

¼ 0:3255:

Table 8 Influence of HM

parameters /, w on decision

results

Varying / and w Score values of alternatives Ranking order

S A1ð Þ S A2ð Þ S A3ð Þ S A4ð Þ

Lq-ROFHPWHM / ¼ 2;w ¼ 10 6:5789 6:4648 6:6666 7:1622 A4	A3	A1	A2

/ ¼ 5;w ¼ 5 6:5754 6:4561 6:6358 7:1216 A4	A3	A1	A2

/ ¼ 10;w ¼ 2:5 6:6197 6:2414 6:6528 7:1415 A4	A3	A1	A2

/ ¼ 10;w ¼ 0 6:6639 6:5244 6:6503 7:1262 A4	A1	A3	A2

/ ¼ 10;w ¼ 10 6:2615 6:2481 6:2964 7:1817 A4	A3	A1	A2

Lq-ROFDPWHM / ¼ 0;w ¼ 0:5 6:8703 6:5559 6:9270 7:3009 A4	A3	A1	A2

/ ¼ 2;w ¼ 10 6:8450 6:5543 6:8644 7:1787 A4	A3	A1	A2

/ ¼ 5;w ¼ 5 6:8501 6:5542 6:8646 7:1511 A4	A3	A1	A2

/ ¼ 10;w ¼ 2:5 6:8567 6:5557 6:8649 7:1443 A4	A3	A1	A2

/ ¼ 10;w ¼ 0 6:9471 6:6544 6:9285 7:1499 A4	A1	A3	A2

/ ¼ 10;w ¼ 10 6:8501 6:5542 6:8646 7:1511 A4	A3	A1	A2

Lq-ROFFPWHM / ¼ 0;w ¼ 0:5 3:3368 3:1234 3:3952 4:4615 A4	A3	A1	A2

/ ¼ 2;w ¼ 10 4:3175 4:4122 5:1374 5:8166 A4	A3	A2	A1

/ ¼ 5;w ¼ 5 4:2876 4:3612 5:0725 5:7332 A4	A3	A2	A1

/ ¼ 10;w ¼ 2:5 4:3622 4:4266 5:1300 5:7913 A4	A3	A2	A1

/ ¼ 10;w ¼ 0 4:4310 4:5229 5:1693 5:8036 A4	A3	A2	A1

/ ¼ 10;w ¼ 10 0:0000 0:0000 4:483 5:899 A4	A3	A1 � A2

Fig. 9 Score values of alternatives using Lq-ROFHPWHM operator

varying HM parameters (Taking / ¼ w; q ¼ 1; q ¼ 2)
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896896 Similarly, X2 ¼ 0:3485, X3 ¼ 0:3260 are found as the

897 weight of 2nd and 3rd DMs.

898 Step 5 The power weight - kð Þ
ij corresponding to the Lq-

899 ROFN er kð Þ
ij i; j ¼ 1; 2; 3; 4; k ¼ 1; 2; 3ð Þ is calculated as:

- 1ð Þ
11 ¼

X1 1þ T ~r
1ð Þ

11

� � 

P3
k¼1 Xk 1þ T ~r

kð Þ
11

� �  ¼ 0:2978:

901901 Similarly, other power weights can be found, and subse-

902 quently, the following power weight matrices are obtained.

- 1ð Þ ¼

0:29780:33000:33510:3420

0:33010:32820:32300:3277

0:34070:33020:33020:2970

0:31210:32950:33160:2914

2

664

3

775;

904904

- 2ð Þ ¼

0:36170:35700:36190:3165

0:34270:34060:35850:3425

0:36670:35560:34960:3666

0:35580:34640:35580:3568

2

664

3

775;

906906

Table 9 Influence of

Archimedean parameters on

decision results

t-CN&t-Ns parameter Score of the alternatives Ranking order

S A1ð Þ S A2ð Þ S A3ð Þ S A4ð Þ

Lq-ROFHPWHM q ¼ 1 6:4865 6:3328 6:5261 6:9199 A4	A3	A1	A2

q ¼ 2 6:4682 6:3247 6:5047 6:9235 A4	A3	A1	A2

q ¼ 5 6:4385 6:3131 6:4630 6:9337 A4	A3	A1	A2

q ¼ 10 6:4184 6:3064 6:4315 6:9526 A4	A3	A1	A2

q ¼ 20 6:4048 6:3044 6:4085 6:9857 A4	A3	A1	A2

Lq-ROFDPWHM s ¼ 0:5 6:4424 6:3589 6:4155 6:8174 A4	A1	A3	A2

s ¼ 1 6:5369 6:4091 6:5395 6:9119 A4	A3	A1	A2

s ¼ 5 6:9610 6:6422 6:9692 7:2863 A4	A3	A1	A2

s ¼ 10 7:0484 6:7266 7:0519 7:4115 A4	A3	A1	A2

s ¼ 15 7:0779 6:7580 7:0801 7:4525 A4	A3	A1	A2

s ¼ 20 7:0926 6:7743 7:0942 7:4725 A4	A3	A1	A2

Lq-ROFFPWHM f ¼ 1:01 3:6787 3:4262 3:9838 4:7692 A4	A3	A1	A2

f ¼ 5 3:7608 3:6088 4:1892 4:9594 A4	A3	A1	A2

f ¼ 10 3:8213 3:7156 4:3013 5:0616 A4	A3	A1	A2

f ¼ 15 3:8641 3:7844 4:3722 5:1241 A4	A3	A1	A2

f ¼ 20 3:8978 3:8355 4:4198 5:1690 A4	A3	A1	A2

Fig. 10 Score values of alternatives using Lq-ROFHPWHM operator

varying q
Fig. 11 Score values of alternatives using Lq-ROFDPWHM operator

varying s
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and - 3ð Þ ¼

0:34050:31310:30300:3416

0:32730:33120:31860:3298

0:29260:31420:32020:3363

0:33200:32410:31260:3518

2

664

3

775:

908 Step 6 Aggregating individual Lq-ROFDMs eR
kð Þ ¼

909 er kð Þ
ij

h i

44
k ¼ 1; 2; 3ð Þ into a collective Lq-ROFDM eR ¼

910 erij

� �
44

using Eq. (34), the aggregated matrix is presented

911 in Table 7.

912 Step 7 Calculate the support degree column matrices

913 dSupju (j; u ¼ 1; 2; 3; 4Þ based on Eq. (35) as follows:

dSup12 ¼dSup21 ¼
0:9157

0:9110
0:9148

0:8234

2

64

3

75;dSup13 ¼dSup31

¼
0:9846

0:9178
0:9140

0:9999

2

64

3

75;dSup14 ¼dSup41

¼
0:8064

0:8882
0:9838

0:9616

2

64

3

75;dSup23 ¼dSup31

¼
0:9056

0:9871
0:9466

0:8233

2

64

3

75;dSup24 ¼dSup42

¼
0:8021

0:8732
0:9025

0:7857

2

64

3

75;dSup34 ¼dSup43 ¼
0:8160

0:8861
0:8978

0:9616

2

64

3

75

915915Step 8 Based on Eq. (36), calculate T erij

� �� �
41
¼

916
P4

u¼1;j 6¼u
dSupju i ¼ 1; 2; 3; 4; j ¼ 1; 2; 3; 4ð Þ and form the

917matrix T ¼ T erij

� �� �
44

as

T ¼
2:7067 2:6234 2:7061 2:4245

2:7170 2:7713 2:7909 2:6474
2:8126

2:7849

2:7639

2:4324

2:7584

2:7849

2:7841

2:7089

2

64

3

75:

919919Step 9 Here, the weight of attributes is completely

920unknown. Then, following Algorithm 2, the weight of

921attributes Hj are computed. To do this, first, calculate the

922entropy measure matrix as

Fig. 12 Score values of alternatives using Lq-ROFFPWHM operator

varying f

Table 10 Comparison with existing methods

Problem Score values Rankings

LIFWPBM (Liu and Liu 2017) S A1ð Þ ¼ 3:6485, S A2ð Þ ¼ 3:2927, S A3ð Þ ¼ 3:6449,S A4ð Þ ¼ 5:0931 A4	A1	A3	A2

LIFWGPBM (Liu and Liu 2017) S A1ð Þ ¼ 4:5457, S A2ð Þ ¼ 4:1293, S A3ð Þ ¼ 4:4301,S A4ð Þ ¼ 5:8934 A4	A1	A3	A2

LIFWPA (Liu and Qin 2017) S A1ð Þ ¼ 4:2533, S A2ð Þ ¼ 3:8960, S A3ð Þ ¼ 4:3071,S A4ð Þ ¼ 5:8075 A4	A3	A1	A2

LIFWPG (Liu and Qin 2017) S A1ð Þ ¼ 3:5748, S A2ð Þ ¼ 3:4820, S A3ð Þ ¼ 3:7837,S A4ð Þ ¼ 5:5703 A4	A3	A1	A2

Lq-ROFWPBM (Liu and Liu 2018b) (q ¼ 3) S A1ð Þ ¼ 6:1936, S A2ð Þ ¼ 6:0956, S A3ð Þ ¼ 6:2382,S A4ð Þ ¼ 6:7231 A4	A3	A1	A2

Lq-ROFWPGBM (Liu and Liu 2018b) (q ¼ 3) S A1ð Þ ¼ 6:5734, S A2ð Þ ¼ 6:3653, S A3ð Þ ¼ 6:4801,S A4ð Þ ¼ 6:9889 A4	A1	A3	A2

LIFWA (Zhang 2014) S A1ð Þ ¼ 4:2318, S A2ð Þ ¼ 3:9057, S A3ð Þ ¼ 4:3652,S A4ð Þ ¼ 5:8012 A4	A3	A1	A2

LIFWG (Zhang 2014) S A1ð Þ ¼ 3:5359, S A2ð Þ ¼ 3:4938, S A3ð Þ ¼ 3:8106,S A4ð Þ ¼ 5:5586 A4	A3	A1	A2

LPFEWA (Rong et al. 2020) S A1ð Þ ¼ 5:7941, S A2ð Þ ¼ 5:6121, S A3ð Þ ¼ 5:8842,S A4ð Þ ¼ 6:6415 A4	A3	A1	A2

LPFEWG (Rong et al. 2020) S A1ð Þ ¼ 5:3549, S A2ð Þ ¼ 5:3370, S A3ð Þ ¼ 5:5631,S A4ð Þ ¼ 6:5073 A4	A3	A1	A2

Lq-ROFWA (Lin et al. 2019b) (q ¼ 3) S A1ð Þ ¼ 6:4696, S A2ð Þ ¼ 6:3650, S A3ð Þ ¼ 6:5197,S A4ð Þ ¼ 6:9009 A4	A3	A1	A2

Lq-ROFWG (Lin et al. 2019b) (q ¼ 3) S A1ð Þ ¼ 6:1269, S A2ð Þ ¼ 6:1639, S A3ð Þ ¼ 6:2989,S A4ð Þ ¼ 6:7640 A4	A3	A2	A1

LPFWA (Garg 2018) S A1ð Þ ¼ 5:8448, S A2ð Þ ¼ 5:6445, S A3ð Þ ¼ 5:9344,S A4ð Þ ¼ 6:6681 A4	A3	A1	A2

LPFWG (Garg 2018) S A1ð Þ ¼ 5:2932, S A2ð Þ ¼ 5:3096, S A3ð Þ ¼ 5:5449,S A4ð Þ ¼ 6:4868 A4	A3	A2	A1

The proposed

Lq-ROFAPWHM (q ¼ 3)

S A1ð Þ ¼ 6:4553, S A2ð Þ ¼ 6:3195, S A3ð Þ ¼ 6:4874,S A4ð Þ ¼ 6:9267 A4	A3	A1	A2
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E ¼

0:77820:89040:78250:6821

0:84710:96680:94930:7886

0:82940:88700:96350:8069

0:59830:88810:59820:5490

2

664

3

775;

924924where E11 er11ð Þ ¼
9251

2
1þ p ~r11

‘

� �q� �
1� dLq�ROFS er11; er

C
11

� �� �
¼ 0:7782.

926Similarly, other entropy measures have been calculated.

927Now, the weights of attributes are computed as

Fig. 13 The radar chart of

results on solving with various

existing methods. (The scale of

the grid is the scores)

Table 11 Lq-ROFDM eX
2ð Þ

provided by the DM D 2ð Þ

C1 C2 C3 C4

A1 S3;S2ð Þ S4;S1ð Þ S3;S4ð Þ S2;S3ð Þ
A2 S5;S2ð Þ S2;S1ð Þ S3;S4ð Þ S2;S5ð Þ
A3 S7:5;S0:3ð Þ S3;S3ð Þ S1;S2ð Þ S3;S3ð Þ
A4 S0:1;S7:9ð Þ S3;S3ð Þ S5;S2ð Þ S4;S1ð Þ

Table 12 Ranking results by different methods for Example 3

Operators Score values Rankings

LIFWPBM (Liu and Liu 2017) S A1ð Þ ¼ 3:6485, S A2ð Þ ¼ 3:2927, S A3ð Þ ¼ 3:9993,S A4ð Þ ¼ 4:5066 A4	A3	A1	A2

LIFWGPBM (Liu and Liu 2017) S A1ð Þ ¼ 4:5457, S A2ð Þ ¼ 4:1293, S A3ð Þ ¼ 4:9814,S A4ð Þ ¼ 5:5780 A4	A3	A1	A2

LIFWPA (Liu and Qin 2017) S A1ð Þ ¼ 4:2533, S A2ð Þ ¼ 3:8960, S A3ð Þ ¼ 5:3925,S A4ð Þ ¼ 5:4699 A4	A3	A1	A2

Lq-ROFWPBM (Liu and Liu 2018b) (q ¼ 3) S A1ð Þ ¼ 6:1936, S A2ð Þ ¼ 6:0956, S A3ð Þ ¼ 6:3866,S A4ð Þ ¼ 6:5685 A4	A3	A1	A2

Lq-ROFWPGBM (Liu and Liu 2018b) (q ¼ 3) S A1ð Þ ¼ 6:5734, S A2ð Þ ¼ 6:3653, S A3ð Þ ¼ 6:6595,S A4ð Þ ¼ 6:9138 A4	A3	A1	A2

LIFWA (Zhang 2014) S A1ð Þ ¼ 4:2318, S A2ð Þ ¼ 3:9057, S A3ð Þ ¼ 5:4988,S A4ð Þ ¼ 5:3885 A3	A4	A1	A2

LIFWG (Zhang 2014) S A1ð Þ ¼ 3:5359, S A2ð Þ ¼ 3:4938, S A3ð Þ ¼ 4:2540,S A4ð Þ ¼ 2:9933 A3	A1	A2	A4

LPFEWA (Rong et al. 2020) S A1ð Þ ¼ 5:7941, S A2ð Þ ¼ 5:6121, S A3ð Þ ¼ 6:4859,S A4ð Þ ¼ 6:4474 A3	A4	A1	A2

LPFEWG (Rong et al. 2020) S A1ð Þ ¼ 5:3549, S A2ð Þ ¼ 5:3370, S A3ð Þ ¼ 5:7684,S A4ð Þ ¼ 4:9386 A3	A1	A2	A4

Lq-ROFWA (Lin et al. 2019b) ( q ¼ 3) S A1ð Þ ¼ 6:4696, S A2ð Þ ¼ 6:3650, S A3ð Þ ¼ 6:9439,S A4ð Þ ¼ 6:8324 A3	A4	A1	A2

Lq-ROFWG (Lin et al. 2019b) (q ¼ 3) S A1ð Þ ¼ 6:1269, S A2ð Þ ¼ 6:1639, S A3ð Þ ¼ 6:3588,S A4ð Þ ¼ 5:4444 A3	A2	A1	A4

LPFWA (Garg 2018) S A1ð Þ ¼ 5:8448, S A2ð Þ ¼ 5:6445, S A3ð Þ ¼ 6:6101,S A4ð Þ ¼ 6:5089 A3	A4	A1	A2

LPFWG (Garg 2018) S A1ð Þ ¼ 5:2932, S A2ð Þ ¼ 5:3096, S A3ð Þ ¼ 5:7218,S A4ð Þ ¼ 4:5634 A3	A2	A1	A4

The proposed

Lq-ROFAPWHM (q ¼ 3; q ¼ 3)

S A1ð Þ ¼ 6:4623, S A2ð Þ ¼ 6:3195, S A3ð Þ ¼ 6:8009,S A4ð Þ ¼ 6:8844 A4	A3	A1	A2
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H1 ¼
1� 1

4

P4
i¼1 Ei1 ~ri1ð Þ

P4
j¼1 1� 1

4

P4
i¼1 Eij ~rij

� ��  ¼ 0:2964:

929929 Similarly, H2 ¼ 0:1151, H3 ¼ 0:2212, and

930 H4 ¼ 0:3673.

931 Step 10 The power weight Nij is calculated as:

932

933

934 Similarly, other power weights can be found.

935 Then, the power weight matrix

936

N¼

0:30580:11600:22810:3501

0:29670:11690:22570:3607

0:29860:11450:21960:3673

0:30190:10630:22520:3666

0

BB@

1

CCA.

937 Step 11 The overall performance value of alternative Ai

938 i ¼ 1; 2; 3; 4ð Þ over all attributes is calculated as:

~r1 ¼ Lq� ROFAPWHM ~r11; ~r12; ~r13; ~r14ð Þ
¼ S3:8207;S3:0996ð Þ:

940940 Similarly, er2 ¼ S3:1487;S3:3757ð Þ, er3 ¼ S3:8674;S2:8762ð Þ
941 and er4 ¼ S5:4590;S2:1553ð Þ.
942 Step 12 The score values of alternatives are obtained as

S ~r1ð Þ ¼ 6:4553; S ~r2ð Þ ¼ 6:3195; S ~r3ð Þ ¼ 6:4874and S ~r4ð Þ
¼ 6:9267:

944944 Therefore, the rank of the alternatives is found as

945 A4	A3	A1	A2.

946 6.1 Influence of rung parameter, q on achieved
947 results

948 It is to be noted here that different variants of fuzzy sets are

949 generated by varying the rung parameter q. In this sub-

950 section, the influence of that parameter q on the decision

951 results is investigated. For convenience, the value of HM

952 parameters is considered as / ¼ w ¼ 1, and the value of

953 Hamacher, Dombi, Frank parameters are individually fixed

954 at q ¼ s ¼ f ¼ 3, respectively. Using the software Matlab

955 R2020a, by varying q in 1; 10½ � and considering the

956 developed Lq-ROFHPWHM, Lq-ROFDPWHM, Lq-

957ROFFPWHM operators, individually, the achieved results

958are presented via Figs. 3, 4, 5, respectively.

959Figures 3, 4, 5 convey that the increase of the rung

960parameter q results in increase of score values for each of

961the proposed operators. Thus, the optimistic or pessimistic

962view of the DMs may be controlled by the rung parameter.

963According to Figs. 3 and 4, two types of orderings are

964obtained corresponding to Lq-ROFHPWHM and Lq-

965ROFDPWHM operators as A4	A1	A3	A2 and

966A4	A3	A1	A2. The cut points of lines representing the

967score values corresponding to the alternatives A1 and A3 are

968found as q ¼ 2:1051 and q ¼ 1:9868 using Lq-

969ROFHPWHM and Lq-ROFDPWHM operators,

970respectively.

971From Fig. 5, it is seen that three cut points are obtained

972when Lq-ROFFPWHM operator is used. As a conse-

973quence, four different rankings, viz. A4	A1	A2	A3,

974A4	A1	A3	A2, A4	A3	A1	A2 and A4	A3	A2	A1 , are

975obtained for q 2 1; 1:2632½ Þ, 1:2632; 1:9168ð Þ,
9761:9168; 4:5963ð Þ; and 4:5963; 10ð �, respectively.

977So, it can be ascertained that the best alternative remains

978the same as A4 using the proposed operators. Thus, a

979suitable aggregation operator can be applied for a specific

980problem according to its characteristics.

9816.2 Influence of HM parameters, /, w
982on achieved results

983In this subsection, the influence of the HM parameters /, w
984on the score values and the rankings of the alternatives are

985investigated. For convenience, fixing the rung parameter

986q ¼ 3, the proposed Lq-ROFHWPHM, Lq-ROFDWPHM

987and Lq-ROFFWPHM operators are individually applied

988with the consideration of the value of Hamacher parameter

989q ¼ 3, Dombi parameter s ¼ 3, Frank parameter f ¼ 3.

990The score values of the individual alternatives using Lq-

991ROFHPWHM, Lq-ROFDPWHM and Lq-ROFFPWHM

992operators are presented through Figs. 6, 7, 8 by varying /,

993w in 0; 10½ �.
994It is clear from all these figures that for each of the

995cases, alternative A4 achieves the highest score, and con-

996sequently, it stands as the best alternative using the

N11 ¼
H1 1þ T ~r11ð Þð Þ

Pn
j¼1 Hj 1þ T ~r1j

� �� �

¼ 0:2964 1þ 2:7067ð Þ
0:2964 1þ 2:7067ð Þ þ 0:1151 1þ 2:6234ð Þ þ 0:2212 1þ 2:7061ð Þ þ 0:3673 1þ 2:4245ð Þð Þ ¼ 0:3058:
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997 proposed operators. For ease of presentation, several values

998 of /, w are considered, and the score values and ranking

999 orders of the alternatives utilizing Lq-ROFHPWHM, Lq-

1000 ROFDPWHM and Lq-ROFFPWHM operators are pre-

1001 sented in Table 8. Slight changes in ranking orders

1002 between the alternatives A3 and A1 are found using Lq-

1003 ROFHPWHM and Lq-ROFDPWHM operators. On the

1004 other hand, the ranking positions of the alternatives A2 and

1005 A1 slightly vary when using Lq-ROFFPWHM operator.

1006 It should be noted that some changes in ranking orders

1007 of the alternatives are occurred based on specific values of

1008 /, w. Thus, the parameters / and w play an important role

1009 in the final ranking of alternatives. So, DMs might choose

1010 proper values of /, w, to obtain desired orderings based on

1011 their needs and state of situations. Therefore, the Lq-

1012 ROFHPWHM, Lq-ROFDPWHM and Lq-ROFFPWHM

1013 operators make the aggregation process considerably flex-

1014 ible with the use of HM parameters.

1015 For further analysis, if / ¼ w ¼ c is considered where

1016 c 2 1; 10½ �, the score values of the alternatives obtained

1017 using Lq-ROFHPWHM operator increase with the

1018 increasing values of c, which is clearly viewed in Fig. 9.

1019 Thus, DMs’ accepted risk factor can be reflected through

1020 the choice of specific parameter c. To take an optimistic

1021 decision, the DMs can utilize Lq-ROFHPWHM operator

1022 by considering a larger value of c. This also demonstrates

1023 the capability to capture the DMs’ cognitive activity in the

1024 aggregation processes using the proposed operators.

1025 6.3 Influence of the parameters of At-CN&t-Ns
1026 on achieved results

1027 Next, the aim is to analyse the impact of assigning different

1028 Archimedean parameter values on the resulting outcomes.

1029 To do so, the Lq-ROFHPWHM, Lq-ROFDPWHM, and

1030 Lq-ROFFPWHM operators, respectively, are used,

1031 respectively, to compute the aggregated results (consider-

1032 ing q ¼ 3, / ¼ w ¼ 1, e ¼ 3). The consequences of the

1033 experiment are summarized in Table 9. It is viewed from

1034 the table that a stable ranking result A4	A3	A1	A2 is

1035 found using Lq-ROFHPWHM and Lq-ROFFPWHM

1036 operators. A variation in ranking result A4	A1	A3	A2 is

1037 found for using Lq-ROFDPWHM operator with Dombi

1038 parameter s ¼ 0:5. Excluding that case, the ranking result

1039 is similar for both Lq-ROFHPWHM and Lq-ROFFPWHM

1040 operators.

1041 To portray the influences of At-CN&t-Ns parameters q,

1042 s, f more clearly, the score values corresponding to the

1043 alternatives based on Lq-ROFHPWHM, Lq-ROFDPWHM,

1044 and Lq-ROFFPWHM operators by changing different

1045 parameter values are depicted through Figs. 10, 11, 12. It is

1046 found that using Lq-ROFHPWHM operator, the ranking is

1047always A4	A3	A1	A2. Based on Lq-ROFDPWHM oper-

1048ator, a slight change in the ranking of alternatives is found.

1049For s 2 0; 0:9482ð Þ the ranking is A4	A1	A3	A2 and

1050for s 2 0:9482; 20½ �, the ranking is A4	A3	A1	A2. Again,

1051using Lq-ROFFPWHM operator, the ranking is always

1052A4	A3	A1	A2. Thus, it can be ascertained that although a

1053minor change in the ranking of alternatives was found, the

1054best alternative remains the same as A4 for each of the

1055operators, which indicates the sustainability of the pro-

1056posed method.

10577 Comparative analysis

1058In this section, the validity and effectiveness of the pro-

1059posed method are illustrated by comparing it with some

1060existing methods based on LIFWPBM (Liu and Liu 2017),

1061LIFWGPBM (Liu and Liu 2017), LIFWPA (Liu and Qin

10622017), LIFWPG (Liu and Qin 2017), Lq-ROFWPBM (Liu

1063and Liu 2018b), Lq-ROFWPGBM (Liu and Liu 2018b),

1064LIFWA (Zhang 2014), LIFWG (Zhang 2014), LPFEWA

1065(Rong et al. 2020), LPFEWG (Rong et al. 2020), Lq-

1066ROFWA (Lin et al. 2019b), Lq-ROFWG (Lin et al. 2019b),

1067LPFWA (Garg 2018), LPFWG (Garg 2018) operators. All

1068these methods are considered to solve the same Example 3,

1069and the evaluation results using these methods are com-

1070pared and analysed in the following.

1071In Table 10 and Fig. 13, the results of the comparison

1072are provided comprehensively. It is seen from Table 10 and

1073Fig. 13 that although slight changes are found in the

1074ranking orders, the best alternative obtained by different

1075methods is always identical to the method proposed in this

1076paper. So, the feasibility of the proposed method is con-

1077firmed by this instance.

1078It is to be mentioned here that in the process of decision-

1079making, if there exists some biased DMs, the influence of

1080those DMs on the overall decision-making results can be

1081removed using the proposed method. To establish that

1082phenomenon, Example 3 is slightly modified and solved.

10837.1 Relieving the impact on decision results
1084caused by biased DMs

1085Suppose the DM D 2ð Þ is biased against alternatives A3 and

1086A4 in Example 3 due to some obscure cause. That DM

1087provides some extreme values while evaluating those

1088alternatives A3 (with the optimistic view) and A4 (with the

1089pessimistic view). The Lq-ROFDM provided by D 2ð Þ is

1090presented in Table 11.

1091Different methods are utilized to aggregate the DM’s

1092evaluation information presented in Tables 1, 3 and 11, and

1093the obtained results are listed in Table 12. From Table 12,
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1094 it is seen that the selected best alternative of the method

1095 developed by Zhang (Zhang 2014), Rong et al. (Rong et al.

1096 2020), Lin et al. (Lin et al. 2019b) and in Garg (Garg 2018)

1097 changes from A4 to A3. However, the optimal choice

1098 remains the same as A4, utilizing the methods based on

1099 some existing operators, viz. LIFWPBM (Liu and Liu

1100 2017), LIFWGPBM (Liu and Liu 2017), LIFWPA (Liu and

1101 Qin 2017), Lq-ROFWPBM (Liu and Liu 2018b), Lq-

1102 ROFWPGBM (Liu and Liu 2018b) (q ¼ 3) and the pro-

1103 posed operator Lq-ROFAPWHM. The reason behind the

1104 changes in optimal choice while using some existing

1105 methods is that the influence of biased DM D 2ð Þ on alter-

1106 native A3 and A4. Power aggregation operators can reduce

1107 the effect of extreme values given by any biased DMs

1108 during the evaluation process. Having the advantage of

1109 power aggregation operator, LIFWPBM (Liu and Liu

1110 2017), LIFWGPBM (Liu and Liu 2017), LIFWPA (Liu and

1111 Qin 2017), Lq-ROFWPBM (Liu and Liu 2018b), Lq-

1112 ROFWPGBM (Liu and Liu 2018b) (q ¼ 3) operators and

1113 the developed operators Lq-ROFAPWHM can erase the

1114 influence of unreasonable extreme values by calculating

1115 the supports by producing the rational outcome. But, the

1116 case of other operators in Table 12 fails to diminish the

1117 effect of unreasonable data caused by the biased DMs,

1118 which reflects on the decision results.

1119 7.2 Expressing DMs’ evaluation information
1120 widely

1121 As discussed above, the developed method has an impor-

1122 tant characteristic of reducing the influence of extreme

1123 decision values caused by biased DMs. Additionally, the

1124 proposed method can capture Lq-ROF information, which

1125 has the ability to express a greater degree of uncertainty by

1126 allowing the sum of q th power of linguistic membership

1127 and linguistic non-membership degrees not exceeding the

1128 cardinality of the LTS. The existing methods developed by

1129 LIFWPBM (Liu and Liu 2017), LIFWGPBM (Liu and Liu

1130 2017), LIFWPA (Liu and Qin 2017), LIFWPG (Liu and

1131 Qin 2017), LIFWA (Zhang 2014), LIFWG (Zhang 2014),

1132 LPFEWA (Rong et al. 2020), LPFEWG (Rong et al. 2020),

1133 LPFWA (Garg 2018), LPFWG (Garg 2018) operators are

1134 unable to address the following situations.

1135 For instance, let in Example 3, a DM provides his/her

1136 evaluation value as S7;S6ð Þ on evaluating an alternative Ai

1137 with respect to some attribute Cj. In these cases, the

1138 existing methods (Zhang 2014; Garg 2018; Liu and Liu

1139 2017; Liu and Qin 2017; Rong et al. 2020) fail to describe

1140 evaluating such attribute values because LIFNs must sat-

1141 isfy nþ g� ‘ and LPFNs must satisfy n2 þ g2� ‘2. But

1142 here, it is found that 7þ 6� 8 and 72 þ 62� 82, for which

1143 this assessment information cannot be captured under LIF

1144and LPF environments. Whereas our proposed method can

1145deal with such a situation efficiently by considering q ¼ 3

1146in the process of aggregation method. Hence, the proposed

1147method is more general and flexible in resolving uncer-

1148tainty on a broader range.

11497.3 Reflecting the interrelationship
1150among attribute values

1151Compared with the methods based on LIFWPA (Liu and

1152Qin 2017), LIFWPG (Liu and Qin 2017), LIFWA (Zhang

11532014), LIFWG (Zhang 2014), LPFEWA (Rong et al.

11542020), LPFEWG (Rong et al. 2020), Lq-ROFWA (Lin

1155et al. 2019b) Lq-ROFWG (Lin et al. 2019b), LPFWA

1156(Garg 2018) and LPFWG (Garg 2018) operators, which

1157only carry simple weighted functions. The proposed

1158method in this paper can take interrelationship among

1159attributes into account by considering the HM parameters

1160/ and w that can address real decision-making situations

1161more rationally. For instance, an individual wishes to

1162invest in an investment company by considering two fac-

1163tors, viz. ‘‘company’s management level,’’ and ‘‘growth

1164ability,’’ which are interrelated attributes. So ignoring their

1165interrelationship in the selection process may result in a

1166significant loss. Zhang (2014), Garg (2018), Lin et al.

1167(2019b), Liu and Qin (2017), and Rong et al. (Rong et al.

11682020) did not consider such interrelationships in their

1169presented approaches. As a consequence, these methods

1170would generate an unreasonable ranking result. The pro-

1171posed method has the ability to consider the relationship

1172between attributes in a more reasonable manner than the

1173existing methods.

1174The methods proposed by LIFWPBM (Liu and Liu

11752017), LIFWGPBM (Liu and Liu 2017), Lq-ROFWPBM

1176(Liu and Liu 2018b), Lq-ROFWPGBM (Liu and Liu

11772018b) are based on BM operator. Though BM operator

1178can capture interrelationship between any pair of attributes,

1179it has the drawback of redundancy. More specifically, the

1180BM operator simultaneously considers the correlation

1181between Ci and Cj (i 6¼ j) and again Cj and Ci (i 6¼ j),

1182which is quite unreasonable. Moreover, BM operator also

1183neglects the interrelationship between the attribute Ci and

1184itself. The method proposed in this paper removes all the

1185drawbacks of the existing approaches (Liu and Liu

11862018b, 2017) with efficacy by having HM operator in the

1187aggregation process.

11887.4 Making the aggregation process flexible
1189using Archimedean parameters

1190The aggregation operators used in the existing methods

1191(Zhang 2014; Garg 2018; Liu and Liu 2018b, 2017; Lin
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1192 et al. 2019b; Liu and Qin 2017; Rong et al. 2020) are based

1193 on some specific At-N&t-CNs, which are not general and

1194 flexible in nature. The proposed aggregation method

1195 employs a family of At-N&t-CNs including algebraic,

1196 Einstein, Hamacher, Dombi, Frank, etc., classes. Thus, the

1197 developed operators possess the ability to make the

1198 aggregation process more robust and smooth by including

1199 various types of At-N&t-CNs in the aggregation functions.

1200 Further, the proposed aggregation operators, viz. Lq-

1201 ROFHPWA, Lq-ROFDPWA, Lq-ROFFPWA, Lq-

1202 ROFHPWHM, Lq-ROFDPWHM and Lq-ROFFPWHM,

1203 include various flexible parameters that can reflect the

1204 attitudes of DMs allowing their risk preferences. Moreover,

1205 the designed aggregation operators in this paper can gen-

1206 erate a list of aggregation operators as their special cases by

1207 considering specific decreasing generators. Hence, the

1208 proposed method is more general than the existing methods

1209 (Zhang 2014; Garg 2018; Liu and Liu 2018b, 2017; Lin

1210 et al. 2019b; Liu and Qin 2017; Rong et al. 2020).

1211 8 Conclusions and scope for future studies

1212 The proposed MAGDM method can deal with biased

1213 evaluation values and also can consider different interre-

1214 lationships between the attributes. By varying the At-

1215 CN&t-Ns parameters connected with the proposed Lq-

1216 ROFAPWHM operators, a large number of aggregation

1217 operators are defined in this paper, which are subsequently

1218 used by the DMs according to their needs. With the use of

1219 developed novel distance and entropy measures for Lq-

1220 ROFSs, the unknown weights of DMs and attributes can be

1221 evaluated efficiently. An approach for solving the Lq-ROF-

1222 based MAGDM problems has been proposed. Then, to

1223 illustrate the utility of proposed method a case study based

1224 on a real-life phenomenon has been investigated. Further,

1225 the influence of rung parameter q, HM parameter /;w and

1226 At-CN&t-Ns parameters q, s, f on the decision results have

1227 been discussed thoroughly in this paper. The figures and

1228 achieved results clearly demonstrate the effectiveness of

1229 the developed approach. In addition, the results of the

1230 comparisons show that the suggested approach can deal

1231 with real-life uncertainty more comprehensively than the

1232 existing approaches.

1233 Future studies can extend the proposed approach in the

1234 following directions.

1235 • In this paper, the proposed decision-making framework

1236 is illustrated under the Lq-ROF context. The proposed

1237 study can be extended to several fuzzy variants, such as

1238 linguistic interval-valued q-ROFSs (Sajjad Ali Khan

1239 et al. 2021), linguistic spherical fuzzy sets (Liu et al.

1240 2020b), and q-ROF uncertain linguistic fuzzy sets (Liu

1241et al. 2019b), weighted dual hesitant q-ROFSs (Sarkar

1242et al. 2023), q-rung orthopair trapezoidal fuzzy set

1243(Gayen et al. 2022) and so on.

1244• In addition, more innovative aggregation operators can

1245be developed under Lq-ROF environment. It will be

1246interesting to combine power partitioned HM (Zhong

1247et al. 2019), power Maclaurin symmetric mean (Chen

1248and Zhang 2022; Yang and Garg 2021; Garg and Arora

12492021), power Muirhead mean (Liu and Liu 2019),

1250prioritized operator (Deb et al. 2022), Volterra and

1251Fredholm integral (Abu 2017; Alshammari et al. 2020;

1252Abu Arqub et al. 2021a, 20212b) aggregation operators

1253with Lq-ROF variants for generating significant aggre-

1254gation operators.

1255• The proposed method can be applied to solve various

1256real-life decision-making problems in the fields of fuzzy

1257cluster analysis (Zhang et al. 2022), pattern recognition

1258(Singh and Ganie 2022), business decision-making and

1259budget allocation (Çağlar and Gürel 2019), medical

1260decision-making (Sun et al. 2021) and so on for better

1261resolutions than existing ones.
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A B S T R A C T

For complex last mile problems, the parcel lockers play an important role in urban areas. So, selecting a
suitable location is very much crucial to provide optimal service and better logistical performance. From that
viewpoint, a multicriteria group decision making method is developed in this article using dual hesitant q-rung
orthopair fuzzy (DHq-ROF) set which is more effective than existing variations of fuzzy sets. The Aczel-Alsina
(AA) class of t -conorms and t -norms (AAt -CNs&t -Ns) emerged as an important class of union and intersection
operations due to its greater flexibility in the information fusion process. To take advantage of the benefits of
AAt -CNs&t -Ns and hybrid aggregation operators in DHq-ROF environments, several fundamental operations
based on AAt -CNs&t -Ns are first defined. Following the introduction of these stated operations, a series of
aggregation operators, viz., DHq-ROF AA weighted averaging, ordered weighted averaging, hybrid averaging
and their geometric versions with DHq-ROF information, has been proposed. Based on these operators, a
creative approach to handle multi-attribute group decision-making problems has been framed. The parcel
lockers’ location selection problem is estimated to validate the created strategy and show its applicability
and efficacy. The achieved results establish that the post office is the best location for locating parcel lockers.
1. Introduction

The last-mile delivery industry has undergone several abrupt cha-
nges and advancements during the past 20 years, largely as a result of
the expansion of e-commerce. In Ireland, the B2C market is predicted
to experience an annual growth rate of 17.16%, reaching US$15,915.1
million in 2022. The growth story of the B2C e-commerce industry
in Ireland looks quite appealing in the medium-to-long term. Over
the forecast period, the B2C e-commerce industry is expected to grow
steadily and record a compound annual growth rate of 12.80% from
2022–2026. Over the next few years, the B2C Ecommerce Gross Mer-
chandise Value of the country will increase from US$13,583.9 million
(2021) to US$25,769.1 million in 2026. Customers are less willing
to wait for deliveries because they want the freedom to buy things
whenever and wherever they want. Additionally, the need for 24/7
service availability by consumers makes delivery operations for the
courier, express and parcel delivery firms more difficult (Grosman,
018).

∗ Corresponding author.
E-mail addresses: souvikgayen99@gmail.com (S. Gayen), abiswaskln@rediffmail.com (A. Biswas), asarkarmth@gmail.com (A. Sarkar),

math.tapan@gmail.com (T. Senapati), sarbast.moslem@ucd.ie (S. Moslem).

Parcel lockers are considered as a sustainable solution for customers
to receive, return and ship all their parcels from one location. This
new system gives customers greater control over their shopping and
reduces the risk of missing or stolen parcels. Retailers can provide
a more seamless and simple delivery service if a locker is placed in
the proper location. Customers do not need to take any additional
procedures to pick up their packages. The new logistics system benefits
customers and retailers, providing the convenience of pick up and
secure, reliable delivery anytime, anywhere. However, researchers have
adopted several mathematical models for selecting the optimal location
for parcel lockers (Bengtsson and Vikingson, 2015; Iwan et al., 2016;
Lachapelle et al., 2018; Oliveira et al., 2019).

Selecting the appropriate location is a complex issue, and the mul-
ticriteria decision-making (MCDM) methodologies have been the most
efficient methods to deal with complicated problems (Akram et al.,
2023; Alkan and Kahraman, 2022; Ayyildiz, 2022; Choudhury et al.,
2022; Karaşan et al., 2020; Mihajlović et al., 2019; Moslem et al.,
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Table 1
Recent research work based on AA𝒕-N&𝒕-CNs operations.

Reference Aggregation operators Application/Problem

Senapati et al. (2022a) IFAAWA, IFAAOWA, and IFAAHA MCDM human resource selection

Senapati et al. (2022b) Pythagorean fuzzy AA- weighted average, order weighted average and
hybrid average operators

A group strategy on monetary system of a
multinational company in China.

Senapati et al. (2023b) IFAAWG, IFAAOWG, and IFAAHG To choice best health-care waste (HCW)
disposal method

Ali and Naeem (2023) 𝑝, 𝑞-ROFAAWA; 𝑝, 𝑞-ROFAAOWA; 𝑝, 𝑞-ROFAAHA; 𝑝, 𝑞-ROFAAWG; 𝑝,
𝑞-ROFAAOWG; 𝑝, 𝑞-ROFAAHG

A tool for determining the impact of this social
hazard based on its causes

Hussain et al. (2023) IFAAHM, IFAAWHM, IFAAGHM, and IFAAWGHM To choose best solar panels

Jabeen et al. (2023) 𝑞-ROFAAPBM and 𝑞-ROFAAWPBM Disease is diagnosed with the MADM

Senapati et al. (2023c) IF AA power weighted geometric and arithmetic operators A case study on sustainable transportation of
Novi Sad

Karabacak (2023) Interval neutrosophic AA- weighted arithmetic, ordered weighted average,
weighted geometric, and hybrid weighted average operators

To solve an emerging technology selection
problem

Farid and Riaz (2023) 𝑞-ROFAAWA, 𝑞-ROFAAOWA, 𝑞-ROFAAHA, 𝑞-ROFAAWG, 𝑞-ROFAAOWG,
and 𝑞-ROFAAHG operators

For selecting the best green supplier
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2023a; Nalan Bilişik and Baraçlı, 2023; Sarkar et al., 2023b). Recently,
MCDM tools were widely employed to evaluate and solve transport
complex problems (Moslem et al., 2023b), such as, evaluating the
quality service in urban transport (Gündoğdu et al., 2021; Moslem and
Çelikbilek, 2020), evaluating mode choice (Moslem, 2023c; Moslem
et al., 2020a) and traffic safety issues (Moslem et al., 2020b). In current
era, it is a big part of decision science and is used a lot in evaluating
suppliers, judging their performance, choosing where to build things,
and more (Athar Farid et al., 2023; Senapati et al., 2023a; Riaz et al.,
2021; Gayen et al., 2023). An MCDM problem is usually called mul-
ticriteria group decision-making (MCGDM) problem when more than
one person makes a decision. The MCGDM solution is unquestionably
more dependable and crucial for individuals and businesses. Real-life
decision-making situations make it hard to make decisions based on
unclear information. People’s minds are fuzzy, and decision-making
environments are complicated. In his theory of fuzzy sets, Zadeh (1965)
introduced just membership degree (MD). After that Atanassov (1986)
invented intuitionistic fuzzy sets (IFSs) that included the idea of non-
membership degree (NMD), which satisfy the constraint 𝜇+𝜈 ≤ 1, where

and 𝜈 represent the MD and NMD, respectively.
Furthermore, suppose a DM wants to assign an MD of 0.8 and an

MD of 0.3 for a decision-making problem. In that case, it is evident
hat they would fail when considering IFS. To solve this kind of issues,
ager (2013, 2014) broadened the concept of Pythagorean fuzzy set
PFS), in which the sum of MD2 and NMD2 is not exceeded by 1.
o, it is clear that PFS is more important and necessary for solving
CGDM problems. PFS occasionally fails to communicate evaluation

ata in MCGDM issues adequately. For instance, PFS cannot consider
he values (0.9, 0.7) as a pair of MD and NMD since 0.9 + 0.7 ≥ 1. To
urvive this challenge, Yager (2017) developed the 𝑞-rung orthopair
uzzy (𝑞-ROF) sets (𝑞-ROFSs), a generalized variant of IFS and PFS,
hat satisfies the restriction 𝜇𝑞 + 𝜈𝑞 ≤ 1 where 𝜇 and 𝜈 denote the MD

and NMD, respectively. When 𝑞 = 2 or 1, 𝑞-ROFS reduces to PFS or
IFS, respectively. Therefore, 𝑞-ROFS can describe hazy phenomena in a
wider range than IFS and PFS.

Data fusion, also known as information fusion, involves combining
data from multiple sources to obtain a more comprehensive and re-
liable representation of the underlying phenomenon. In this context,
aggregation operators play a crucial role in data fusion by effectively
combining and integrating information from diverse sources. These
operators enable the fusion of data with varying degrees of uncertainty,
imprecision, and conflicting information. One such class of aggregation
operators widely used in data fusion is 𝑡-norms and 𝑡-conorms, which
provide a framework for aggregating fuzzy information. Menger (2003)
first discover the idea of triangular norms in his ‘‘Theory of probabilistic
metric spaces’’. It has been revealed that the 𝑡-norms (𝑡-Ns) and their
2

ssociated 𝑡-conorms (𝑡-CNs), such as Dombi 𝑡-norm and 𝑡-conorm, t
Frank 𝑡-norm and 𝑡-conorm, Einstein 𝑡-norm and 𝑡-conorm, Hamacher
-norm and 𝑡-conorm and as well as others, are significant operations
n fuzzy sets and systems. A recent comprehensive analysis conducted
y Klement and colleagues thoroughly examines the characteristics and
elated aspects of triangular norms. Based on Archimedean 𝑡-norms and
𝑡-conorms, Liu and Wang (2018) introduced 𝑞-ROF weighted geomet-
ric and averaging operators to solve MADM problems under 𝑞-ROF
nvironments. Further, some weighted averaging neutral aggregation
perators are presented by Garg and Chen (2020) to aggregate the 𝑞-
OFNs. Based on Yager norm operations, Akram and Shahzadi (2021)
eveloped six aggregation operators, namely 𝑞-ROF Yager weighted
rithmetic, ordered weighted arithmetic and hybrid operators, along
ith their geometric operators. Utilizing Einstein norm, Farid and
iaz (2021) introduced a family of aggregation operators, viz., 𝑞-ROF
instein interactive weighted geometric, generalized 𝑞-ROF Einstein in-
eractive weighted geometric operator and generalized 𝑞-ROF Einstein
nteractive hybrid geometric operators. Further, Gayen et al. (2022)
eveloped Hamacher aggregation operators by utilizing Hamacher op-
rations, in 𝑞-rung orthopair trapezoidal fuzzy environment to solve
CGDM problems.

In 1982, Aczél and Alsina (1982) introduced innovative operations
nown as Aczel-Alsina 𝑡-norm and Aczel-Alsina 𝑡-conorm, which em-
hasize changeability with adjustable parameter activity. According
o the needs of the DMs, Aczel-Alsina parameters can be adjusted.
oreover, During the decision-making process, it facilitates the DMs’

bility to make optimistic or pessimistic conclusions for the purpose
f risk management. Thus, AA operations have higher level of flex-
bility compare to other existing operations due to the existence of
n adjustable parameter. Due to the fact that AA𝑡-N&𝑡-CNs involve
specific parameter, it is more adaptable throughout the process of

nformation fusion and is more suited to mimic real-world decision
aking challenges. Many researchers have recently been interested on
A𝑡-N&𝑡-CNs in various fuzzy domain and is presented in Table 1.

Moreover, decision-making becomes more complex in real life sce-
ario. The aforementioned methodologies does not capture human
esitancy. In these situations, DMs may hesitate to choose the decision
alues among some of the possible values. In 2010, Torra (2010)
ntroduced the concept of hesitant fuzzy sets (HFS) as a way to cap-
ure and represent uncertainty or hesitancy in decision-making. HFS
llows for the consideration of multiple plausible values within the
ange of [0, 1] for each element, instead of a single precise value. By
ncorporating this notion of hesitancy, HFS provides a more flexible
nd expressive framework for handling and modeling uncertain or
mprecise information in decision-making processes.

After that, Zhu et al. (2012) identified a limitation of hesitant fuzzy
ets (HFS) in that they only consider MDs. To overcome this drawback,

hey proposed a new concept called dual hesitant fuzzy (DHF) set
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Comparison among DHq-ROFS and other existing fuzzy sets.
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(DHFS), which incorporates both MDs and NMDs. DHFS allows for a
finite number of MDs and NMDs to represent the hesitancy in decision-
making. Building upon the advantages of DHFS and 𝑞-ROFS, Xu et al.
(2018) further extended the concept and introduced the notion of dual
hesitant 𝑞-ROF (DH𝑞-ROF) set (DH𝑞-ROFS). In DH𝑞-ROFS, the sum
f 𝑞th (𝑞 ≥ 1) power of the greatest MD and NMD to an element is
ot greater than 1. The DH𝑞-ROFS provides the large spaces that can
onvey hazy information in a more thorough manner while taking the
reater value of 𝑞 into account. It is clear that DH𝑞-ROFS is more
ffective than other FS versions, such as 𝑞-ROFS, PFS, DHFS, and so
n, for resolving hesitation associated with decision making processes.
he characteristic comparison of DH𝑞-ROFS with HFS, IFS, PFS, DHFS,
HPFS and 𝑞-ROFS is exhibited in Table 2. After the inception of DH𝑞-
OFS, many research works have been developed. DH𝑞-ROF Hamacher
ybrid weighted averaging (DH𝑞-ROFHHWA) and DH𝑞-ROF Hamacher
ybrid weighted geometric (DH𝑞-ROFHHWG) operators were suggested
y Wang et al. (2019b) based on the Hamacher operation. Also, the
eometric version of the above operators was proposed. Furthermore,
ual Muirhead mean operators were provided by Wang et al. (2019a)
nd their weighted means were also constructed for aggregating DH𝑞-
OFNs. Again, based on Heronian mean (Wang et al., 2020) introduced
ome 𝑞-rung orthopair hesitant fuzzy interaction aggregation operators.
ater, Hussain et al. (2020) presented a MCDM technique through
esitant 𝑞-rung orthopair fuzzy (H𝑞-ROF) information by utilizing two
eveloped H𝑞-ROF WG and WA aggregation operators. Afterwards,
ombining Dombi 𝑡-conorms and 𝑡-norms and Bonferroni mean (BM),
arkar and Biswas (2021) expanded interrelationships-based aggrega-
ion operators under DH𝑞-ROF environment. Recently, Sarkar et al.
2023a) introduced weighted dual hesitant 𝑞-rung orthopair fuzzy sets
o solve MCGDM problems.

Additionally, ordered weighted averaging or geometric aggregation
perators solely consider the weight assigned to the position of each
rgument, disregarding the significance of the individual arguments
hemselves, in contrast to weighted average or geometric operators that
lso take into account the weight of the corresponding arguments.

To address these situations, Xu and Da (2003) introduced the con-
ept of hybrid operators, which consider both the weight assigned
o the argument values and their ordered positions. These hybrid
perators aim to incorporate the significance of both factors in the
ggregation process, allowing for a more comprehensive and accurate
epresentation of the input information. By considering both the weight
nd the ordered positions of the arguments, these operators provide a
alanced approach that combines the advantages of both weighted and
osition-based aggregation methods. This enables a more nuanced and
efined aggregation outcome, enhancing the decision-making process
r data analysis in various domains. Thus, it would be pertinent to
3

o research on the benefits of hybrid operators and the adaptabil-
ty of AA𝑡-CN&𝑡-Ns under DH𝑞-ROF environments. Meanwhile, using
he DH𝑞-ROF environment to solve MCGDM problems might be more
ppropriate because it captures DM hesitance across a wider range.
onsequently, all the advantages of Aczel-Alsina operations and hybrid
ggregation operators would be a great significant study on DH𝑞-ROFSs
or solving MCGDM problems.

From the perspective of selecting the location of parcel lockers, it is
ifficult to assess traffic impact, security, reliability, accessibility, etc.
n commercial areas, private car parkings, high populous areas, post
ffices, public transport stops and other crowded areas in a precise
anners. The available information are also imprecise. Hence the use

f DH𝑞-ROFSs adds an extra dimension for information processing than
ther variants of fuzzy sets. Also the input arguments are mostly intere-
ated and depends on the attitude of the DMs. So, it is most relevant to
se Aczel-Alsina aggregation operators for information aggregation.

.1. Contributions of the study

Even though several MCGDM problems have been developed under
he environment of DH𝑞-ROFSs, there is no study on developing aggre-
ation operators based on AA𝑡-CN&𝑡-Ns. In light of the complexity and
ntricacy inherent in modeling uncertain and imprecise information, it
ecomes necessary to introduce the operators based on AA𝑡-N&𝑡-CNs
n DH𝑞-ROF environment as a powerful framework for capturing and
epresenting the multifaceted nature of uncertainty. The present study’s
ain contributions are pointed out as follows:

1. This research makes a substantial contribution by utilizing the
parametric and adaptable Aczel-Alsina operations framework in
a DH𝑞-ROF context to process complicated data for decision-
making.

2. Based on AA𝑡-CN&𝑡-Ns, certain fundamental operational laws,
viz., addition, multiplication, scaler multiplication and exponen-
tial are introduced.

3. A series of aggregation operators viz., DH𝑞-ROF AA weighted
average (DH𝑞-ROFAAWA), DH𝑞-ROF AA weighted geometric
(DH𝑞-ROFAAWG), DH𝑞-ROF AA ordered weighted average (DH
𝑞-ROFAAOWA), DH𝑞-ROF AA ordered weighted geometric (DH
𝑞-ROFAAOWG) operator have been developed to aggregate the
uncertainty in decision making situations based on the Aczel-
Alsina operational laws, which also have been designed.

4. To overcome the drawback of using weighted and ordered
weighted aggregation operators, DH𝑞-ROFAAHA and DH𝑞-
ROFAAHG operators are also presented for considering the
weights of the provided arguments and their ordered positions
simultaneously.
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5. An MCGDM method is developed for selecting the specific pri-
ority of options for handling MCGDM problems using the capa-
bility and potential of the indicated operators.

6. A case study related to Parcel Lockers’ Location Selection has
been solved by the developed method to exhibit the applicability
and efficacy of the proposed approach.

7. The quality of the provided method is demonstrated through
a comparative analysis to confirm the supremacy of the given
operators over existing operators.

1.2. Organization of the study

This article is organized as follows: Some basic definitions and
properties are discussed in Section 2. In Section 3, Some aggregation
operators viz., DH𝑞-ROFAAWA, DH𝑞-ROFAAOWA, DH𝑞-ROFAAWG,

H𝑞-ROFAAOWG, DH𝑞-ROFAAHA, DH𝑞-ROFAAHG for DH𝑞-ROF in-
ormation are presented along with their desired properties. Section 4
resents an MCGDM method that uses the newly defined operators and
s based on the operators. A parcel lockers’ location selection problem is
onsidered to show the validity and superiority of the proposed method
n Section 5. Also, the sensitivity analysis is investigated in Section 6. A
rief comparative analysis is presented in Section 7. Finally, conclusion
nd future directions are stated in Section 8.

. Preliminaries

In order to build the suggested technique, several fundamental
erminologies related to 𝑞-ROFSs (Yager, 2017) and DH𝑞-ROFSs (Xu
t al., 2018) are discussed in this section, along with their operational
ules.

efinition 2.1 (Yager, 2017). A 𝑞-ROFS, P̃ on a universe of discourse,
is presented as

̃ =
{(

𝑥, 𝜇P̃ (𝑥) , 𝜈P̃ (𝑥)
)

|𝑥 ∈ X
}

,

here 𝜇P̃ and 𝜈P̃ indicate the MD and NMD, lie within the range [0, 1],
espectively, of the element 𝑥 ∈ X to the set P̃, and fulfills the condition
≤
(

𝜇P̃ (𝑥)
)𝑞 +

(

𝜈P̃ (𝑥)
)𝑞 ≤ 1 for 𝑞 ≥ 1.

The degree of hesitancy is defined by 𝜋P̃ (𝑥) =
𝑞
√

1 −
(

𝜇P̃ (𝑥)
)𝑞 −

(

𝜈P̃ (𝑥)
)𝑞 .

For convenience,
(

𝜇P̃ (𝑥) , 𝜈P̃ (𝑥)
)

is referred as a 𝑞-ROFN and is
indicated by p̃ = (𝜇, 𝜈). Wei et al. (2018) and Liu and Wang (2018)
defined accuracy and score functions for comparing 𝑞-ROFNs in the
following manner.

Definition 2.2 (Wei et al., 2018; Liu and Wang, 2018). Let p̃ = (𝜇, 𝜈) be
a 𝑞-ROFN, the score function can be defined as 𝑆 (p̃) = 1

2 (1 + 𝜇
𝑞 − 𝜈𝑞).

Thus, 𝑆 (p̃) ∈ [0, 1]. Further, the accuracy function is defined as 𝐴 (p̃) =
𝜇𝑞 + 𝜈𝑞 .

The following is a comparison rule for 𝑞-ROFNs.

Definition 2.3 (Liu and Wang, 2018). Assuming that p̃1 and p̃2 be any
two 𝑞-ROFNs, the ordering of p̃1 and p̃2 determined by the following
principles.

(i) p̃2 ≻ p̃1 when 𝑆
(

p̃2
)

> 𝑆
(

p̃1
)

;
(ii) If 𝑆

(

p̃2
)

= 𝑆
(

p̃1
)

, then

• 𝐴 (

p̃2
)

≻ 𝐴
(

p̃1
)

implies p̃2 ≻ p̃1;
• p̃2 ≈ p̃1 when 𝐴

(

p̃2
)

= 𝐴
(

p̃1
)

.

Combining the notions of DHFS (Zhu et al., 2012) and 𝑞-ROFS
(Yager, 2017), Xu et al. (2018) introduced the concept of DH𝑞-ROFS
and described some basic fundamental laws on DH𝑞-ROFS.
4

Definition 2.4 (Xu et al., 2018). A DH𝑞-ROFS, K̃ on a universe of
discourse, X is depicted as:

̃ =
(

⟨

𝑥, ℎ̃
K̃
(𝑥) , 𝘨

K̃
(𝑥)

⟩

|

|

|

𝑥 ∈ X
)

, (1)

here ℎ̃
K̃
(𝑥) =

⋃

𝛾∈ℎ̃
K̃

(𝑥) {𝛾} and 𝘨
K̃
(𝑥) =

⋃

𝜂∈𝘨
K̃

(𝑥) {𝜂} are two sets of

inite real numbers in [0, 1], denoting the probable MD and NMD to the
lement 𝑥 ∈ X to the set K̃ and satisfy the condition that

≤ 𝛾, 𝜂 ≤ 1 and 0 ≤

(

max
𝛾∈ℎ̃

K̃
(𝑥)

{𝛾}

)𝑞

+

(

max
𝜂∈𝘨

K̃
(𝑥)

{𝜂}

)𝑞

≤ 1.

For convenience, pair K̃ =
⟨

ℎ̃
K̃
(𝑥) , 𝘨

K̃
(𝑥)

⟩

is recognized as a DH𝑞-
OF number (DH𝑞-ROFN) (Xu et al., 2018) and it is indicated by �̃� =
ℎ̃, 𝘨

⟩

.

efinition 2.5 (Xu et al., 2018). Let �̃� =
⟨

ℎ̃, 𝘨
⟩

be a DH𝑞-ROFN. The
core function, 𝑆 (�̃�), and accuracy function, 𝐴 (�̃�) is established by

(�̃�) = 1
2

⎛

⎜

⎜

⎝

1 + 1
lℎ̃

∑

𝛾∈ℎ̃

𝛾𝑞 − 1
l𝘨

∑

𝜂∈𝘨
𝜂𝑞
⎞

⎟

⎟

⎠

. (2)

nd

(�̃�) = 1
lℎ̃

∑

𝛾∈ℎ̃

𝛾𝑞 + 1
l𝘨

∑

𝜂∈𝘨
𝜂𝑞 , (3)

here lℎ̃ and l𝘨 indicating the number of elements in ℎ̃ and 𝘨 ,
espectively.

The technique for ranking DH𝑞-ROFNs are presented as follows:
Let �̃�1 =

(

ℎ̃1, 𝘨1
)

and �̃�2 =
(

ℎ̃2, 𝘨2
)

be any two DH𝑞-ROFNs,

(i) If 𝑆
(

�̃�1
)

> 𝑆
(

�̃�2
)

, then �̃�1 is superior to �̃�2, indicated by �̃�1 ≻ �̃�2;
(ii) If 𝑆

(

�̃�1
)

= 𝑆
(

�̃�2
)

, then

• If 𝐴
(

�̃�1
)

> 𝐴
(

�̃�2
)

, then �̃�1 ≻ �̃�2;
• If 𝐴

(

�̃�1
)

= 𝐴
(

�̃�2
)

, then �̃�1 is equivalent to �̃�2, denoted by �̃�1 ≈ �̃�2.

Definition 2.6 (Xu et al., 2018). Suppose �̃� =
(

ℎ̃, 𝘨
)

, �̃�1 =
(

ℎ̃1, 𝘨1
)

, and
�̃�2 =

(

ℎ̃2, 𝘨2
)

represent any three DH𝑞-ROFNs and 𝜆 > 0. Then,

(1) �̃�1 ⊕ �̃�2 =
⟨

⋃

𝛾𝑖∈ℎ̃𝑖
𝑖=1,2

{

(

𝛾𝑞1 + 𝛾𝑞2 − 𝛾𝑞1 𝛾
𝑞
2
)
1
𝑞

}

,
⋃

𝜂𝑖∈�̃�𝑖
𝑖=1,2

{

𝜂1, 𝜂2
}

⟩

,

(2) �̃�1 ⊗ �̃�2 =
⟨

⋃

𝛾𝑖∈ℎ̃𝑖
𝑖=1,2

{

𝛾1, 𝛾2
}

,
⋃

𝜂𝑖∈�̃�𝑖
𝑖=1,2

{

(

𝜂𝑞1 + 𝜂
𝑞
2 − 𝜂

𝑞
1𝜂
𝑞
2
)
1
𝑞

}⟩

,

(3) 𝜆�̃� =
⟨

⋃

𝛾∈ℎ̃

{

(

1 − (1 − 𝛾𝑞)𝜆
)

1
𝑞

}

,
⋃

𝜂∈�̃�
{

𝜂𝜆
}

⟩

,

(4) �̃�𝜆 =
⟨

⋃

𝛾∈ℎ̃
{

𝛾𝜆
}

,
⋃

𝜂∈�̃�

{

(

1 − (1 − 𝜂𝑞)𝜆
)

1
𝑞

}⟩

.

.1. AA𝑡-N&𝑡-CNs

efinition 2.7 (Aczél and Alsina, 1982). A mapping T
𝜌
𝐴𝐴 ∶ [0, 1]×[0, 1] →

0, 1] is called an AA𝑡-N if it satisfies

𝜌
𝐴𝐴 (𝑥, 𝑦) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

T𝐷 (𝑥, 𝑦) 𝑖𝑓 𝜌 = 0

min (𝑥, 𝑦) 𝑖𝑓 𝜌 = ∞

𝑒−((− log 𝑥)𝜌+(− log 𝑦)𝜌)
1
𝜌 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (4)

where 𝑥, 𝑦 ∈ [0, 1] and 𝜌 is a positive constant and T𝐷 is drastic 𝑡-N
defined as

T𝐷 (𝑥, 𝑦) =

⎧

⎪

⎪

⎨

⎪

⎪

𝑥 𝑖𝑓 𝑦 = 1

𝑦 𝑖𝑓 𝑥 = 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.

⎩
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𝐷

t
e
(

T
R
u

𝐷

∑

P
T

𝜔

Definition 2.8 (Aczél and Alsina, 1982). A mapping S𝑟𝐴 ∶ [0, 1]×[0, 1] →
[0, 1] is called an AA𝑡-CN if it satisfies

S
𝜌
𝐴𝐴 (𝑥, 𝑦) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

S𝐷 (𝑥, 𝑦) 𝑖𝑓 𝜌 = 0

max (𝑥, 𝑦) 𝑖𝑓 𝜌 = ∞

1 − 𝑒−((− log(1−𝑥))𝜌+(− log(1−𝑦))𝜌)
1
𝜌 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (5)

where 𝑥, 𝑦 ∈ [0, 1] and 𝜌 is the positive constant and S𝐷 is drastic 𝑡-CN
defined as

S𝐷 (𝑥, 𝑦) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥 𝑖𝑓 𝑦 = 0

𝑦 𝑖𝑓 𝑥 = 0

1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

.

3. Development of DH𝒒-ROF AOs based on Aczel-Alsina operations

In this section, DH𝑞-ROF weighted averaging and geometric aggre-
gation operators are established based on AA𝑡-CN&𝑡-Ns.

3.1. Fundamental operational rules of DH𝒒-ROFNs based on Aczel-Alsina
operations

In accordance with AA𝑡-CNs&𝑡-Ns, some basic mathematical opera-
tional laws of DH𝑞-ROFNs are determined in the following manner.

Definition 3.1. Assume that �̃� =
(

ℎ̃, 𝘨
)

, �̃�1 =
(

ℎ̃1, 𝘨1
)

and �̃�2 =
ℎ̃2, 𝘨2

)

represent any three DH𝑞-ROFNs and 𝜏 > 0 be an Aczel-Alsina
arameter, then AA𝑡-CNs&𝑡-Ns-based mathematical laws, viz., addition

‘⊕𝐴𝐴’’, multiplication ‘‘⊗𝐴𝐴’’, exponent and scalar multiplication are
resented in this way:

(1) �̃�1 ⊕𝐴𝐴 �̃�2 =

⟨

⋃

𝛾𝑖∈ℎ̃𝑖|𝑖=1,2

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

1 − 𝑒−
((

− log
(

1−𝛾𝑞1
))𝜏

+
(

− log
(

1−𝛾𝑞2
))𝜏) 1

𝜏 ⎞
⎟

⎟

⎠

1
𝑞 ⎫
⎪

⎬

⎪

⎭

,

⋃

𝜂𝑖∈𝘨𝑖|𝑖=1,2

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

𝑒−
((

− log 𝜂𝑞1
)𝜏

+
(

− log 𝜂𝑞2
)𝜏) 1

𝜏 ⎞
⎟

⎟

⎠

1
𝑞 ⎫
⎪

⎬

⎪

⎭

⟩

;

(2) �̃�1 ⊗𝐴𝐴 �̃�2 =

⟨

⋃

𝛾𝑖∈ℎ̃𝑖|𝑖=1,2

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

𝑒−
((

− log 𝛾𝑞1
)𝜏

+
(

− log 𝛾𝑞2
)𝜏) 1

𝜏 ⎞
⎟

⎟

⎠

1
𝑞 ⎫
⎪

⎬

⎪

⎭

,

⋃

𝜂𝑖∈𝘨𝑖|𝑖=1,2

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

1 − 𝑒−
((

− log
(

1−𝜂𝑞1
))𝜏

+
(

− log
(

1−𝜂𝑞2
))𝜏) 1

𝜏 ⎞
⎟

⎟

⎠

1
𝑞 ⎫
⎪

⎬

⎪

⎭

⟩

;

(3) 𝜆 ⊙ 𝐴𝐴�̃� =

⟨

⋃

𝛾∈ℎ̃

⎧

⎪

⎨

⎪

⎩

(

1 − 𝑒−(𝜆(− log(1−𝛾𝑞 ))𝜏 )
1
𝜏
)

1
𝑞
⎫

⎪

⎬

⎪

⎭

,

⋃

𝜂∈𝘨

⎧

⎪

⎨

⎪

⎩

(

𝑒−(𝜆(− log 𝜂𝑞 )𝜏 )
1
𝜏
)

1
𝑞
⎫

⎪

⎬

⎪

⎭

⟩

, 𝜆 > 0;

(4) �̃�𝜆 =
⟨

⋃

𝛾∈ℎ̃

⎧

⎪

⎨

⎪

⎩

(

𝑒−(𝜆(− log 𝛾𝑞 )𝜏 )
1
𝜏
)

1
𝑞
⎫

⎪

⎬

⎪

⎭

,
⋃

𝜗∈𝘨

⎧

⎪

⎨

⎪

⎩

(

1−

𝑒−(𝜆(− log(1−𝜂𝑞 ))𝜏 )
1
𝜏
)

1
𝑞
⎫

⎪

⎬

⎪

⎭

⟩

, 𝜆 > 0.

The following example is presented for better understanding the
5

forementioned algebraic operations on DH𝑞-ROFNs.
Example 3.1. Let �̃�1 = ⟨{0.5, 0.8} , {0.3, 0.6}⟩, and �̃�2 = ⟨{0.5, 0.65, 0.85} ,
{0.4, 0.55}⟩ be two DH𝑞-ROFNs. Taking 𝜏 = 2, 𝑞 = 3 and 𝜆 = 4, the
foresaid operations are accomplished on �̃�1 and �̃�2, and the results are
s follows:

̃1 ⊕𝐴𝐴 �̃�2 =

⟨

⋃

𝛾1∈{0.5,0.8}
𝛾2∈{0.5,0.65,0.85}

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎛

⎜

⎜

⎜

⎝

1 − 𝑒
−
(

(

− log
(

1−𝛾𝑞1
))𝜏

+
(

− log
(

1−𝛾𝑞2
))2

)
1
2 ⎞
⎟

⎟

⎟

⎠

1
3
⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

⋃

𝜂1∈{0.3,0.6}
𝜂2∈{0.4,0.55}

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎛

⎜

⎜

⎜

⎝

𝑒
−
(

(

− log 𝜂𝑞1
)𝜏

+
(

− log 𝜂𝑞2
)2

)
1
2 ⎞
⎟

⎟

⎟

⎠

1
3
⎫

⎪

⎪

⎬

⎪

⎪

⎭

⟩

= ⟨{0.5562, 0.6647, 0.8516, 0.8031, 0.8165, 0.8864} ,

{0.2203, 0.2607, 0.3503, 0.4555}⟩ .

In the similar way other operations, viz., product, scalar product and
exponential can be found as �̃�1⊗𝐴𝐴 �̃�2 = ⟨{0.3752, 0.4422, 0.4907, 0.4828,
0.6156, 0.7588} , {0.4103, 0.5519, 0.6063, 0.6399}⟩ , 4�̃�1=⟨{0.6166, 0.9133} ,
{0.0900, 0.3600}⟩ and �̃�41 = ⟨{0.3763, 0.7277} , {0.25, 0.6400}⟩, respec-
ively.

.2. Development of AA𝑡-CN&𝑡-N based aggregation operators under DH𝑞-
OF context

Now, a series of aggregation operators, including DH𝑞-ROFAAWA,
H𝑞-ROFAAOWA, DH𝑞-ROFAAWG, DH𝑞-ROFAAOWG, DH𝑞- ROFA
HA, and DH𝑞-ROFAAHG are defined in this subsection utilizing afore
entioned fundamental laws of DH𝑞-ROFNs.

efinition 3.2. Let �̃�𝑖 =
⟨

ℎ̃𝑖, 𝘨𝑖
⟩

(𝑖 = 1, 2,… , 𝑛) be a set of 𝑛 DH𝑞-
OFNs. If a function DH𝑞-ROFAAWA is defined using ⊕𝐴𝐴 operation
s

𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑊𝐴
(

�̃�1, �̃�2,… , �̃�𝑛
)

= ⊕𝐴𝐴
𝑛
𝑖=1

(

𝜔𝑖�̃�𝑖
)

,

hen 𝐷𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑊𝐴
(

�̃�1, �̃�2,… , �̃�𝑛
)

is called DH𝑞-ROFAAWA op-
rator, where 𝜔 =

(

𝜔1, 𝜔2,… , 𝜔𝑛
)

be the weighted vector of �̃�𝑖
𝑖 = 1, 2,… , 𝑛), 𝜔𝑖 > 0, and ∑𝑛

𝑖=1 𝜔𝑖 = 1.

heorem 3.1. Suppose
{

�̃�𝑖 =
⟨

ℎ̃𝑖, 𝘨𝑖
⟩

|𝑖 = 1, 2,… , 𝑛
}

be any set of 𝑛 DH𝑞-
OFNs and Aczel-Alsina parameter 𝜏 > 0, then the aggregating element
tilizing DH𝑞-ROFAAWA is also a DH𝑞-ROFN and is given as follows:

𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑊𝐴
(

�̃�1, �̃�2,… , �̃�𝑛
)

= ⊕𝐴𝐴
𝑛
𝑖=1

(

𝜔𝑖�̃�𝑖
)

=

⟨

⋃

𝛾𝑖∈ℎ̃𝑖|𝑖=1,2,…,𝑛

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

1 − 𝑒−
(

∑𝑛
𝑖=1 𝜔𝑖

(

− log
(

1−𝛾𝑞𝑖
))𝜏)

1
𝜏 ⎞
⎟

⎟

⎠

1
𝑞 ⎫
⎪

⎬

⎪

⎭

,

⋃

𝜂𝑖∈𝘨𝑖
𝑖=1,…,𝑛

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

𝑒−
(

∑𝑛
𝑖=1 𝜔𝑖

(

− log 𝜂𝑞𝑖
)𝜏)

1
𝜏 ⎞
⎟

⎟

⎠

1
𝑞 ⎫
⎪

⎬

⎪

⎭

⟩

, (6)

where
{

𝜔𝑖|𝑖 = 1, 2,… , 𝑛
}

be the weighted vector of �̃�𝑖 (𝑖 = 1, 2,… , 𝑛) and
𝑛
𝑖=1 𝜔𝑖 = 1, 𝜔𝑖 > 0.

roof. Principle of mathematical induction is used here to prove this
heorem.

1�̃�1 = 𝜔1 ⊙ 𝐴𝐴�̃�1 =

⟨

⋃

𝛾1∈ℎ̃1

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

1 − 𝑒−
(

𝜔1
(

− log
(

1−𝛾𝑞1
))𝜏) 1

𝜏 ⎞
⎟

⎟

⎠

1
𝑞 ⎫
⎪

⎬

⎪

⎭

,

⋃

𝜂1∈𝘨1

⎧

⎪

⎨

⎪

⎛

⎜

⎜

⎝

𝑒−
(

𝜔1
(

− log 𝜂𝑞1
)𝜏) 1

𝜏 ⎞
⎟

⎟

⎠

1
𝑞 ⎫
⎪

⎬

⎪

⟩

,

⎩ ⎭



Engineering Applications of Artificial Intelligence 126 (2023) 106846S. Gayen et al.

N

−

T
N

(

t

E

c
r
D
a

𝐷

𝜔2�̃�2 = 𝜔2 ⊙ 𝐴𝐴�̃�2 =

⟨

⋃

𝛾2∈ℎ̃2

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

1 − 𝑒−
(

𝜔2
(

− log
(

1−𝛾𝑞2
))𝜏) 1

𝜏 ⎞
⎟

⎟

⎠

1
𝑞 ⎫
⎪

⎬

⎪

⎭

,

⋃

𝜂2∈𝘨2

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

𝑒−
(

𝜔2
(

− log 𝜂𝑞2
)𝜏) 1

𝜏 ⎞
⎟

⎟

⎠

1
𝑞 ⎫
⎪

⎬

⎪

⎭

⟩

;

Let 𝜔𝑖�̃�𝑖 =
⟨

ℎ̃′𝑖 , 𝘨
′
𝑖
⟩

where ℎ̃′𝑖 =
⋃

𝛼𝑖∈ℎ̃′𝑖

{

𝛼𝑖
}

and 𝘨 ′
𝑖 =

⋃

𝛽𝑖∈𝘨 ′𝑖

{

𝛽𝑖
}

for
𝑖 = 1, 2

where 𝛼𝑖 =
⎛

⎜

⎜

⎝

1 − 𝑒−
(

𝜔𝑖
(

− log
(

1−𝛾𝑞𝑖
))𝜏)

1
𝜏 ⎞
⎟

⎟

⎠

1
𝑞

, and 𝛽𝑖 =
⎛

⎜

⎜

⎝

𝑒−
(

𝜔𝑖
(

− log 𝜂𝑞𝑖
)𝜏)

1
𝜏 ⎞
⎟

⎟

⎠

1
𝑞

.

ow, ⊕𝐴𝐴
2
𝑖=1

(

𝜔𝑖�̃�𝑖
)

=

⟨

⋃

𝛼𝑖∈ℎ̃′𝑖
𝑖=1,2

⎧

⎪

⎨

⎪

⎩

(

1 − 𝑒−
((

− log
(

1−𝛼𝑞1
))𝜏

+
(

− log
(

1−𝛼𝑞2
))𝜏) 1

𝜏
)

1
𝑞 ⎫

⎪

⎬

⎪

⎭

,

(7)

⋃

𝛽𝑖∈𝘨 ′𝑖
𝑖=1,2

⎧

⎪

⎨

⎪

⎩

(

𝑒−
((

− log 𝛽𝑞1
)𝜏

+
(

− log 𝛽𝑞2
)𝜏) 1

𝜏
)

1
𝑞 ⎫

⎪

⎬

⎪

⎭

⟩

Now,
(

1 − 𝛼𝑞𝑖
)

= 1 −
⎛

⎜

⎜

⎝

1 − 𝑒−
(

𝜔𝑖
(

− log
(

1−𝛾𝑞𝑖
))𝜏)

1
𝜏 ⎞
⎟

⎟

⎠

= 𝑒−
(

𝜔𝑖
(

− log
(

1−𝛾𝑞𝑖
))𝜏)

1
𝜏

log
(

1 − 𝛼𝑞1
)

= − log 𝑒−
(

𝜔𝑖
(

− log
(

1−𝛾𝑞𝑖
))𝜏)

1
𝜏

=
(

𝜔𝑖
(

− log
(

1 − 𝛾𝑞𝑖
))𝜏) 1

𝜏

i.e.,
(

− log
((

1 − 𝛼𝑞𝑖
)))𝜏 = 𝜔𝑖

(

− log
(

1 − 𝛾𝑞𝑖
))𝜏 ;

so,
(

− log
(

1 − 𝛼𝑞1
))𝜏 +

(

− log
(

1 − 𝛼𝑞2
))𝜏 = 𝜔1

(

− log
(

1 − 𝛾𝑞1
))𝜏

+ 𝜔2
(

− log
(

1 − 𝛾𝑞2
))𝜏

=
∑2
𝑖=1 𝜔𝑖

(

− log
(

1 − 𝛾𝑞𝑖
))𝜏

Again, − log 𝛽𝑞𝑖 = − log
⎛

⎜

⎜

⎝

𝑒−
(

𝜔𝑖
(

− log 𝜂𝑞𝑖
)𝜏)

1
𝜏 ⎞
⎟

⎟

⎠

=
(

𝜔𝑖
(

− log 𝜂𝑞𝑖
)𝜏) 1

𝜏 ,

(

− log 𝛽𝑞𝑖
)𝜏 = 𝜔𝑖

(

− log 𝜂𝑞𝑖
)𝜏

(

− log 𝛽𝑞1
)𝜏 +

(

− log 𝛽𝑞2
)𝜏 = 𝜔1

(

− log 𝜂𝑞1
)𝜏 + 𝜔2

(

− log 𝜂𝑞2
)𝜏

=
∑2
𝑖=1 𝜔𝑖

(

− log 𝜂𝑞𝑖
)𝜏

From (7)

=

⟨

⋃

𝛾𝑖∈ℎ̃𝑖
(𝑖=1,2)

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

1 − 𝑒−
(

∑2
𝑖=1 𝜔𝑖

(

− log
(

1−𝛾𝑞𝑖
))𝜏)

1
𝜏 ⎞
⎟

⎟

⎠

1
𝑞 ⎫
⎪

⎬

⎪

⎭

,

⋃

𝜂𝑖∈𝘨𝑖
(𝑖=1,2)

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

𝑒−
(

∑2
𝑖=1 𝜔𝑖

(

− log 𝜂𝑞𝑖
)𝜏)

1
𝜏 ⎞
⎟

⎟

⎠

1
𝑞 ⎫
⎪

⎬

⎪

⎭

⟩

.

herefore, Theorem is true for 𝑛 = 2.
ow, assume that it is true for 𝑛 = 𝑣,

i.e., 𝐷𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑊𝐴
(

�̃�1, �̃�2,… , �̃�𝑣
)

= ⊕𝐴𝐴
𝑣
𝑖=1

(

𝜔𝑖�̃�𝑖
)

=

⟨

⋃

𝛾𝑖∈ℎ̃𝑖
(𝑖=1,2,…,𝑣)

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

1 − 𝑒−
(

∑𝑣
𝑖=1 𝜔𝑖

(

− log
(

1−𝛾𝑞𝑖
))𝜏)

1
𝜏 ⎞
⎟

⎟

⎠

1
𝑞 ⎫
⎪

⎬

⎪

⎭

,

⋃

𝜂𝑖∈𝘨𝑖
(𝑖=1,2,…,𝑣)

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

𝑒−
(

∑𝑛
𝑖=1 𝜔𝑖

(

− log 𝜂𝑞𝑖
)𝜏)

1
𝜏 ⎞
⎟

⎟

⎠

1
𝑞 ⎫
⎪

⎬

⎪

⎭

⟩

.

Assume 𝐷𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑊𝐴
(

�̃�1, �̃�2,… , �̃�𝑣
)

=
⟨

ℎ̃′′𝑖 , 𝘨
′′
𝑖
⟩

where ℎ̃′′𝑖 =
⋃

𝜙𝑖∈ℎ̃′′𝑖

{

𝜙𝑖
}

and 𝘨 ′′
𝑖 =

⋃

𝜓𝑖∈𝘨 ′′𝑖

{

𝜓𝑖
}

for 𝑖 = 1, 2,… , 𝑣.
Then, 𝐷𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑊𝐴

(

�̃�1, �̃�2,… , �̃�𝑣, �̃�𝑣+1
)

= ⊕𝐴𝐴
𝑣
𝑖=1

(

𝜔𝑖�̃�𝑖
)

⊕𝐴𝐴
𝜔𝑣+1�̃�𝑣+1

)

⟨̃ ′′ ̃′′
⟩ ⟨̃ ′ ̃′

⟩

6

= ℎ𝑖 , 𝘨𝑖 ⊕𝐴𝐴 ℎ𝑖 , 𝘨𝑖
=

⟨

⋃

𝛾𝑖∈ℎ̃𝑖
(𝑖=1,2,…,𝑣+1)

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

1−

𝑒−
(

∑𝑣
𝑖=1 𝜔𝑖

(

− log
(

1−𝛾𝑞𝑖
))𝜏)

1
𝜏 ⎞
⎟

⎟

⎠

1
𝑞 ⎫
⎪

⎬

⎪

⎭

,
⋃

𝜂𝑖∈𝘨𝑖
(𝑖=1,2,…,𝑣+1)

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

𝑒−
(

∑𝑛
𝑖=1 𝜔𝑖

(

− log 𝜂𝑞𝑖
)𝜏)

1
𝜏 ⎞
⎟

⎟

⎠

1
𝑞 ⎫
⎪

⎬

⎪

⎭

⟩

;

Thus, it is holds for 𝑛 = 𝑣 + 1, and consequently, it is valid for all
𝑛 ∈ N.

It must now be demonstrated that the aggregate value corresponds
to a DH𝑞-ROFN as follows:
i.e., it must be demonstrated that

0 ≤ 𝛾𝑞𝑖 + 𝜂𝑖
𝑞 ≤ 1

⇔ log 𝜂𝑞𝑖 ≤ log
(

1 − 𝛾𝑞𝑖
)

⇔
(

− log 𝜂𝑞𝑖
)𝜏 ≥

(

− log
(

1 − 𝛾𝑞𝑖
))𝜏

⇔
𝑛
∑

𝑖=1
𝜔𝑖

(

− log 𝜂𝑞𝑖
)𝜏 ≥

𝑛
∑

𝑖=1
𝜔𝑖

(

− log
(

1 − 𝛾𝑞𝑖
))𝜏

⇔ −

( 𝑛
∑

𝑖=1
𝜔𝑖

(

− log 𝜂𝑞𝑖
)𝜏
)

1
𝜏

≤ −

( 𝑛
∑

𝑖=1
𝜔𝑖

(

− log
(

1 − 𝛾𝑞𝑖
))𝜏

)
1
𝜏

⇔ 𝑒−
(

∑𝑛
𝑖=1 𝜔𝑖

(

− log 𝜂𝑞𝑖
)𝜏)

1
𝜏
≤ 𝑒−

(

∑𝑛
𝑖=1 𝜔𝑖

(

− log
(

1−𝛾𝑞𝑖
))𝜏)

1
𝜏

⇔ 𝑒−
(

∑𝑛
𝑖=1 𝜔𝑖

(

− log
(

1−𝛾𝑞𝑖
))𝜏)

1
𝜏
− 𝑒−

(

∑𝑛
𝑖=1 𝜔𝑖

(

− log 𝜂𝑞𝑖
)𝜏)

1
𝜏
≥ 0

Now
⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎝

1 − 𝑒−
(

∑𝑣
𝑖=1 𝜔𝑖

(

− log
(

1−𝛾𝑞𝑖
))𝜏)

1
𝜏 ⎞
⎟

⎟

⎠

1
𝑞 ⎞
⎟

⎟

⎟

⎠

𝑞

+

⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎝

𝑒−
(

∑𝑛
𝑖=1 𝜔𝑖

(

− log 𝜂𝑞𝑖
)𝜏)

1
𝜏 ⎞
⎟

⎟

⎠

1
𝑞 ⎞
⎟

⎟

⎟

⎠

𝑞

= 1 −
⎛

⎜

⎜

⎝

𝑒−
(

∑𝑣
𝑖=1 𝜔𝑖

(

− log
(

1−𝛾𝑞𝑖
))𝜏)

1
𝜏
− 𝑒−

(

∑𝑛
𝑖=1 𝜔𝑖

(

− log 𝜂𝑞𝑖
)𝜏)

1
𝜏 ⎞
⎟

⎟

⎠

≤ 1.

Thus, this is a DH𝑞-ROFN.
Hence the proof is completed.

The following example is taken into consideration to demonstrate
he significance of the aforementioned theorem.

xample 3.2. Let 𝑃 =
{

�̃�1 = ⟨{0.5, 0.7, 0.8} , {0.3, 0.4}⟩ , �̃�2 = ⟨{0.7, 0.9} ,
{0.3, 0.5}⟩ , �̃�3 = ⟨{0.65, 0.75} , {0.5, 0.6}⟩

}

be a set of DH𝑞-ROFNs, which
ontains three elements. The weights of three corresponding elements
elated with 𝑃 is taken as 0.2, 0.35 and 0.45. Now utilize the proposed
H𝑞-ROFAAWA operator for aggregating those three elements �̃�1, �̃�2,
nd �̃�3 of 𝑃 as follows (suppose 𝜏 = 2, 𝑞 = 3):

𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑊𝐴
(

�̃�1, �̃�2, �̃�3
)

=

⟨

⋃

𝛾𝑖∈ℎ̃𝑖
(𝑖=1,2,3)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎛

⎜

⎜

⎜

⎝

1 − 𝑒
−
(

∑3
𝑖=1 𝜔𝑖

(

− log
(

1−𝛾3𝑖
))2

)
1
2 ⎞
⎟

⎟

⎟

⎠

1
3
⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

⋃

𝜂𝑖∈𝘨𝑖
(𝑖=1,2,3)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎛

⎜

⎜

⎜

⎝

𝑒
−
(

∑3
𝑖=1 𝜔𝑖

(

− log 𝜂3𝑖
)2

)
1
2 ⎞
⎟

⎟

⎟

⎠

1
3
⎫

⎪

⎪

⎬

⎪

⎪

⎭

⟩

=

⟨

{0.6574, 0.7120, 0.8206, 0.8319, 0.6806, 0.7258, 0.8248, 0.8356,

0.7168, 0.7499, 0.8332, 0.8429} ,

⟩

.

{0.3654, 0.3843, 0.4399, 0.4683, 0.3890, 0.4105, 0.4756, 0.5100}
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Now, the characteristics of the proposed DH𝑞-ROFAAWA operator
are designed in the following manner.

Theorem 3.2 (Idempotency). Let
{

�̃�𝑖 =
(

ℎ̃𝑖, 𝘨𝑖
)

|𝑖 = 1, 2,… , 𝑛
}

be a collec-
ion of 𝑛 DH𝑞-ROFNs. If �̃�𝑖 = �̃� =

(

ℎ̃, 𝘨
)

∀𝑖, then 𝐷𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑊𝐴
(

�̃�1,
�̃�2,… , �̃�𝑛

)

= �̃�.

roof. 𝐷𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑊𝐴
(

�̃�1, �̃�2,… , �̃�𝑛
)

= ⊕𝐴𝐴
𝑛
𝑖=1𝜔𝑖�̃�𝑖

=

⟨

⋃

𝛾𝑖∈ℎ̃𝑖
(𝑖=1,2,…,𝑛)

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

1 − 𝑒−
(

∑𝑛
𝑖=1 𝜔𝑖

(

− log
(

1−𝛾𝑞𝑖
))𝜏)

1
𝜏 ⎞
⎟

⎟

⎠

1
𝑞 ⎫
⎪

⎬

⎪

⎭

,

⋃

𝜂𝑖∈𝘨𝑖
(𝑖=1,…,𝑛)

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

𝑒−
(

∑𝑛
𝑖=1 𝜔𝑖

(

− log 𝜂𝑞𝑖
)𝜏)

1
𝜏 ⎞
⎟

⎟

⎠

1
𝑞 ⎫
⎪

⎬

⎪

⎭

⟩

ince �̃�𝑖 = �̃� =
(

ℎ̃, 𝘨
)

∀ 𝑖 = 1, 2,… , 𝑛,

𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑊𝐴 (�̃�, �̃�,… , �̃�) = ⊕𝐴𝐴
𝑛
𝑖=1

(

𝜔𝑖�̃�
)

=

⟨

⋃

𝛾∈ℎ̃

⎧

⎪

⎨

⎪

⎩

(

1 − 𝑒−
(

(− log(1−𝛾𝑞 ))𝜏
∑𝑛
𝑖=1 𝜔𝑖

)
1
𝜏
)

1
𝑞
⎫

⎪

⎬

⎪

⎭

,

⋃

𝜂∈𝘨

⎧

⎪

⎨

⎪

⎩

(

𝑒−
(

(− log 𝜂𝑞 )𝜏
∑𝑛
𝑖=1 𝜔𝑖

)
1
𝜏
)

1
𝑞
⎫

⎪

⎬

⎪

⎭

⟩

=

⟨

⋃

𝛾∈ℎ̃

⎧

⎪

⎨

⎪

⎩

(

1 − 𝑒−((− log(1−𝛾𝑞 ))𝜏 )
1
𝜏
)

1
𝑞
⎫

⎪

⎬

⎪

⎭

,
⋃

𝜂∈𝘨

⎧

⎪

⎨

⎪

⎩

(

𝑒−((− log 𝜂𝑞 )𝜏 )
1
𝜏
)

1
𝑞
⎫

⎪

⎬

⎪

⎭

⟩

=

⟨

⋃

𝛾∈ℎ̃

⎧

⎪

⎨

⎪

⎩

(

1 − 𝑒−((log(1−𝛾
𝑞 ))−𝜏 )

1
𝜏
)

1
𝑞
⎫

⎪

⎬

⎪

⎭

,
⋃

𝜂∈𝘨

{

(

𝑒log 𝜂
𝑞
)

1
𝑞

}⟩

=

⟨

⋃

𝛾∈ℎ̃

{

(

1 − 𝑒− log(1−𝛾𝑞 )−1
)

1
𝑞

}

,
⋃

𝜂∈𝘨

{

(

𝑒log 𝜂
𝑞
)

1
𝑞

}⟩

=

⟨

⋃

𝛾∈ℎ̃

{

(1 − (1 − 𝛾𝑞))
1
𝑞

}

,
⋃

𝜂∈𝘨

{

(𝜂𝑞)
1
𝑞

}

⟩

=
⟨

ℎ̃, 𝘨
⟩

= �̃�.

Therefore, the Theorem is proved.

heorem 3.3 (Monotonicity). Let �̃�𝑖 =
(

ℎ̃𝑖, 𝘨𝑖
)

and �̃�′𝑖 =
(

ℎ̃′𝑖 , 𝘨
′
𝑖
)

𝑖 = 1, 2,… , 𝑛) be two collections of DH𝑞-ROFNs and if 𝛾𝑖 ≤ 𝛾 ′𝑖 and 𝜗𝑖 ≥
′
𝑖 ∀ 𝑖, then

𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑊𝐴
(

�̃�1, �̃�2,… , �̃�𝑛
)

≤ 𝐷𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑊𝐴
(

�̃�′1, �̃�
′
2,… , �̃�′𝑛

)

roof. Here, 𝐷𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑊𝐴
(

�̃�1, �̃�2,… , �̃�𝑛
)

=

⟨

⋃

𝛾𝑖∈ℎ̃𝑖

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

1 − 𝑒−
(

∑𝑛
𝑖=1 𝜔𝑖

(

− log
(

1−𝛾𝑞𝑖
))𝜏)

1
𝜏 ⎞
⎟

⎟

⎠

1
𝑞 ⎫
⎪

⎬

⎪

⎭

,

⋃

𝜂𝑖∈𝘨𝑖

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

𝑒−
(

∑𝑛
𝑖=1 𝜔𝑖

(

− log 𝜂𝑞𝑖
)𝜏)

1
𝜏 ⎞
⎟

⎟

⎠

1
𝑞 ⎫
⎪

⎬

⎪

⎭

⟩

,

nd 𝐷𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑊𝐴
(

�̃�′1, �̃�
′
2,… , �̃�′𝑛

)

=

⟨

⋃

𝛾′∈ℎ̃′

⎧

⎪

⎨

⎪

⎛

⎜

⎜

⎝

1 − 𝑒−
(

∑𝑛
𝑖=1 𝜔𝑖

(

− log
(

1−𝛾′𝑞𝑖
))𝜏) 1

𝜏 ⎞
⎟

⎟

⎠

1
𝑞 ⎫
⎪

⎬

⎪

,

7

𝑖 𝑖
⎩ ⎭
⋃

𝜂′𝑖∈𝘨
′
𝑖

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

𝑒−
(

∑𝑛
𝑖=1 𝜔𝑖

(

− log 𝜂′𝑞𝑖
)𝜏) 1

𝜏 ⎞
⎟

⎟

⎠

1
𝑞 ⎫
⎪

⎬

⎪

⎭

⟩

.

Now, for 𝑖 = 1, 2,… , 𝑛, 𝛾𝑖 ≤ 𝛾 ′𝑖

⇔ 1 − 𝛾𝑞𝑖 ≥ 1 − 𝛾 ′𝑞𝑖 ,

⇔
(

− log
(

1 − 𝛾𝑞𝑖
))𝜏 ≤

(

− log
(

1 − 𝛾 ′𝑞𝑖
))𝜏

⇔ −

( 𝑛
∑

𝑖=1
𝜔𝑖

(

− log
(

1 − 𝛾𝑞𝑖
))𝜏

)
1
𝜏

≥ −

( 𝑛
∑

𝑖=1
𝜔𝑖

(

− log
(

1 − 𝛾 ′𝑞𝑖
))𝜏

)
1
𝜏

.

Hence,
⎛

⎜

⎜

⎝

1 − 𝑒−
(

∑𝑛
𝑖=1 𝜔𝑖

(

− log
(

1−𝛾𝑞𝑖
))𝜏)

1
𝜏 ⎞
⎟

⎟

⎠

1
𝑞

≤

⎛

⎜

⎜

⎝

1 − 𝑒−
(

∑𝑛
𝑖=1 𝜔𝑖

(

− log
(

1−𝛾′𝑞𝑖
))𝜏) 1

𝜏 ⎞
⎟

⎟

⎠

1
𝑞

Similarly, it can be shown that if 𝜂𝑖 ≥ 𝜂′𝑖 then

⎛

⎜

⎜

⎝

𝑒−
(

∑𝑛
𝑖=1 𝜔𝑖

(

− log 𝜂𝑞𝑖
)𝜏)

1
𝜏 ⎞
⎟

⎟

⎠

1
𝑞

≥
⎛

⎜

⎜

⎝

𝑒−
(

∑𝑛
𝑖=1 𝜔𝑖

(

− log 𝜂′𝑞𝑖
)𝜏) 1

𝜏 ⎞
⎟

⎟

⎠

1
𝑞

.

Then by Definition 2.5.

𝐷𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑊𝐴
(

�̃�1, �̃�2,… , �̃�𝑛
)

≤ 𝐷𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑊𝐴
(

�̃�′1, �̃�
′
2,… , �̃�′𝑛

)

.

heorem 3.4 (Boundedness). Let
{

�̃�1, �̃�2,… , �̃�𝑛
}

be a collection of 𝑛 DH𝑞-
OFNs. If �̃�+ = ∪𝛾𝑖∈ℎ̃𝑖 ,𝜂𝑖∈𝘨𝑖

{{

𝑚𝑎𝑥𝑗𝛾𝑗
}

,
{

𝑚𝑖𝑛𝑗𝜂𝑗
}}

and �̃�− = ∪𝛾𝑖∈ℎ̃𝑖 ,𝜂𝑖∈𝘨𝑖
{

𝑚𝑖𝑛𝑗𝛾𝑗
}

,
{

𝑚𝑎𝑥𝑗𝜂𝑗
}}

then

�̃�− ≤ 𝐷𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑊𝐴
(

𝜅1, 𝜅2,… , 𝜅𝑛
)

≤ �̃�+.

roof. Since min𝑗 𝛾𝑗 ≤ 𝛾𝑗 ≤ max𝑗 𝛾𝑗 and min𝑗 𝜂𝑗 ≤ 𝜂𝑗 ≤ max𝑗 𝜂𝑗 then

�̃�− ≤ �̃�𝑖 for 𝑖 = 1, 2,… , 𝑛.

Then by monotonicity, 𝐷𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑊𝐴 (�̃�−, �̃�−,… , �̃�−) ≤ 𝐷𝐻𝑞
-𝑅𝑂𝐹𝐴𝐴𝑊𝐴

(

�̃�1, �̃�2,… , �̃�𝑛
)

.
By idempotency, �̃�− ≤ 𝐷𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑊𝐴

(

�̃�1, �̃�2,… , �̃�𝑛
)

.
Similarly, 𝐷𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑊𝐴

(

�̃�1, �̃�2,… , �̃�𝑛
)

≤ �̃�+.
So, �̃�− ≤ 𝐷𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑊𝐴

(

�̃�1, �̃�2,… , �̃�𝑛
)

≤ �̃�+.

Note 1. For 𝜏 = 1, DH𝑞-ROFAAWA aggregation operator converted to
DH𝑞-ROFWA operator (Wang et al., 2019b) as

𝐷𝐻𝑞-𝑅𝑂𝐹𝑊𝐴
(

�̃�1, �̃�2,… , �̃�𝑛
)

=

⟨

⋃

𝛾𝑖∈ℎ̃𝑖
(𝑖=1,2,…,𝑛)

⎧

⎪

⎨

⎪

⎩

(

1 −
𝑛
∏

𝑖=1

(

1 − 𝛾𝑞𝑖
)𝜔𝑖

)
1
𝑞
⎫

⎪

⎬

⎪

⎭

,

⋃

𝜂𝑖∈𝘨𝑖
(𝑖=1,2,…,𝑛)

{ 𝑛
∏

𝑖=1
𝜂𝑖
𝜔𝑖

}⟩

.

Now, develop the DH𝑞-ROFAAOWA operator.

efinition 3.3. Suppose
{

�̃�𝑖 =
(

ℎ̃𝑖, 𝘨𝑖
)

|𝑖 = 1, 2,… , 𝑛
}

be a set of DH𝑞-
ROFNs. If a function DH𝑞-ROFAAOWA is defined using ⊕𝐴𝐴 operation
as

𝐷𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑂𝑊𝐴
(

�̃�1, �̃�2,… , �̃�𝑛
)

= ⊕𝐴𝐴
𝑛
𝑖=1

(

𝜔𝑖�̃�𝜎(𝑖)
)

,

then 𝐷𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑂𝑊𝐴
(

�̃�1, �̃�2,… , �̃�𝑛
)

is called DH𝑞-ROFAAOWA op-
erator, where 𝜎 is a permutation defined on {1, 2,… , 𝑛} in such a way
that �̃�𝜎(𝑖−1) ≥ �̃�𝜎(𝑖) ∀ 𝑖 = 2, 3,… , 𝑛. Here, 𝜔 =

(

𝜔1, 𝜔2,… , 𝜔𝑛
)

be the
weighted vector of DH𝑞-ROFNs with 𝜔𝑖 > 0, and ∑𝑛

𝑖=1 𝜔𝑖 = 1.

Theorem 3.5. Let
{

�̃�𝑖 =
(

ℎ̃𝑖, 𝘨𝑖
)

|𝑖 = 1, 2,… , 𝑛
}

represents a set of 𝑛 DH𝑞-

ROFNs and Aczel-Alsina parameter 𝜏 > 0, then the aggregating element
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utilizing DH𝑞-ROFAAOWA operator is also a DH𝑞-ROFN and is represented
n the following manner:

𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑂𝑊𝐴
(

�̃�1, �̃�2,… , �̃�𝑛
)

= ⊕𝐴𝐴
𝑛
𝑖=1

(

𝜔𝑖�̃�𝜎(𝑖)
)

=

⟨

⋃

𝛾𝜎(𝑖)∈ℎ̃𝜎(𝑖)
(𝑖=1,2,…,𝑛)

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

1 − 𝑒−
(

∑𝑛
𝑖=1 𝜔𝑖

(

− log
(

1−𝛾𝑞𝜎(𝑖)
))𝜏) 1

𝜏 ⎞
⎟

⎟

⎠

1
𝑞 ⎫
⎪

⎬

⎪

⎭

,

⋃

𝜂𝜎(𝑖)∈𝘨𝜎(𝑖)
(𝑖=1,2,…,𝑛)

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

𝑒−
(

∑𝑛
𝑖=1 𝜔𝑖

(

− log 𝜂𝑞𝜎(𝑖)
)𝜏) 1

𝜏 ⎞
⎟

⎟

⎠

1
𝑞 ⎫
⎪

⎬

⎪

⎭

⟩

. (8)

here 𝜎 is a permutation on {1, 2,… , 𝑛} in such a way that �̃�𝜎(𝑖−1) ≥
̃𝜎(𝑖) ∀ 𝑖 = 2, 3,… , 𝑛, and

{

𝜔𝑖|𝑖 = 1, 2,… , 𝑛
}

be the associated weight vector
uch that 𝜔𝑖 > 0 and ∑𝑛

𝑖=1 𝜔𝑖 = 1.

roof. The proof of Theorem 3.5 is identical to the proof of Theo-
em 3.1.

If Example 3.2 is solved utilizing DH𝑞-ROFAAOWA operator, then
he aggregating value is obtained as

𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑂𝑊𝐴
(

�̃�1, �̃�2, �̃�3
)

=

⟨

⋃

𝛾𝜎(𝑖)∈ℎ̃𝜎(𝑖)
(𝑖=1,2,3)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎛

⎜

⎜

⎜

⎝

1 − 𝑒
−
(

∑3
𝑖=1 𝜔𝑖

(

− log
(

1−𝛾3𝜎(𝑖)
))2

)
1
2 ⎞
⎟

⎟

⎟

⎠

1
3
⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

⋃

𝜂𝜎(𝑖)∈𝘨𝜎(𝑖)
(𝑖=1,2,3)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎛

⎜

⎜

⎜

⎝

𝑒
−
(

∑3
𝑖=1 𝜔𝑖

(

− log 𝜂3𝜎(𝑖)
)2

)
1
2 ⎞
⎟

⎟

⎟

⎠

1
3
⎫

⎪

⎪

⎬

⎪

⎪

⎭

⟩

(From Definition 2.5, �̃�2 > �̃�1 > �̃�3. So, �̃�𝜎(1) = �̃�2, �̃�𝜎(2) = �̃�1, �̃�𝜎(3) = �̃�3)

⟨

{0.6355, 0.7001, 0.6806, 0.7258, 0.7371, 0.7645,

0.7753, 0.7941, 0.7875, 0.8040, 0.8089, 0.8219} ,

{0.3654, 0.3843, 0.4088, 0.4328, 0.4044, 0.4278, 0.4591, 0.4905}

⟩

.

Note 2. The DH𝑞-ROFAAOWA operator also satisfies the monotonicity,
idempotency and boundedness requirements, and this can be demon-
strated similarly.

Note 3. DH𝑞-ROFOWA (Wang et al., 2019b) operator can be gener-
ated, for considering 𝜏 = 1.

Here, DH𝑞-ROFAAWG operator is presented.

Definition 3.4. Suppose
{

�̃�1, �̃�2,… , �̃�𝑛
}

be a collection of DH𝑞-ROFNs.
f DH𝑞-ROFAAWG is defined using ⊗𝐴𝐴 operation as

𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑊𝐺
(

�̃�1, �̃�2,… , �̃�𝑛
)

= ⊗𝐴𝐴
𝑛
𝑖=1

(

�̃�𝑖
)𝜔𝑖 ,

hen 𝐷𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑊𝐺
(

�̃�1, �̃�2,… , �̃�𝑛
)

is called DH𝑞-ROFAAWG opera-
or, where

{

𝜔𝑖|𝑖 = 1, 2,… , 𝑛
}

be the weighted vector of
(

�̃�1, �̃�2,… , �̃�𝑛
)

nd 𝜔𝑖 > 0, and ∑𝑛
𝑖=1 𝜔𝑖 = 1.

heorem 3.6. Let
{

�̃�1, �̃�2,… , �̃�𝑛
}

be a collection of DH𝑞-ROFNs. and
> 0, then the aggregating value of �̃�𝑖 utilizing DH𝑞-ROFAAWG operator
s also a DH𝑞-ROFN and can be defined as

𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑊𝐺
(

�̃�1, �̃�2,… , �̃�𝑛
)

= ⊗𝐴𝐴
𝑛
𝑖=1

(

�̃�𝑖
)𝜔𝑖

=

⟨

⋃

𝛾𝑖∈ℎ̃𝑖 ,

⎧

⎪

⎨

⎪

⎛

⎜

⎜

⎝

𝑒−
(

∑𝑛
𝑖=1 𝜔𝑖

(

− log 𝛾𝑞𝑖
)𝜏)

1
𝜏 ⎞
⎟

⎟

⎠

1
𝑞 ⎫
⎪

⎬

⎪

,

8

𝑖=1,2,…,𝑛 ⎩ ⎭
⋃

𝜂𝑖∈𝘨𝑖 ,
𝑖=1,2,…,𝑛

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

1 − 𝑒−
(

∑𝑛
𝑖=1 𝜔𝑖

(

− log
(

1−𝜂𝑞𝑖
))𝜏)

1
𝜏 ⎞
⎟

⎟

⎠

1
𝑞 ⎫
⎪

⎬

⎪

⎭

⟩

, (9)

where
{

𝜔𝑖|𝑖 = 1, 2,… , 𝑛
}

be weighted vector of �̃�𝑖 (𝑖 = 1, 2,… , 𝑛) where
𝑖 > 0, ∑𝑛

𝑖=1 𝜔𝑖 = 1.

roof. The proof of Theorem 3.6 is alike to the proof of Theorem 3.1.
If Example 3.2 is solved utilizing DH𝑞-ROFAAWG operator, then the

ggregating value is obtained as

𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑊𝐺
(

�̃�1, �̃�2, �̃�3
)

=

⟨

{0.6229, 0.6559, 0.6516, 0.6904, 0.6759, 0.7208, 0.7147,

0.7726, 0.6897, 0.7387, 0.7320, 0.7977} ,

{0.4444, 0.5333, 0.4836, 0.5498, 0.4502, 0.5355, 0.4874, 5516}

⟩

.

Note 4. It is also possible to demonstrate that the DH𝑞-ROFAAWG
operator satisfies the idempotency, monotonicity, and boundedness
characteristics.

Note 5. DH𝑞-ROFWG (Wang et al., 2019b) operator can be generated
for taking 𝜏 = 1.

DH𝑞-ROFAAOWG aggregation operator is presented as

Definition 3.5. Suppose
{

�̃�𝑖 =
(

ℎ̃𝑖, 𝘨𝑖
)

|𝑖 = 1, 2,… , 𝑛
}

be a set of 𝑛 DH𝑞-
ROFNs. If a function DH𝑞-ROFAAOWG is defined using ⊗𝐴𝐴 operation
as

𝐷𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑂𝑊𝐺
(

�̃�1, �̃�2,… , �̃�𝑛
)

= ⊗𝐴𝐴
𝑛
𝑖=1

(

�̃�𝜎(𝑖)
)𝜔𝑖 ,

then 𝐷𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑂𝑊𝐺
(

�̃�1, �̃�2,… , �̃�𝑛
)

is called DH𝑞-ROFAAOWG op-
erator, where 𝜎 is a permutation defined on {1, 2,… , 𝑛} in such a way
that �̃�𝜎(𝑖−1) ≥ �̃�𝜎(𝑖) for all 𝑖 = 2, 3,… , 𝑛, and

{

𝜔𝑖|𝑖 = 1, 2,… , 𝑛
}

be the
weight vector such that 𝜔𝑖 > 0, and ∑𝑛

𝑖=1 𝜔𝑖 = 1.

Theorem 3.7. Suppose �̃�𝑖 =
⟨

ℎ̃𝑖, 𝘨𝑖
⟩

(𝑖 = 1, 2,… , 𝑛) be a collection of
DH𝑞-ROFNs and 𝜏 > 0, using DH𝑞-ROFAAOWG operator the aggregated
value is also a DH𝑞-ROFN and can be given as follows:

𝐷𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑂𝑊𝐺
(

�̃�1, �̃�2,… , �̃�𝑛
)

= ⊗𝐴𝐴
𝑛
𝑖=1

(

�̃�𝜎(𝑖)
)𝜔𝑖

=

⟨

⋃

𝛾𝜎(𝑖)∈ℎ̃𝜎(𝑖)
(𝑖=1,2,…,𝑛)

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

𝑒−
(

∑𝑛
𝑖=1 𝜔𝑖

(

− log 𝛾𝑞𝜎(𝑖)
)𝜏) 1

𝜏 ⎞
⎟

⎟

⎠

1
𝑞 ⎫
⎪

⎬

⎪

⎭

,

⋃

𝜂𝜎(𝑖)∈𝘨𝜎(𝑖)
(𝑖=1,2,…,𝑛)

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

1 − 𝑒−
(

∑𝑛
𝑖=1 𝜔𝑖

(

− log
(

1−𝜂𝑞𝜎(𝑖)
))𝜏) 1

𝜏 ⎞
⎟

⎟

⎠

1
𝑞 ⎫
⎪

⎬

⎪

⎭

⟩

, (10)

where 𝜎 and 𝜔 convey the same meaning as in Definition 3.5.

Proof. The proof is similar to Theorem 3.1.
If Example 3.2 is solved utilizing DH𝑞-ROFAAOWG operator, then

the aggregating value is obtained as

𝐷𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑂𝑊𝐺
(

�̃�1, �̃�2, �̃�3
)

=

⟨

{0.5907, 0.6185, 0.6759, 0.7208, 0.7008, 0.7535,

0.6042, 0.6340, 0.6970, 0.7484, 0.7253, 0.7878} ,

{0.4444, 0.5353, 0.4544, 0.5371, 0.4690, 0.5431, 0.4766, 0.5465}

⟩

.

Note 6. It is also possible to demonstrate that the DH𝑞-ROFAAOWG
operator satisfies the idempotency, monotonicity, and boundedness
characteristics.

Note 7. DH𝑞-ROFOWG (Wang et al., 2019b) operator can be found for

taking 𝜏 = 1, in DH𝑞-ROFAAOWG operator.
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Now, DH𝑞-ROFAAHA operator is defined below.

Definition 3.6. Let
{

�̃�𝑖 =
(

ℎ̃𝑖, 𝘨𝑖
)

|𝑖 = 1, 2,… , 𝑛
}

be a collection of DH𝑞-
ROFNs. If a function DH𝑞-ROFAAHA is defined using ⊕𝐴𝐴 operation
s

𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝐻𝐴
(

�̃�1, �̃�2,… , �̃�𝑛
)

= ⊕𝐴𝐴
𝑛
𝑖=1

(

𝜔𝑖 ̃̇𝜅𝜎(𝑖)
)

,

then 𝐷𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝐻𝐴
(

�̃�1, �̃�2,… , �̃�𝑛
)

is called DH𝑞-ROFAAHA opera-
or, where 𝑛 is the balancing co-efficient and 𝜔 =

(

𝜔1, 𝜔2,… , 𝜔𝑛
)

be
ssociated weight vector such that 𝜔𝑖 > 0, and ∑𝑛

𝑖=1 𝜔𝑖 = 1. ̃̇𝜅𝜎(𝑖) is the
𝑡ℎ largest element of the DH𝑞-ROF arguments ̃̇𝜅𝑖

( ̃̇𝜅𝑖 = 𝑛𝛺𝑖�̃�𝑖 =
(

𝑛𝛺𝑖ℎ̃𝑖,
𝑛𝛺𝑖�̃�𝑖

))

, 𝛺 =
(

𝛺𝑖|𝑖 = 1, 2,… , 𝑛
)

is the weight vector of DH𝑞-ROF
rguments ̃̇𝜅𝑖 with ∑𝑛

𝑖=1𝛺𝑖 = 1 and 𝛺𝑖 > 0.

Moreover, if 𝜔 =
(

1
𝑛 ,

1
𝑛 ,… , 1𝑛

)

(or 𝛺 =
(

1
𝑛 ,

1
𝑛 ,… , 1𝑛

)

) then DH𝑞-
OFAAHA operator is reduced to DH𝑞-ROFAAWA (or DH𝑞- ROFAA
WA) operator, respectively.

heorem 3.8. Let
{

�̃�𝑖 =
(

ℎ̃𝑖, 𝘨𝑖
)

|𝑖 = 1, 2,… , 𝑛
}

represents a set of DH𝑞-
OFNs and Aczel-Alsina parameter 𝜏 > 0, then the aggregated number
tilizing DH𝑞-ROFAAHA operator is also a DH𝑞-ROFN and can be defined
s

𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝐻𝐴
(

�̃�1, �̃�2,… , �̃�𝑛
)

= ⊕𝐴𝐴
𝑛
𝑖=1

(

𝜔𝑖 ̃̇𝜅𝜎(𝑖)
)

=

⟨

⋃

�̇�𝑖∈̃̇ℎ𝑖
(𝑖=1,2,…,𝑛)

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

1 − 𝑒−
(

∑𝑛
𝑖=1 𝜔𝑖

(

− log
(

1−�̇�𝑞𝜎(𝑖)
))𝜏) 1

𝜏 ⎞
⎟

⎟

⎠

1
𝑞 ⎫
⎪

⎬

⎪

⎭

,

⋃

�̇�𝑖∈̃̇𝘨 𝑖
(𝑖=1,2,…,𝑛)

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

𝑒−
(

∑𝑛
𝑖=1 𝜔𝑖

(

− log �̇�𝑞𝜎(𝑖)
)𝜏) 1

𝜏 ⎞
⎟

⎟

⎠

1
𝑞 ⎫
⎪

⎬

⎪

⎭

⟩

, (11)

here ̃̇𝜅𝑖 = 𝑛𝛺𝑖�̃�𝑖 =
(

𝑛𝛺𝑖ℎ̃𝑖, 𝑛𝛺𝑖𝘨𝑖
)

=
(

̃̇ℎ, ̃̇𝘨
)

.

roof. The proof of Theorem 3.8 is similar to Theorem 3.1.
If Example 3.2 is solved utilizing DH𝑞-ROFAAHA operator, then the

ggregating value is obtained as (taking 𝛺 = (0.4, 0.3, 0.3))

𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝐻𝐴
(

�̃�1, �̃�2, �̃�3
)

=

⟨

{0.6280, 0.6913, 0.6833, 0.7239, 0.7466, 0.7694,

0.7660, 0.7848, 0.7819, 0.7978, 0.8084, 0.8203} ,

{0.3564, 0.3725, 0.4070, 0.4282, 0.3893, 0.4086, 0.4511, 0.4780}

⟩

.

ote 8. It is also possible to demonstrate that the DH𝑞-ROFAAHA
perator satisfies the idempotency, monotonicity, and boundedness
haracteristics.

ote 9. For 𝜏 = 1, the DH𝑞-ROFAAHA operator is changed to
H𝑞-ROFHA.

Now, the aggregation operator DH𝑞-ROFAAHG is defined in the
ollowing manner.

efinition 3.7. Assume
{

�̃�𝑖 =
(

ℎ̃𝑖, 𝘨𝑖
)

|𝑖 = 1, 2,… , 𝑛
}

be a collection
f DH𝑞-ROFNs. If 𝐷𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝐻𝐺

(

�̃�1, �̃�2,… , �̃�𝑛
)

= ⊗𝐴𝐴
𝑛
𝑖=1

( ̃̇𝜅𝜎(𝑖)
)𝜔𝑖 ,

hen 𝐷𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝐻𝐺
(

�̃�1, �̃�2,… , �̃�𝑛
)

is called DH𝑞-ROFAAHG oper-
tor, where 𝑛 is the balancing co-efficient and ̃̇𝜅𝜎(𝑖) is the 𝑖𝑡ℎ largest
lement of the DH𝑞-ROF arguments ̃̇𝜅𝑖

(

̃̇𝜅𝑖 = �̃�𝑛𝛺𝑖𝑖 =
(

ℎ̃𝑛𝛺𝑖𝑖 , 𝘨 𝑛𝛺𝑖𝑖

))

. 𝜔 =
𝜔1, 𝜔2,… , 𝜔𝑛

)

represents the associate weighted vector such that
𝑛
𝑖=1 𝜔𝑖 = 1 and 𝜔𝑖 > 0, 𝛺 =

(

𝛺1,𝛺2,… , 𝛺𝑛
)

is the weight vector of
H𝑞-ROF arguments ̃̇𝜅𝑖 with 𝛺𝑖 > 0, and ∑𝑛

𝑖=1𝛺𝑖 = 1.

Moreover, if 𝜔 =
(

1
𝑛 ,

1
𝑛 ,… , 1𝑛

)

then DH𝑞-ROFAAHG operator is
converted to DH𝑞-ROFAAWG operator. Moreover, aggregation oper-
ator DH𝑞-ROFAAOWG can be obtained from the developed operator
DH𝑞-ROFAAHG if 𝛺 =

(

1 , 1 ,… , 1
)

.

9

𝑛 𝑛 𝑛
Theorem 3.9. Let
{

�̃�𝑖 =
(

ℎ̃𝑖, 𝘨𝑖
)

|𝑖 = 1, 2,… , 𝑛
}

represents a set of DH𝑞-
ROFNs, 𝜏 > 0, using DH𝑞-ROFAAHG operator, the aggregated value is also
a DH𝑞-ROFN and can be represented as

𝐷𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝐻𝐺
(

�̃�1, �̃�2,… , �̃�𝑛
)

= ⊗𝐴𝐴
𝑛
𝑖=1

(

𝜔𝑖 ̃̇𝜅𝜎(𝑖)
)

=

⟨

⋃

�̇�𝑖∈̃̇ℎ𝑖 ,𝑖=1,2,…,𝑛

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

𝑒−
(

∑𝑛
𝑖=1 𝜔𝑖

(

− log �̇�𝑞𝜎(𝑖)
)𝜏) 1

𝜏 ⎞
⎟

⎟

⎠

1
𝑞 ⎫
⎪

⎬

⎪

⎭

,

⋃

�̇�𝑖∈ ̃̇𝑔
(𝑖=1,2,…,𝑛)

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎝

1 − 𝑒−
(

∑𝑛
𝑖=1 𝜔𝑖

(

− log
(

1−�̇�𝑞𝜎(𝑖)
))𝜏) 1

𝜏 ⎞
⎟

⎟

⎠

1
𝑞 ⎫
⎪

⎬

⎪

⎭

⟩

, (12)

where ̃̇𝜅𝑖 = �̃�𝑛𝛺𝑖𝑖 =
(

ℎ̃𝑛𝛺𝑖𝑖 , 𝘨 𝑛𝛺𝑖𝑖

)

=
(

̃̇ℎ, ̃̇𝘨
)

.

roof. The proof is similar to proof of Theorem 3.1.
If Example 3.2 is solved utilizing DH𝑞-ROFAAHG operator, then the

ggregating value is obtained as (taking 𝛺 = (0.4, 0.3, 0.3))

𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝐻𝐺
(

�̃�1, �̃�2, �̃�3
)

=

⟨

{0.5783, 0.6016, 0.6776, 0.7179, 0.7083, 0.7572,

0.5897, 0.6144, 0.6967, 0.7421, 0.7311, 0.7886} ,

{0.4377, 0.5250, 0.4505, 0.5299, 0.4618, 0.5346, 0.4715, 0.5391}

⟩

.

4. Methodological developments of MCGDM in DH𝒒-ROF environ-
ment using the proposed AA𝒕-CN&𝒕-Ns-based operators

In this section, an MCGDM method is developed using the devel-
oped operators. Suppose, 𝐴 =

{

𝐴1, 𝐴2,… , 𝐴𝑚
}

be a finite collection
of 𝑚 alternatives, 𝐶 =

{

C1,C2,… ,C𝑛
}

be a set of 𝑛 criteria and
𝐷 =

{

𝐷(1), 𝐷(1),… , 𝐷(𝑝)} be a set consisting of 𝑝 number of DMs.
Let 𝜔 =

(

𝜔1, 𝜔2,… , 𝜔𝑛
)𝑇 be the weight vector of criteria such that

∑𝑛
𝑖=1 𝜔𝑖 = 1 where 𝜔𝑖 ∈ [0, 1] and the weight vector of DMs is given

as 𝛺 =
(

𝛺1, 𝛺1,… , 𝛺𝑝
)𝑇 such that ∑𝑝

𝑗=1𝛺𝑗 = 1 and 𝛺𝑗 > 0. Suppose
K(𝑙) =

[

�̃�(𝑙)𝑖𝑗
]

𝑚×𝑛
=

(

ℎ̃(𝑙)𝑖𝑗 , 𝘨
(𝑙)
𝑖𝑗

)

𝑚×𝑛
represents the DH𝑞-ROF decision

matrix (DH𝑞-ROFDM). In which ℎ̃(𝑙)𝑖𝑗 and 𝘨 (𝑙)
𝑖𝑗 denote, set of possible

MD and NMD, respectively, of the 𝑖th alternative for the 𝑗th criterion
evaluated by the 𝑙th DM.

Step 1: Cost type and benefit type are the two types of criteria in
a decision-making problem. In terms of cost type, a lower value is
preferable, while a higher number is preferable in terms of benefit type.
In this way, the evaluation matrix is normalized as

𝑅(𝑙) = 𝑟(𝑙)𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

�̃�(𝑙)𝑖𝑗 for benefit type C𝑗 ,
(

�̃�(𝑙)𝑖𝑗
)𝑐

for cost types C𝑗

𝑖 = 1, 2,… , 𝑛; 𝑗 = 1, 2,… , 𝑚; 𝑙 = 1, 2,… , 𝑝.
(

�̃�(𝑙)𝑖𝑗
)𝑐

represents the complement of �̃�(𝑙)𝑖𝑗 , i.e.,
(

�̃�(𝑙)𝑖𝑗
)𝑐

=
(

𝘨 (𝑙)
𝑖𝑗 , ℎ̃

(𝑙)
𝑖𝑗

)

.

Step 2: Utilize DH𝑞-ROFAAWA (or DH𝑞-ROFAAWG) operator for ag-
gregating all the individual DH𝑞-ROFDM 𝑅(𝑙) =

(

𝑟(𝑙)𝑖𝑗
)

𝑚×𝑛
into a single

DH𝑞-ROFDM, 𝑅 =
[

𝑟𝑖𝑗
]

𝑚×𝑛. 𝑟𝑖𝑗 = 𝐷𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑊𝐴
(

𝑟(1)𝑖𝑗 , 𝑟
(2)
𝑖𝑗 ,… , 𝑟(𝑝)𝑖𝑗

)

or 𝑟𝑖𝑗 = 𝐷𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑊𝐺
(

𝑟(1)𝑖𝑗 , 𝑟
(2)
𝑖𝑗 ,… , 𝑟(𝑝)𝑖𝑗

)

).

tep 3: To get overall 𝑑𝑖, utilize the DH𝑞-ROFAAWA (or DH𝑞-
OFAAWG) operator for aggregating all the values 𝑟𝑖𝑗 (𝑗 = 1, 2,… , 𝑛)
f the alternative 𝐴𝑖.

�̃� = 𝐷𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑊𝐴
(

𝑟𝑖1, 𝑟𝑖2,… , 𝑟𝑖𝑛
)

(or 𝑑𝑖 = 𝐷𝐻𝑞-𝑅𝑂𝐹𝐴𝐴𝑊𝐺
(

𝑟𝑖1, 𝑟𝑖2,… , 𝑟𝑖𝑛
)

).
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Step 4: Compute the scores 𝑆(𝑑𝑖) (𝑖 = 1, 2,… , 𝑚) of the overall DH𝑞-
ROFN 𝑑𝑖 (𝑖 = 1, 2,… , 𝑛).

Step 5: Rank the all alternatives 𝐴𝑖 (𝑖 = 1, 2,… ., 𝑚) and select the best
ones(s) in based with the scores

(

𝑑𝑖
)

(𝑖 = 1, 2,… , 𝑚).
It is worthy to mention here that the weights of the criteria in

MCGDM may be known in advance based on their importances. How-
ever, some situations may be raised when the criteria weights are
unknown or partially known by the DMs. This method is developed
based on known criteria weights. However, if the weights are unknown,
it can be evaluated from the decision matrices based on some known
techniques (Maghrabie et al., 2019; Seikh and Mandal, 2022; Liu et al.,
2021b.) which have not been considered in this article.

5. Case study

5.1. Problem description

The use of the novel approach has been applied to evaluate the
parcel lockers location selection problem within Dublin city. This model
is based on a hierarchical structure composed of criteria and alterna-
tives. By conducting a comprehensive literature review and consulting
with field experts, the possible locations for parcel lockers have been
identified along with the relevant criteria. After careful consideration,
five locations were selected as the most suitable for the logistics re-
quirements (‘‘On commercial area, 𝐴1’’, ‘‘Private car parking 𝐴2’’, ‘‘High
population density area 𝐴3’’, ‘‘Post office 𝐴4’’ and ‘‘Public transport
stops 𝐴5’’). The interviews with the experts and the analysis have been
conducted in November 2022 in Dublin city, where the evaluators
were experts in the related field. Taking into consideration the five
mentioned alternatives and the following four main criteria are defined:

• Traffic Impact (C1) — The use of parcel lockers can contribute
to the decrease of traffic impact in cities, which can lead to lower
CO2 emissions (Iwan et al., 2016; Lagorio and Roberto, 2020).

• Security (C2) — Maintaining users’ privacy and security is crucial
when using a delivery system. The system is able to verify delivery
and 24/7 cameras are connected to police stations to record any
incidents (Keeling et al., 2021).

• Reliability (C3) — The ability of a system to meet consumers’
daily demands based on the quantity, size, and quick service
provided can be assessed through the use of parcel lockers. These
lockers offer an efficient solution for non-delivery cases and are
available 24 h a day, every day of the week (Kilibarda et al.,
2020).

• Accessibility (C4) — The positioning of a service point is im-
portant in terms of accessibility. Positioning it in a location that
is easily accessible by walk, cycle, public transport, or private
vehicle will encourage users to utilize it (Lagorio and Roberto,
2020).

The hierarchy structure of the parcel locker location selection had been
created considering four main criteria and five alternatives, as it is
depicted in Fig. 1.

5.2. Solution technique

We use the developed MCGDM methodology to parcel locker loca-
tion selection with DH𝑞-ROF data. Here C2, C4 are benefit type and
C1 and C3 are cost-type criteria. The investor discussed with the four
experts 𝐸(𝑙) (𝑙 = 1, 2, 3, 4). Based on their knowledge and expertise, the
weight vector of experts is 𝛺 = (0.1, 0.2, 0.3, 0.4)𝑇 . The judgement value
of the experts is shown in Tables 3–6.

Step 1: Since, C1 and C3 are two cost-type criteria, Normalized DH𝑞-
ROFDMs are given in the following Tables 7–10.

Step 2: Utilize DH𝑞-ROFAAWA operator, by considering 𝑞 = 3, 𝜏 = 2,
for aggregating individual DH𝑞-ROFDMs 𝑅(𝑙) =

(

𝑟(𝑙)𝑖𝑗
)

𝑚×𝑛
into a single

DH𝑞-ROFDM, 𝑅 =
[

𝑟
]

, as shown in Table 11.
10

𝑖𝑗 𝑚×𝑛
Step 3: Utilize the DH𝑞-ROFAAWA operator for aggregating 𝑟𝑖𝑗
(𝑗 = 1, 2,
… , 4) and the values of 𝑑𝑖 (𝑖 = 1, 2,… , 5) are found as follows:

𝑑1 =

⟨

⎧

⎪

⎨

⎪

⎩

0.6076, 0.6098, 0.6085, 0.6107, 0.6146, 0.6166, 0.6154, 0.6175, 0.6123, 0.6144,

0.6132, 0.6153, 0.6190, 0.6209, 0.6198, 6218

⎫

⎪

⎬

⎪

⎭

,

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0.6085, 0.6153, 0.6338, 0.6414, 0.6366, 0.6443, 0.6660, 0.6751, 0.6095, 0.6162,

0.6349, 0.6426, 0.6377, 0.6455, 0.6673, 0.6764, 0.6095, 0.6162, 0.6349, 0.6426,

0.6377, 0.6455, 0.6673, 0.6764, 0.6105, 0.6172, 0.6360, 0.6437, 0.6388, 0.6466,

0.6686, 0.6777, 0.6272, 0.6346, 0.6551, 0.6637, 0.6582, 0.6669, 0.6915, 0.7018,

0.6282, 0.6357, 0.6563, 0.6649, 0.6595, 0.6682, 0.6929, 0.7034, 0.6282, 0.6357,

0.6563, 0.6649, 0.6595, 0.6682, 0.6929, 0.7034, 0.6293, 0.6367, 0.6575, 0.6662,

0.6607, 0.6695, 0.6944, 0.7049

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

⟩

2̃ = ⟨{0.6945, 0.6960, 0.6951,…(64 𝑣𝑎𝑙𝑢𝑒𝑠)} ,

{0.4030, 0.4304, 0.5004,…(32 𝑣𝑎𝑙𝑢𝑒𝑠)}⟩

3̃ = ⟨{0.6031, 0.6370,…(1024 𝑣𝑎𝑙𝑢𝑒𝑠)} ,

{0.4816, 0.4823, 0.4874,…(192 𝑣𝑎𝑙𝑢𝑒𝑠)}⟩ ;

4̃ = ⟨{0.7361, 0.7432, 0.8025,…(384 𝑣𝑎𝑙𝑢𝑒𝑠)} ,

{0.4257, 0.4290, 0.4303, 0.4337}⟩ ;

5̃ = ⟨{0.6432, 0.6433, 0.6439,…(8 𝑣𝑎𝑙𝑢𝑒𝑠)} ,

{0.5049, 0.5051,…(128 𝑣𝑎𝑙𝑢𝑒𝑠)}⟩ ;

tep 4: The score values of each 𝑑𝑖 (𝑖 = 1, 2, 3, 4, 5) are calculated as
ollows:
(

𝑑1
)

= 0.4767, 𝑆
(

𝑑2
)

= 0.6389, 𝑆
(

𝑑3
)

= 0.6218, 𝑆
(

𝑑4
)

= 0.7043,
(

𝑑5
)

= 0.5599.

tep 5: So, ordering of the location alternatives is appeared as 𝐴4 ≻
2 ≻ 𝐴3 ≻ 𝐴5 ≻ 𝐴1 and 𝐴4 is identified as the best location alternative.

It is to be mentioned here that the given problem is solved by
tilizing the other developed operators and the proposed MCGDM
ethod. After solving the problem, the results are given in Table 12.

. Sensitivity analysis (impact of different parameters on decision
aking results)

Now, the impact of Aczel-Alsina parameters, 𝜏 and rung 𝑞, on group
ecision making outcomes are investigated using the proposed method.
t is observed that the ranking of alternatives is greatly influenced
y those parameters. By setting different values to the parameters,
arious score values are obtained. Varying the parameter 𝑞 ∈ [3, 10]
nd 𝜏 ∈ [1, 10], the variation of the score values are found by using the
eveloped operators and is shown in Tables 13–16 and Figs. 2–9.

When the DH𝑞-ROFAAWA operator is used, the corresponding score
alues for the several location alternatives are displayed in Fig. 2.
t shows that the score values of all alternatives decrease when the
arameter 𝑞’s values rise from 3 to 10 with the exception of location
lternative 𝐴1. Although 𝐴1 is increasing, but it gives a lower score
alue among all the location alternatives for all the 𝑞 ∈ [3, 10].

Furthermore, the following observations are found:

1. when 𝑞 ∈ [3, 6.02] the ordering of the five location alternatives
is 𝐴4 ≻ 𝐴2 ≻ 𝐴3 ≻ 𝐴5 ≻ 𝐴1 and the best choice is found as 𝐴4.

2. when 𝑞 ∈ [6.02, 12] the ordering of five location alternatives is
𝐴4 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴5 ≻ 𝐴1 and the best choice is identified as 𝐴4.

o, in this situation 𝐴 is the best location alternative.
4
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Fig. 1. The framework for selecting the parcel locker location.
Table 3
DH𝒒-ROFDM of 𝑬(𝟏).

1 2 3 4

𝐴1 ⟨{0.5} , {0.8}⟩ ⟨{0.4} , {0.7, 0.8}⟩ ⟨{0.4} , {0.7}⟩ ⟨{0.3, 0.5} , {0.7}⟩
𝐴2 ⟨{0.4} , {0.8, 0.9}⟩ ⟨{0.5} , {0.7}⟩ ⟨{0.5, 0.6} , {0.8}⟩ ⟨{0.3} , {0.8}⟩
𝐴3 ⟨{0.6} , {0.5}⟩ ⟨{0.5} , {0.6}⟩ ⟨{0.2, 0.5} , {0.7, 0.9}⟩ ⟨{0.3, 0.8} , {0.8}⟩
𝐴4 ⟨{0.5} , {0.6, 0.7}⟩ ⟨{0.4} , {0.6}⟩ ⟨{0.3, 0.4} , {0.6, 0.9}⟩ ⟨{0.4} , {0.8}⟩
𝐴5 ⟨{0.8} , {0.6}⟩ ⟨{0.6} , {0.6, 0.8}⟩ ⟨{0.3} , {0.7}⟩ ⟨{0.2, 0.5} , {0.6, 0.8}⟩
Table 4
DH𝒒-ROFDM of 𝑬(𝟐).

1 2 3 4

𝐴1 ⟨{0.5} , {0.6}⟩ ⟨{0.4} , {0.8}⟩ ⟨{0.4, 0.7} , {0.6}⟩ ⟨{0.5} , {0.6}⟩
𝐴2 ⟨{0.2, 0.3} , {0.7}⟩ ⟨{0.4} , {0.8}⟩ ⟨{0.5} , {0.7}⟩ ⟨{0.5} , {0.6}⟩
𝐴3 ⟨{0.6} , {0.6, 0.8}⟩ ⟨{0.5} , {0.6}⟩ ⟨{0.3, 0.6} , {0.6, 0.9}⟩ ⟨{0.4, 0.8} , {0.5, 0.7}⟩
𝐴4 ⟨{0.5} , {0.7}⟩ ⟨{0.6, 0.8} , {0.6}⟩ ⟨{0.4} , {0.7, 0.8}⟩ ⟨{0.5} , {0.8}⟩
𝐴5 ⟨{0.4} , {0.6}⟩ ⟨{0.2} , {0.7}⟩ ⟨{0.4} , {0.8}⟩ ⟨{0.4} , {0.8}⟩
Table 5
DH𝒒-ROFDM of 𝑬(𝟑).

1 2 3 4

𝐴1 ⟨{0.3, 0.5} , {0.6, 0.7}⟩ ⟨{0.4} , {0.7}⟩ ⟨{0.5, 0.8} , {0.3, 0.6}⟩ ⟨{0.4, 0.5} , {0.6}⟩
𝐴2 ⟨{0.3} , {0.8}⟩ ⟨{0.3, 0.6} , {0.7}⟩ ⟨{0.1, 0.3} , {0.8}⟩ ⟨{0.2} , {0.9}⟩
𝐴3 ⟨{0.5} , {0.6}⟩ ⟨{0.6} , {0.6}⟩ ⟨{0.2, 0.4} , {0.7, 0.9}⟩ ⟨{0.3, 0.7} , {0.4, 0.6, 0.8}⟩
𝐴4 ⟨{0.5} , {0.7, 0.8}⟩ ⟨{0.5, 0.6, 0.7} , {0.8}⟩ ⟨{0.1} , {0.9}⟩ ⟨{0.5} , {0.6}⟩
𝐴5 ⟨{0.5} , {0.7}⟩ ⟨{0.2} , {0.8}⟩ ⟨{0.2, 0.4} , {0.8}⟩ ⟨{0.3} , {0.7, 0.9}⟩
Table 6
DH𝒒-ROFDM of 𝑬(𝟒).

1 2 3 4

𝐴1 ⟨{0.3} , {0.8}⟩ ⟨{0.4} , {0.7, 0.8}⟩ ⟨{0.4, 0.5} , {0.7}⟩ ⟨{0.5} , {0.7}⟩
𝐴2 ⟨{0.2, 0.3} , {0.7, 0.8}⟩ ⟨{0.3} , {0.8}⟩ ⟨{0.1, 0.3} , {0.8, 0.9}⟩ ⟨{0.2, 0.5} , {0.8}⟩
𝐴3 ⟨{0.6} , {0.6}⟩ ⟨{0.6, 0.8} , {0.8}⟩ ⟨{0.4} , {0.7, 0.8}⟩ ⟨{0.3, 0.7} , {0.6, 0.8}⟩
𝐴4 ⟨{0.4} , {0.7}⟩ ⟨{0.6, 0.8} , {0.8}⟩ ⟨{0.2} , {0.8}⟩ ⟨{0.5, 0.9} , {0.3, 0.7}⟩
𝐴5 ⟨{0.4, 0.6} , {0.6}⟩ ⟨{0.2} , {0.8}⟩ ⟨{0.2, 0.5} , {0.5, 0.8}⟩ ⟨{0.2, 0.3} , {0.8, 0.9}⟩
Table 7
Normalized DH𝒒-ROFDM 𝑹(𝟏).

1 2 3 4

𝐴1 ⟨{0.8} , {0.5}⟩ ⟨{0.4} , {0.7, 0.8}⟩ ⟨{0.7} , {0.4}⟩ ⟨{0.3, 0.5} , {0.7}⟩
𝐴2 ⟨{0.8, 0.9} , {0.4}⟩ ⟨{0.5} , {0.7}⟩ ⟨{0.8} , {0.5, 0.6}⟩ ⟨{0.3} , {0.8}⟩
𝐴3 ⟨{0.5} , {0.6}⟩ ⟨{0.5} , {0.6}⟩ ⟨{0.7, 0.9} , {0.2, 0.5}⟩ ⟨{0.3, 0.8} , {0.8}⟩
𝐴4 ⟨{0.6, 0.7} , {0.5}⟩ ⟨{0.4} , {0.6}⟩ ⟨{0.6, 0.9} , {0.3, 0.4}⟩ ⟨{0.4} , {0.8}⟩
𝐴5 ⟨{0.6} , {0.8}⟩ ⟨{0.6} , {0.6, 0.8}⟩ ⟨{0.7} , {0.3}⟩ ⟨{0.2, 0.5} , {0.6, 0.8}⟩
11



Engineering Applications of Artificial Intelligence 126 (2023) 106846S. Gayen et al.

A

t

T

𝑞
t
t
d
(

Table 8
Normalized DH𝒒-ROFDM 𝑹(𝟐).

1 2 3 4

𝐴1 ⟨{0.6} , {0.5}⟩ ⟨{0.4} , {0.8}⟩ ⟨{0.6} , {0.4, 0.7}⟩ ⟨{0.5} , {0.6}⟩
𝐴2 ⟨{0.7} , {0.2, 0.3}⟩ ⟨{0.4} , {0.8}⟩ ⟨{0.7} , {0.5}⟩ ⟨{0.5} , {0.6}⟩
𝐴3 ⟨{0.6, 0.8} , {0.6}⟩ ⟨{0.5} , {0.6}⟩ ⟨{0.6, 0.9} , {0.3, 0.6}⟩ ⟨{0.4, 0.8} , {0.5, 0.7}⟩
𝐴4 ⟨{0.7} , {0.5}⟩ ⟨{0.6, 0.8} , {0.6}⟩ ⟨{0.7, 0.8} , {0.4}⟩ ⟨{0.5} , {0.8}⟩
𝐴5 ⟨{0.6} , {0.4}⟩ ⟨{0.2} , {0.7}⟩ ⟨{0.8} , {0.4}⟩ ⟨{0.4} , {0.8}⟩
Table 9
Normalized DH𝒒-ROFDM 𝑹(𝟑).

1 2 3 4

𝐴1 ⟨{0.6, 0.7} , {0.3, 0.5}⟩ ⟨{0.4} , {0.7}⟩ ⟨{0.3, 0.6} , {0.5, 0.8}⟩ ⟨{0.4, 0.5} , {0.6}⟩
𝐴2 ⟨{0.8} , {0.3}⟩ ⟨{0.3, 0.6} , {0.7}⟩ ⟨{0.8} , {0.1, 0.3}⟩ ⟨{0.2} , {0.9}⟩
𝐴3 ⟨{0.6} , {0.5}⟩ ⟨{0.6} , {0.6}⟩ ⟨{0.7, 0.9} , {0.2, 0.4}⟩ ⟨{0.3, 0.7} , {0.4, 0.6, 0.8}⟩
𝐴4 ⟨{0.7, 0.8} , {0.5}⟩ ⟨{0.5, 0.6, 0.7} , {0.8}⟩ ⟨{0.9} , {0.1}⟩ ⟨{0.5} , {0.6}⟩
𝐴5 ⟨{0.7} , {0.5}⟩ ⟨{0.2} , {0.8}⟩ ⟨{0.8} , {0.2, 0.4}⟩ ⟨{0.3} , {0.7, 0.9}⟩
Table 10
Normalized DH𝒒-ROFDM 𝑹(𝟒).

1 2 3 4

𝐴1 ⟨{0.8} , {0.3}⟩ ⟨{0.4} , {0.7, 0.8}⟩ ⟨{0.7} , {0.4, 0.5}⟩ ⟨{0.5} , {0.7}⟩
𝐴2 ⟨{0.7, 0.8} , {0.2, 0.3}⟩ ⟨{0.3} , {0.8}⟩ ⟨{0.8, 0.9} , {0.1, 0.3}⟩ ⟨{0.2, 0.5} , {0.8}⟩
𝐴3 ⟨{0.6} , {0.6}⟩ ⟨{0.6, 0.8} , {0.8}⟩ ⟨{0.7, 0.8} , {0.4}⟩ ⟨{0.3, 0.7} , {0.6, 0.8}⟩
𝐴4 ⟨{0.7} , {0.4}⟩ ⟨{0.6, 0.8} , {0.8}⟩ ⟨{0.8} , {0.2}⟩ ⟨{0.5, 0.9} , {0.3, 0.7}⟩
𝐴5 ⟨{0.6} , {0.4, 0.6}⟩ ⟨{0.2} , {0.8}⟩ ⟨{0.5, 0.8} , {0.2, 0.5}⟩ ⟨{0.2, 0.3} , {0.8, 0.9}⟩
Now, utilizing the DH𝑞-ROFAAWA operator and changing the Aczel-
lsina parameter 𝜏 ∈ [1, 10], the obtained score values, 𝑆

(

𝐴i
)

of several
location alternatives 𝐴i are portrayed in Fig. 3. Fig. 3 shows that all of
he location alternatives’ score values are rising.

Additionally, the following cases are found:

1. when 𝜏 ∈ [1, 1.22] the ranking of the five options is 𝐴4 ≻ 𝐴3 ≻
𝐴2 ≻ 𝐴5 ≻ 𝐴1 and 𝐴4 is identified as the best location.

2. when 𝜏 ∈ [1.22, 7.61] the ordering of the five options is 𝐴4 ≻
𝐴2 ≻ 𝐴3 ≻ 𝐴5 ≻ 𝐴1 and 𝐴4 is identified as the best location.

3. when 𝜏 ∈ [7.61, 10] the ranking of the five options is 𝐴4 ≻ 𝐴3 ≻
𝐴2 ≻ 𝐴5 ≻ 𝐴1 and 𝐴4 is identified as the best location.

hus, taking into account all cases 𝐴4 is the best location alternative.
Now, when the DH𝑞 ROFAAWG operator is utilized and varying
∈ [3, 10], the corresponding score values of various location al-

ernatives are shown in Fig. 4. From this figure, it is notable here
hat the score value of 𝐴1, 𝐴2, 𝐴5 are increasing and 𝐴3, 𝐴4 are
ecreasing. But the ordering of the location alternative remains same
i.e, 𝐴4 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5

)

for all 𝑞 ∈ [3, 10]. The DH𝑞 ROFAAWG
operator produces 𝐴4 as the best alternative. Moreover, as ranking of all
the alternatives remains same, this shows that DH𝑞 ROFAAWG operator
gives a stable solution under the condition 𝜏 = 2.

Now, using the DH𝑞-ROFAAWG operator and changing the param-
eter 𝜏 ∈ [1, 10], the obtained score values for the different alternatives
are displayed in Fig. 5. From this figure, it is observed that all location
alternatives’ scores are decreasing.

Furthermore, the following observations are found:

1. when 𝜏 ∈ [1, 2.97] the ranking of the five alternatives is 𝐴4 ≻
𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5 and 𝐴4 is identified as the best location.

2. when 𝜏 ∈ [2.97, 3.68] the ranking of the five alternatives is
𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5 and 𝐴3 is identified as the best location.

3. when 𝜏 ∈ [3.68, 6.54] the ranking of the five alternatives is
𝐴4 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5 and 𝐴4 is identified as the best location.

4. when 𝜏 ∈ [6.54, 10] the ordering of the five alternatives is 𝐴4 ≻
𝐴3 ≻ 𝐴1 ≻ 𝐴5 ≻ 𝐴2 and 𝐴4 is identified as the best location.

So, here 𝐴3 is the best alternative location for 𝜏 ∈ [2.47, 5.15] and 𝐴4
is the best alternative location for 𝜏 ∉ [2.47, 5.15]. Thus, considering all
cases, it can be said that 𝐴 is the best alternative location.
12
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Fig. 2. Score value using variation of rung parameter 𝑞 for fixed Aczel-Alsina parameter
𝜏 = 2 (DH𝑞-ROFAAWA).

Fig. 3. Score value using variation of Aczel-Alsina parameter 𝜏 for fixed 𝑞 = 3
(DH𝑞-ROFAAWA).
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Table 11
Aggregated DH𝒒-ROFDM 𝑹.

1 2

𝐴1

⟨{0.7457, 0.7566} ,

{0.4270, 0.5178}

⟩ ⟨ {0.4000} ,

{0.7624, 0.7737, 0.7737, 0.7858}

⟩

𝐴2

⟨{0.7535, 0.7871, 0.7836, 0.8086} ,

{0.3203, 0.3372, 0.3558, 0.3766}

⟩ ⟨{0.3800, 0.5118} ,

{0.7737}

⟩

𝐴3

⟨{0.5936, 0.6824} ,

{0.6074}

⟩ ⟨{0.5794, 0.7245} ,

{0.6124, 0.6627}

⟩

𝐴4

⟨{0.6936, 0.7387, 0.7000, 0.7427} ,

{0.5433}

⟩ ⟨

⎧

⎪

⎨

⎪

⎩

0.5687, 0.7222, 0.5915, 0.7273,
0.6365, 0.7404, 0.6732, 0.7544,
0.6815, 0.7580, 0.7019, 0.7676

⎫

⎪

⎬

⎪

⎭

,

{0.7310}

⟩

𝐴5

⟨ {0.6419} ,

{0.5309, 0.5567}

⟩ ⟨ {0.4206} ,

{0.7654, 0.7990}

⟩

3 4

𝐴1

⟨

{0.6475, 0.6623} ,
⎧

⎪

⎨

⎪

⎩

0.5002, 0.5136, 0.5531, 0.5706,

0.5594, 0.5774, 0.6336, 0.6602

⎫

⎪

⎬

⎪

⎭

⟩ ⟨{0.4704, 0.4922, 0.4803, 0.5000} ,

{0.6738}

⟩

𝐴2

⟨

{0.7871, 0.8515} ,
⎧

⎪

⎨

⎪

⎩

0.2220, 0.2539, 0.3488, 0.4270,

0.2237, 0.2559, 0.3525, 0.4326

⎫

⎪

⎬

⎪

⎭

⟩ ⟨{0.3143, 0.4415, 0.3891, 0.4621} ,

{0.8214}

⟩

𝐴3

⟨

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0.6866, 0.7462, 0.8156, 0.8333,
0.7940, 0.8164, 0.8531, 0.8643,
0.7517, 0.7858, 0.8353, 0.8493,
0.8189, 0.8360, 0.8656, 0.8750

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

{

0.3050, 0.3904, 0.3387, 0.4474,
0.3345, 0.4401, 0.3751, 0.5167

}

⟩ ⟨

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0.3352, 0.6171, 0.5922, 0.6674,
0.6504, 0.6986, 0.6886, 0.7235,
0.5900, 0.6664, 0.6522, 0.6997,
0.6878, 0.7229, 0.7153, 0.7427

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

⎧

⎪

⎨

⎪

⎩

0.5403, 0.5498, 0.6356, 0.6509,
0.6859, 0.7062, 0.5739, 0.5851,
0.6927, 0.7138, 0.7654, 0.7990

⎫

⎪

⎬

⎪

⎭

⟩

𝐴4

⟨{0.8346, 0.8420, 0.8515, 0.8574} ,

{0.2298, 0.2347}

⟩ ⟨{0.4939, 0.8265} ,

{0.6138, 0.7222}

⟩

𝐴5

⟨ {0.7442, 0.7938} ,

{0.3130, 0.3441, 0.4035, 0.4571}

⟩ ⟨

{0.3210, 0.3326, 0.3744, 0.3800} ,
⎧

⎪

⎨

⎪

⎩

0.7547, 0.7600, 0.8101, 0.8177,

0.7858, 0.7923, 0.8586, 0.8700

⎫

⎪

⎬

⎪

⎭

⟩

Table 12
Results utilizing proposed operators.

Operators Score values Ranking

𝑆
(

𝐴1
)

𝑆
(

𝐴2
)

𝑆
(

𝐴3
)

𝑆
(

𝐴4
)

𝑆
(

𝐴5
)

DH𝒒-ROFAAOWA 0.4531 0.5680 0.5271 0.5675 0.4636 𝐴4 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5
DH𝒒-ROFAAWG 0.4488 0.3738 0.5267 0.5307 0.3293 𝐴4 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴1 ≻ 𝐴5
DH𝒒-ROFAAOWG 0.4273 0.3411 0.4775 0.4538 0.2945 𝐴4 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5
DH𝒒-ROFAAHA 0.4485 0.5448 0.5494 0.6263 0.4608 𝐴4 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴5 ≻ 𝐴1
DH𝒒-ROFAAHG 0.4129 0.3139 0.4885 0.4884 0.2808 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5
Table 13
The impact of rung parameter 𝒒 utilizing DH𝒒-ROFAAWA operator (𝝉 = 𝟐).

Parameter 𝑆(𝑑1) 𝑆(𝑑2) 𝑆(𝑑3) 𝑆(𝑑4) 𝑆(𝑑5) Ordering

𝑞 = 3 0.4767 0.6389 0.6218 0.7043 0.5599 𝐴4 ≻ 𝐴2 ≻ 𝐴3 ≻ 𝐴5 ≻ 𝐴1
𝑞 = 4 0.4887 0.6285 0.6183 0.6868 0.5614 𝐴4 ≻ 𝐴2 ≻ 𝐴3 ≻ 𝐴5 ≻ 𝐴1
𝑞 = 5 0.4971 0.6135 0.6092 0.6655 0.5569 𝐴4 ≻ 𝐴2 ≻ 𝐴3 ≻ 𝐴5 ≻ 𝐴1
𝑞 = 6 0.5023 0.5982 0.5981 0.6450 0.5498 𝐴4 ≻ 𝐴2 ≻ 𝐴3 ≻ 𝐴5 ≻ 𝐴1
𝑞 = 7 0.5051 0.5842 0.5870 0.6266 0.5423 𝐴4 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴5 ≻ 𝐴1
𝑞 = 8 0.5063 0.5720 0.5766 0.6107 0.5351 𝐴4 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴5 ≻ 𝐴1
𝑞 = 9 0.5066 0.5616 0.5673 0.5971 0.5289 𝐴4 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴5 ≻ 𝐴1
𝑞 = 10 0.5063 0.5529 0.5591 0.5853 0.5235 𝐴4 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴5 ≻ 𝐴1
Further, when the DH𝑞-ROFAAHA operator is used, the acquired
core values for the alternatives are graphically displayed in Figs. 6
13
and 7. In Fig. 6, the rung parameter is varied from 3 to 10 and fixed
the Aczel-Alsina parameter 𝜏 = 2.
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Table 14
The impact of Aczel-Alsina parameter 𝝉 utilizing DH𝒒-ROFAAWA operator.

Parameter (𝑞 = 3) 𝑆(𝑑1) 𝑆(𝑑2) 𝑆(𝑑3) 𝑆(𝑑4) 𝑆(𝑑5) Ordering

𝜏 = 1 0.3657 0.4951 0.5058 0.5815 0.4199 𝐴4 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴5 ≻ 𝐴1
𝜏 = 2 0.4767 0.6389 0.6218 0.7043 0.5599 𝐴4 ≻ 𝐴2 ≻ 𝐴3 ≻ 𝐴5 ≻ 𝐴1
𝜏 = 3 0.5345 0.6946 0.6769 0.7528 0.6184 𝐴4 ≻ 𝐴2 ≻ 𝐴3 ≻ 𝐴5 ≻ 𝐴1
𝜏 = 4 0.5722 0.7241 0.7114 0.7789 0.6501 𝐴4 ≻ 𝐴2 ≻ 𝐴3 ≻ 𝐴5 ≻ 𝐴1
𝜏 = 5 0.5990 0.7429 0.7351 0.7953 0.6697 𝐴4 ≻ 𝐴2 ≻ 𝐴3 ≻ 𝐴5 ≻ 𝐴1
𝜏 = 6 0.6191 0.7561 0.7523 0.8066 0.6831 𝐴4 ≻ 𝐴2 ≻ 𝐴3 ≻ 𝐴5 ≻ 𝐴1
𝜏 = 7 0.6347 0.7662 0.7650 0.8148 0.6928 𝐴4 ≻ 𝐴2 ≻ 𝐴3 ≻ 𝐴5 ≻ 𝐴1
𝜏 = 8 0.6472 0.7742 0.7748 0.8211 0.7001 𝐴4 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴5 ≻ 𝐴1
𝜏 = 9 0.6572 0.7807 0.7826 0.8260 0.7058 𝐴4 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴5 ≻ 𝐴1
𝜏 = 10 0.6656 0.7861 0.7888 0.8299 0.7103 𝐴4 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴5 ≻ 𝐴1
Table 15
The significance of the rung parameter 𝒒 (fixed Aczel-Alsina parameter 𝝉 = 𝟐) utilizing DH𝒒-ROFAAWG operator.

Parameter 𝑆(𝑑1) 𝑆(𝑑2) 𝑆(𝑑3) 𝑆(𝑑4) 𝑆(𝑑5) Ordering

𝑞 = 3 0.4488 0.3738 0.5267 0.5307 0.3293 𝐴4 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5
𝑞 = 4 0.4499 0.3719 0.5149 0.5186 0.3382 𝐴4 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5
𝑞 = 5 0.4546 0.3779 0.5059 0.5092 0.3538 𝐴4 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5
𝑞 = 6 0.4605 0.3875 0.4997 0.5026 0.3709 𝐴4 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5
𝑞 = 7 0.4667 0.3983 0.4959 0.4982 0.3872 𝐴4 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5
𝑞 = 8 0.4723 0.4090 0.4938 0.4956 0.4018 𝐴4 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5
𝑞 = 9 0.4773 0.4191 0.4929 0.4942 0.4147 𝐴4 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5
𝑞 = 10 0.4815 0.4283 0.4927 0.4936 0.4257 𝐴4 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5
Table 16
The significance of the Aczel-Alsina parameter 𝝉 (fixed 𝒒 = 𝟑) utilizing DH𝒒-ROFAAWG operator.

Parameter 𝑆(𝑑1) 𝑆(𝑑2) 𝑆(𝑑3) 𝑆(𝑑4) 𝑆(𝑑5) Ordering

𝜏 = 1 0.5454 0.5245 0.6460 0.6633 0.4664 𝐴4 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5
𝜏 = 2 0.4488 0.3738 0.5267 0.5307 0.3293 𝐴4 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5
𝜏 = 3 0.4067 0.3061 0.4641 0.4640 0.2773 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5
𝜏 = 4 0.3808 0.2676 0.4231 0.4237 0.2505 𝐴4 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5
𝜏 = 5 0.3626 0.2427 0.3940 0.3969 0.2340 𝐴4 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5
𝜏 = 6 0.3490 0.2252 0.3725 0.3778 0.2227 𝐴4 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5
𝜏 = 7 0.3384 0.2124 0.3564 0.3637 0.2145 𝐴4 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴5 ≻ 𝐴2
𝜏 = 8 0.3299 0.2027 0.3439 0.3528 0.2083 𝐴4 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴5 ≻ 𝐴2
𝜏 = 9 0.3230 0.1952 0.3342 0.3442 0.2035 𝐴4 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴5 ≻ 𝐴2
𝜏 = 10 0.3172 0.1891 0.3263 0.3372 0.1996 𝐴4 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴5 ≻ 𝐴2
Fig. 4. Score value varying rung parameter 𝑞 for fixed Aczel-Alsina parameter 𝜏 = 2
(DH𝑞-ROFAAWG).

Again, Fig. 7 represents the score values for Aczel-Alsina parameter
varied from 1 to 10 with fixed rung parameter 𝑞. Graphically it is
shown that in all the cases the location alternative 𝐴4 is the best altern-
ative.

Again, when the DH𝑞-ROFAAHG operator is used, the acquired
score values for the alternatives are graphically displayed in Figs. 8
14
Fig. 5. Score value varying Aczel-Alsina parameter 𝜏 for fixed 𝑞 = 3 (DH𝑞-ROFAAWG).

and 9. In Fig. 8, the rung parameter is varied from 3 to 10 and fixed
the Aczel-Alsina parameter 𝜏 = 2.

Again, Fig. 9 represents the score values for Aczel-Alsina parameter
varied from 1 to 10 with fixed rung parameter 𝑞. Graphically it is shown
that in all the cases the alternative 𝐴4 and 𝐴3 show similar nature and
in some certain conditions 𝐴4 appeared as the best, whereas, in other
conditions 𝐴 stood as the best.
3
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Fig. 6. Score value varying rung parameter 𝑞 for fixed Aczel-Alsina parameter 𝜏 = 2
(DH𝑞-ROFAAHA).

Fig. 7. Score value varying Aczel-Alsina parameter 𝜏 for fixed 𝑞 = 3 (DH𝑞-ROFAAHA).

Fig. 8. Score value varying rung parameter 𝑞 for fixed Aczel-Alsina parameter 𝜏 = 2
(DH𝑞-ROFAAHG).
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Fig. 9. Score value varying Aczel-Alsina parameter 𝜏 for fixed 𝑞 = 3 (DH𝑞-ROFAAHG).

7. Comparative analysis

To determine the efficacy of the proposed method, the case study
as considered above, has been solved by several existing MCGDM tech-
nique using different aggregation operators, viz., PFEHGA (Rahman
and Ali, 2020), DH𝑞-ROFHWA (Wang et al., 2019b), DH𝑞-ROFHWG
(Wang et al., 2019b), DH𝑞-ROFHHWA (Wang et al., 2019b), DH𝑞-

OFHHWG (Wang et al., 2019b), DHPFHWA (Wei and Lu, 2017),
DHPFHWG (Wei and Lu, 2017), DHPFHOWA (Wei and Lu, 2017),
DHPFHOWG (Wei and Lu, 2017), DHPFHHA (Wei and Lu, 2017),
DHPFHHG (Wei and Lu, 2017), DH𝑞-ROFWDBM (Sarkar and Biswas,
2021), DH𝑞-ROFWDGBM (Sarkar and Biswas, 2021) and by conform-
ng the data in the respective environments. The comparisons are
onducted using two distinct methods. Initially, the comparisons are
ased on the characteristics of the operators, evaluating their specific
ttributes and features. Subsequently, the comparisons are based on
he achieved results, assessing the outcomes or performance of the
perators in practical applications or experiments. This two-step ap-
roach allows for a comprehensive evaluation of the operators from
oth theoretical and empirical perspectives.

When comparing the method based on the characteristics of the
perators, it is important to note that all the mentioned existing op-
rators, as well as the developed operators, have the ability to capture
esitant fuzzy information except PFEHGA operator. The PFEHGA oper-
tor (Rahman and Ali, 2020) is developed for PF environments which
an be viewed as a special case of DH𝑞-ROF contexts by considering
= 2. With the exception of the developed operators, none of the

forementioned operators take into account Aczel-Alsina operations,
hich provide more flexibility in the decision aggregation process.
he inclusion of Aczel-Alsina operations allows decision-makers to
djust parameters and tailor the aggregation process according to their
pecific needs and preferences. By incorporating Aczel-Alsina opera-
ions, the decision aggregation process becomes more adaptable and
ustomizable, offering a valuable advantage over the other mentioned
perators. Combining hybrid operator with Aczel-Alsina operations in
H𝑞-ROF context, the proposed operators become extra flexible and
owerful than the current existing operators. Table 17 presents the
haracteristics of the current mentioned operators. The presented table
emonstrates the broader scope and coverage of the proposed operators
ompared to the existing operators. It indicates that the proposed oper-
tors offer a wider range of capabilities and functionalities, allowing for
more comprehensive approach to the problem. This expanded cover-

ge suggests that the proposed operators have the potential to handle
greater variety of scenarios and provide more versatile solutions
ompared to the existing operators.
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Table 17
Some characteristics of existing operators.

Operator Consideration of weighs both
the given fuzzy value and its
ordered position

Consideration of
hesitancy

Flexibility due to
Aczel-Alsina operation

Capturing information
by 𝑞-rung fuzzy number

PFEHGA (Rahman and Ali, 2020) Yes No No No
DH𝒒-ROFHWA (Wang et al., 2019b) No Yes No Yes
DH𝒒-ROFHWG (Wang et al., 2019b) No Yes No Yes
DHPFHWA (Wei and Lu, 2017) No Yes No No
DHPFHOWA (Wei and Lu, 2017) No Yes No Yes
DHPFHHA (Wei and Lu, 2017) Yes Yes No Yes
DHPFHWG (Wei and Lu, 2017) No Yes No No
DHPFHOWG (Wei and Lu, 2017) No Yes No Yes
DHPFHHG (Wei and Lu, 2017) Yes Yes No Yes
DH𝒒-ROFWDBM (Sarkar and Biswas, 2021) No Yes No Yes
DH𝒒-ROFWDGBM (Sarkar and Biswas, 2021) No Yes No Yes
Proposed method Yes Yes Yes Yes
Table 18
Compared to Rahman and Ali’s method.

Method Score values Ranking

𝑆
(

𝐴1
)

𝑆
(

𝐴2
)

𝑆
(

𝐴3
)

𝑆
(

𝐴4
)

𝑆
(

𝐴5
)

Rahman and Ali (Rahman and Ali, 2020) −0.221 −0.177 −0.1540 −0.099 −0.225 𝐴4 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴1 ≻ 𝐴5
DH𝒒-ROFAAWA (𝒒 = 𝟐, 𝝉 = 𝟐) 0.4854 0.5710 0.4650 0.6611 0.5909 𝐴4 ≻ 𝐴5 ≻ 𝐴2 ≻ 𝐴1 ≻ 𝐴3
DH𝒒-ROFAAWA (𝒒 = 𝟑, 𝝉 = 𝟐) 0.4962 0.5835 0.4766 0.6586 0.5977 𝐴4 ≻ 𝐴5 ≻ 𝐴2 ≻ 𝐴1 ≻ 𝐴3
DH𝒒-ROFAAHA (𝒒 = 𝟐, 𝝉 = 𝟐) 0.4401 0.4682 0.3866 0.5502 0.4691 𝐴4 ≻ 𝐴5 ≻ 𝐴2 ≻ 𝐴1 ≻ 𝐴3
DH𝒒-ROFAAHA (𝒒 = 𝟑, 𝝉 = 𝟐) 0.4562 0.4935 0.4046 0.5623 0.4940 𝐴4 ≻ 𝐴5 ≻ 𝐴2 ≻ 𝐴1 ≻ 𝐴3
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Fig. 10. Bar diagram of differences of the alternatives’ score values 𝑞 = 2, 𝜏 = 2
HqROFAAWA.

Now, the achieved results through the proposed method is com-
ared with the results obtained by Rahman and Ali (2020).

Table 18 depicts the ranking and score values of the alternative
using Rahman and Ali (2020) method and the suggested method.
Although the rankings in both techniques fluctuate significantly, the
best location alternative 𝐴4 remains the same. The proposed method
has a larger score value difference between two successive alterna-
tives (rank-wise) than Rahman and Ali’s method. Hence, the suggested
approach is more effective in terms of selecting the best alternative
than Rahman and Ali’s approach. The difference in score values is
graphically represented in Figs. 10 and 11.

As a results, The suggested approach superior to Rahman and Ali’s
method.

Afterwards, the problem under consideration is solved using the
proposed method by considering the existing operators (Rahman and
Ali, 2020; Wang et al., 2019b; Wei and Lu, 2017; Sarkar and Biswas,
2021). It is to be noted that operators provided by Wei and Lu (2017) in
DHPF environment. To solve the problem DH𝑞-ROF data are converted
to DHPF data by adjustments. Similarly, for PFEHGA operator data are
16
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Fig. 11. Bar diagram of differences of the alternatives’ score values 𝑞 = 3, 𝜏 = 2
DHqROFAAWA.

converted to PFN. Also, all the problems are solved by considering the
rung values, 𝑞 = 3.

The achieved results are compared with the solution achieved
through the proposed method and is shown in Table 19 and Fig. 12.

raphically, it is observed that the location alternative 𝐴4 is the best
hoice over other location alternatives in most of the cases. It differs
or the proposed DH𝑞-ROFAAHG operator. It is worth mentioning that
ew geometric operators (DHPFHWG, DHPFHOWG, DHPFHHG, DH𝒒-
OFWDBM) also produce 𝐴3 as the best location alternative like the
roposed DH𝑞-ROFAAHG operator. Although, 𝐴3 is best solution but
he difference between score values of 𝐴3 and 𝐴4 are very small. Again,
he existing PFEHGA, DH𝑞-ROFWDGBM operators produced 𝐴1, 𝐴2,
espectively, as best solution.

Considering the above cases it is easily realized that the developed
perators possess greater capability of capturing uncertainties in wide
omains also are capable of solving real life problems in significant
anners than the existing methods.
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Table 19
Comparison with existing operators.

Operators Score values Ranking

𝑆
(

𝐴1
)

𝑆
(

𝐴2
)

𝑆
(

𝐴3
)

𝑆
(

𝐴4
)

𝑆
(

𝐴5
)

PFEHGA (Rahman and Ali, 2020) 0.4615 0.3106 0.3821 0.4576 0.3666 𝐴1 ≻ 𝐴4 ≻ 𝐴3 ≻ 𝐴5 ≻ 𝐴2
DH𝒒-ROFHWA (Wang et al., 2019b) 0.3595 0.4444 0.4484 0.5327 0.3787 𝐴4 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴5 ≻ 𝐴1
DH𝒒-ROFHWG (Wang et al., 2019b) 0.3381 0.3889 0.3979 0.4511 0.3226 𝐴4 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴1 ≻ 𝐴5
DH𝒒-ROFHHWA (Wang et al., 2019b) 0.3250 0.3601 0.3789 0.4320 0.3161 𝐴4 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴1 ≻ 𝐴5
DH𝒒-ROFHHWG (Wang et al., 2019b) 0.5231 0.3851 0.5526 0.5591 0.3628 𝐴4 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5
DHPFHWA (Wei and Lu, 2017) 0.4094 0.4571 0.4785 0.5401 0.4015 𝐴4 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴1 ≻ 𝐴5
DHPFHOWA (Wei and Lu, 2017) 0.3865 0.4096 0.4364 0.4806 0.3515 𝐴4 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴1 ≻ 𝐴5
DHPFHHA (Wei and Lu, 2017) 0.3725 0.3821 0.4096 0.4541 0.3400 𝐴4 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴1 ≻ 𝐴5
DHPFHWG (Wei and Lu, 2017) 0.5344 0.4883 0.5946 0.5911 0.4680 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5
DHPFHOWG (Wei and Lu, 2017) 0.5211 0.4784 0.5825 0.5533 0.4471 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴1 ≻ 𝐴5
DHPFHHG (Wei and Lu, 2017) 0.4734 0.3808 0.5459 0.5308 0.3678 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5
DH𝒒-ROFWDBM (Sarkar and Biswas, 2021) 0.2713 0.3361 0.2968 0.3340 0.1991 𝐴3 ≻ 𝐴4 ≻ 𝐴2 ≻ 𝐴1 ≻ 𝐴5
DH𝒒-ROFWDGBM (Sarkar and Biswas, 2021) 0.2438 0.2845 0.2635 0.2819 0.1708 𝐴2 ≻ 𝐴4 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴5
DH𝒒-ROFAAWA 0.4767 0.6389 0.6218 0.7043 0.5599 𝐴4 ≻ 𝐴2 ≻ 𝐴3 ≻ 𝐴5 ≻ 𝐴1
DH𝒒-ROFAAOWA 0.4531 0.5680 0.5271 0.5675 0.4636 𝐴4 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5
DH𝒒-ROFAAWG 0.4488 0.3738 0.5267 0.5307 0.3293 𝐴4 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5
DH𝒒-ROFAAOWG 0.4273 0.3411 0.4775 0.4538 0.2945 𝐴4 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5
DH𝒒-ROFAAHA 0.4485 0.5448 0.5494 0.6263 0.4608 𝐴4 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴5 ≻ 𝐴1
DH𝒒-ROFAAHG 0.4129 0.3139 0.4885 0.4884 0.2808 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴5
Fig. 12. The radar plot of the results on solving with various existing methods. (The scale of the grid is the scores).
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. Conclusions and future research directions

In this paper, an MCGDM technique is developed based on AA𝑡-
N&𝑡-Ns, DH𝑞-ROFAAWA, DH𝑞-ROFAAWG, DH𝑞-ROFAAOWA, DH𝑞-
OFAAOWG, DH𝑞-ROFAAHA and DH𝑞-ROFAAHG aggregation opera-

ors. As mentioned above, the DH𝑞-ROFS is a generalization of the
HFSs, IFSs, and PFSs, as well as the 𝑞-ROFSs. So, DH𝑞-ROFS contains
17

o

ore information (both membership and non-membership degrees)
han the DHFSs, IFSs, PFSs and 𝑞-ROFSs.

The utilization of the developed hybrid operators offers a significant
dvantage in that they simultaneously consider both the weight of all
H𝑞-ROF arguments and their ordered positions. This combined con-

ideration allows for a more comprehensive and accurate aggregation
f the information.
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Additionally, by altering the Aczel-Alsina parameter, 𝜏, all gener-
lized cases employing AA𝑡-CN&𝑡-Ns are taken into account. These

operators can therefore be utilized to solve location selection problems
more effectively because they are far more reliable compared to other
current aggregation operators on those sets. The suggested operators
can capture human hesitation and the relationship among integrated
arguments; in addition, the proposed methods may spontaneously ad-
just the parameter’s value relying on the decision-maker’s risk tolerance
levels.

One of the best ways to solve the problem of last-mile delivery
is to use parcel lockers, which can be accessed 24/7. However, they
should be placed in easy-to-reach places. In Dublin, most post offices
are located in densely populated neighborhoods, and the obtained
outcomes illustrated the post offices as the best location for locating
parcel lockers.

The example of choosing the location of the selected parcel lockers
shows that our model is correct and has a scientific basis. At the end, it
has also been established by comparison with existing operators and
methods that the proposed operators are more efficient for solving
MCGDM problems.

The fact that the unknown weights of the DMs or criteria are not
taken into account is a limitation of the proposed study. In the future,
there is a possibility of developing a novel model that can address the
limitation by incorporating an unknown weight approach within the
DH𝑞-ROF environment. Also, consensus of the group decision making
has not been considered in this study. It would be considered in future.
As potential expansion of the developed method, future studies could
explore the following aspects: the proposed operators can be developed
for group decision-making with complete or incomplete probabilistic
linguistic preference relations scenarios (Liu et al., 2021a, 2023a; Wang
et al., 2021), multi-criteria large-scale group decision making (Liu et al.,
2022, 2023b,c). Also, hybrid aggregation operators would be estab-
lished in various fuzzy sets viz., hesitant picture fuzzy sets, hesitant
𝑇 -spherical fuzzy sets, linguistic DH𝑞-ROFSs, Linear Diophantine fuzzy
sets, Spherical linear Diophantine fuzzy sets, etc.
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Abstract

Intuitionistic fuzzy set (IFS) is a reliable device for resolving uncertainty and haziness encountered in decision-making
process. In most cases, the significance of IFSs are explored based on correlation measures in myriad of areas like in en-
gineering, image segmentation, pattern recognition, diagnostic analysis, etc. Some methods for computing intuitionistic
fuzzy correlation coefficient (IFCC) have been investigated, however with some inadequacies. In this present work, a
new method of IFCC is developed to correct the drawbacks in some existing techniques in terms of mathematical presen-
tation and the exclusion of the hesitation parameter to enhance reasonable output. A comparative analysis is presented
to ascertain the edge of the new technique over some similar approaches. In addition, the new correlation coefficient
technique is applied to discuss some pattern recognition problems. This new IFCC method could be investigated based
on spherical fuzzy data, q-rung orthopair fuzzy data, and picture fuzzy data.

Keywords: Correlation measure, intuitionistic fuzzy sets, decision-making, pattern recognition.

1 Introduction

Pattern recognition has to do with the grouping of data based on an already gained knowledge for the purpose of
inference. Pattern recognition is the art of categorizing patterns based on machine learning algorithm. Most often,
pattern recognition process is enmeshed with uncertainties, which justifies the use of soft computing approach of IFSs [1].
IFS expands the sphere of fuzzy set [55] by including non-membership degree with the likelihood of hesitation margin to
the membership degree of fuzzy set, and thereby enlarges the scope of fuzzy set to enhance its participation as a reliable
soft computing tool in decision-making, pattern recognition, etc. Because of the practicality of IFS, the construct
has been applied in medical diagnosis based on composite relation [9], distance measures [8], and similarity measures
[33, 41, 45]. IFSs have been applied in numerous areas namely; career determination [15], decision-making [13, 37], etc.
Some decision making approaches have been discussed based on intuitionistic fuzzy information [7, 26, 43, 47], and the
concept of time series forecasting was discussed under intuitionistic fuzzy domain [39].

Many researchers have discussed the application of IFSs in pattern recognition using various soft computing tools.
Some novel approaches for the calculation of similarity between IFSs were discussed and applied to pattern recognition
[10, 36, 54]. In [32], a pattern recognition problem was discussed based on some new construction for similarity
measures between IFSs, and Boran and Akay [3] presented a two-parametric similarity measure on IFSs and discussed
its applications in the problems of pattern recognition. In [4], a new approach of calculation similarity between IFSs
were discussed based on transformation techniques with pattern recognition application. Similarly, the idea of pattern
recognition has been discussed based on distance measure using intuitionistic fuzzy information [27, 50]. Some measuring
association tools between two fuzzy random variables with applications have discussed [42, 44].

In recent time, the idea of IFSs has been discussed in the education sphere [6, 34] and medical domain [16, 19, 35],
respectively. Duan and Li [11] constructed intuitionistic similarities using implication operator and the corresponding
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logical metric spaces with application to solving a pattern recognition problem. In [21], some intuitionistic fuzzy
distances were constructed and applied in decision making, and an application of IFS-TOPSIS on the level assessment
of the surrounding socks was discussed [25]. In [14], an improved intuitionistic fuzzy similarity operator was constructed
and used to discuss pattern recognition and management of emergency. Some applications of IFSs were discussed in
[5, 20, 58, 56].

Correlation analysis is a statistical technique used to assess the strength of association between two, numerically
continuous variables. This kind of analysis is deployed whenever a researcher wants to investigate whether there
are possible relations between two variables. Similarly, the statistical measure that computes the strength of the
association of two variables is called correlation coefficient. The construct of correlation analysis has been encapsulated
with intuitionistic fuzzy information to enhance the applicability of IFSs in real life problems [24]. Intuitionistic fuzzy
correlation analysis has been studied in probability spaces [28]. Hung [30] studied IFCC from statistical perspective,
and the idea of IFCC based on centroid method has been studied [31].

Xu [51] introduced a new IFCC approach and applied the concept to disease diagnosis. The approach in [51] was
modified by including the complete convention parameters of IFSs to boost accuracy [52]. Because of the drawbacks
in the approaches in [51, 52], Huang and Guo [29] introduced a robust approach, however by considering only two
parameters of IFSs. In [40, 46], the approach in [30] was independently modified by the inclusion of hesitation margin
to avoid error of omission. Similarly, Zeng and Li [57] developed an intuitionistic fuzzy correlation coefficient approach
which modified [24] by the inclusion of hesitation margin. Similar approaches of computing IFCC were studied in [53].
Some statistical approaches of computing IFCC based on variance and covariance have been studied and applied in
cases of decision-making [12, 38, 48, 49]. In [17, 18], some new approaches of IFCC were computed based on JAVA
computer programming. Certain correlation coefficient approaches based on connection number of set pair analysis and
TOPSIS method with applications to decision-making problems have been discussed [22, 23]. The motivation of this
paper is informed by the following:

• The IFCC methods in [24, 53, 57] lack the ability to compute the correlation coefficient between some IFSs like
A1 = {⟨x1, 1, 0⟩, ⟨x2, 0, 0.3⟩} and A2 = {⟨x1, 0, 0.3⟩, ⟨x2, 1, 0⟩} in X = {x1, x2}.

• The IFCC methods in [51, 52] yield 0/0, which is mathematically undefined whenever the IFSs are equal. Normally,
the correlation coefficient of equal IFSs should be 1. Also, the approaches yield a perfect correlation coefficient
even when the IFSs are not equal.

• The IFCC method in [29] does not include the definitive parameters of IFSs and so its result cannot be trusted.

In this work, we develop an efficient method to compute IFCC. This is obtained by the inclusion of the hesitation
margin and the number of the parameters of IFSs to enhance reliability unlike the approach in [29]. This study seeks to
hybridize the IFCC approaches in [29, 51, 52] to birth a new approach with reliable accuracy, reasonable interpretation,
sound mathematical correctness, and in order to avoid error of omission, the approach includes the complete parameters
of IFSs. The new approach is a hybridized method of the approaches in [29, 51, 52] because it crossbred the existing
approaches with an enhanced performance and interpretation by

• extending the approach in [29] through the inclusion of hesitation margin and parametric number of IFSs, and

• employing parametric absolute difference, minimum parametric absolute difference, and maximum parametric
absolute difference, respectively as seen in [29, 51, 52].

In this present study, we;

(i) reiterate and appraise the IFCC approaches in [29, 51, 52] to pinpoint their drawbacks.

(ii) develop a hybridized IFCC approach with reliable output, reasonable interpretation, mathematical correctness,
and inclusive of the complete parameters of IFSs.

(iii) apply the hybridized IFCC approach in pattern recognition analysis of mineral fields and building materials.

(iv) present a comparative analysis between the hybridized IFCC approach and the obtainable techniques.

The organization of the paper is as follows: Section 2 discusses the preliminaries of IFSs and some existing IFCC
approaches with the highlights of drawbacks of the existing IFCC approaches; Section 3 introduces the hybridized
IFCC approach, characterizes some of its properties, presents its computational processes; Section 4 discusses pattern
recognition in terms of the classifications of mineral fields and building materials; and Section 5 summarises the findings
of the paper and gives recommendations for further research.
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2 Intuitionistic fuzzy sets and their correlation measures

In this section, the fundamentals of IFSs are recalled for reference. Afterward, some existing IFCC approaches are
enlisted and their limitations itemized to justify the development of a new IFCC method.

2.1 Preliminaries on IFSs

We take X as the universe of discourse in this work. Firstly, we reiterate the definition of fuzzy set as follows.

Definition 2.1. [55] A fuzzy set represented by F in X is defined by

F = {⟨x, αF (x)⟩ | x ∈ X},

where αF (x) is a function αF : X → [0, 1], which explains the degree of membership of x ∈ X.

Definition 2.2. [1] An intuitionistic fuzzy set represented by L in X is of the form

L = {⟨x, αL(x), βL(x)⟩ | x ∈ X},

where αL(x) and βL(x) are defined by the functions αL : X → [0, 1] and βL : X → [0, 1], to describe the degrees of
membership and non-membership of x ∈ X with the property, 0 ≤ αL(x) + βL(x) ≤ 1.

The hesitation margin of an IFS L in X is defined by γL(x) = 1− αL(x)− βL(x). The hesitation margin expresses
the knowledge of the degree to whether x ∈ X or x /∈ X.

Definition 2.3. [1] Given that L and M are IFSs in X, we define the following properties of IFSs:

(i) Complement; L = {⟨x, βL(x), αL(x)⟩|x ∈ X}, M = {⟨x, βM (x), αM (x)⟩|x ∈ X}.

(ii) Union; L ∪M = {⟨x,max{αL(x), αM (x)},min{βL(x), βM (x)}⟩|x ∈ X}.

(iii) Intersection; L ∩M = {⟨x,min{αL(x), αM (x)},max{βL(x), βM (x)}⟩|x ∈ X}.

(iv) Equality; L = M iff αL(x) = αM (x) and βL(x) = βM (x) for all x ∈ X.

(v) Inclusion; L ⊆ M iff αL(x) ≤ αM (x) and βL(x) ≥ βM (x) for all x ∈ X.

Definition 2.4. [2] Intuitionistic fuzzy values (IFVs) are ordered pairs of the form ⟨l,m⟩ with the property l + m ≤
1, where l,m ∈ [0, 1]. In the IFVs ⟨l,m⟩, l represents the degree of membership, and m represents the degree of
nonmembership, respectively.

2.2 Some correlation coefficients of IFSs

Some existing approaches of finding correlation coefficient for IFSs are reiterated before the introduction of the new
approach.

Definition 2.5. [24] If L and M are IFSs in X, then the coefficient of correlation between L and M denoted by ρ(L,M)
is a function ρ : IFS × IFS → [0, 1] such that the following conditions hold:

(i) 0 ≤ ρ(L,M) ≤ 1,

(ii) ρ(L,M) = 1 iff L = M ,

(iii) ρ(L,M) = ρ(L,M).

When ρ(L,M) reaches 1, it shows that L and M have strong correlation. Again, if ρ(L,M) reaches 0 then L and
M have weak correlation. But if ρ(L,M) = 0 then L and M have no correlation. Hence, greater correlation coefficient
shows better performance rating.

Now, for IFSs L and M in X = {x1, · · · , xn} where n < ∞, the following approaches are recalled.
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2.2.1 Gerstenkon and Manko [24]

The notion of correlation coefficient was first discussed by Gerstenkon and Manko [24], and it is given as follows:

ρ1(L,M) =
C(L,M)√

T (L)
√
T (M)

, (1)

where

C(L,M) =
N∑
i=1

(
αL(xi)αM (xi) + βL(xi)βM (xi)

)
T (L) =

N∑
i=1

(
α2
L(xi) + β2

L(xi)
)

T (M) =
N∑
i=1

(
α2
M (xi) + β2

M (xi)
)


. (2)

The obvious limitation of (1) is the omission of hesitation margin from the computation and the inability to measure
the correlation of some IFSs, and thus the output from this approach cannot be trusted.

Example 2.6. Suppose A1 and A2 are IFSs given by A1 = {⟨x1, 1, 0⟩, ⟨x2, 0, 0.3⟩} and A2 = {⟨x1, 0, 0.3⟩, ⟨x2, 1, 0⟩} in
X = {x1, x2}.

Applying (1) we get C(A1,A2) = 0, T (A1) = T (A2) = 1.09, and so ρ1(A1,A2) =
0√

1.09× 1.09
= 0. Clearly, this

output is a misinformation of the correlation between A1 and A2.

2.2.2 Zeng and Li [57]

By considering the limitation in the approach of Gerstenkon and Manko [24], a new approach was introduced by Zeng
and Li [57] taking into account hesitation margin as seen in (3).

ρ2(L,M) =
C(L,M)√

T (L)
√
T (M)

, (3)

where

C(L,M) =

∑N
i=1

(
α2
L(xi)αM (xi) + βL(xi)βM (xi) + γL(xi)γM (xi)

)
N

T (L) =

∑N
i=1

(
α2
L(xi) + β2

L(xi) + γ2
L(xi)

)
N

T (M) =

∑N
i=1

(
α2
M (xi) + β2

M (xi) + γ2
M (xi)

)
N


. (4)

The limitation of (3) is the inability to measure the correlation of some IFSs. Applying (3) to Example 2.6, we get

C(A1,A2) =
0

2
= 0, T (A1) = T (A2) =

1.58

2
= 0.79, and so ρ2(A1,A2) =

0√
0.79× 0.79

= 0. Similarly, this output is a

misinformation of the correlation between A1 and A2.

2.2.3 Xu et al. [53]

Three methods of computing correlation coefficient between IFSs were discussed in [53]. The first approach modified
the approach in [24], and it is given by

ρ3(L,M) =
C(L,M)

max
{√

T (L),
√
T (M)

} , (5)
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where

C(L,M) =
N∑
i=1

(
αL(xi)αM (xi) + βL(xi)βM (xi)

)
T (L) =

N∑
i=1

(
α2
L(xi) + β2

L(xi)
)

T (M) =

N∑
i=1

(
α2
M (xi) + β2

M (xi)
)


. (6)

Similarly, (5) discards hesitation margin from the computation. Applying (5) to Example 2.6, we get C(A1,A2) = 0,

T (A1) = T (A2) = 1.09, and so ρ3(A1,A2) =
0

max{
√
1.09,

√
1.09}

= 0. Similarly, this output is a misinformation of

the correlation between A1 and A2.
The other two approaches in [53] were based on the approach in [24], namely:

ρ4(L,M) =
C(L,M)

max
(√

T (L),
√
T (M)

) , (7)

ρ5(L,M) =
C(L,M)√

T (L)
√
T (M)

, (8)

where

C(L,M) =
N∑
i=1

(
αL(xi)αM (xi) + βL(xi)βM (xi) + γL(xi)γM (xi)

)
T (L) =

N∑
i=1

(
α2
L(xi) + β2

L(xi) + γ2
L(xi)

)
T (M) =

N∑
i=1

(
α2
M (xi) + β2

M (xi) + γ2
M (xi)

)


. (9)

By simplification, it is observed that (3) and (8) are equivalent. It is worthy to note that (5) and (7) are not reliable
correlation measures because they do not yield perfect correlation coefficient whenever the IFSs are equal. To see this,
let us recall the following:

ρ3(L,M) =

∑N
i=1

(
αL(xi)αM (xi) + βL(xi)βM (xi)

)
max

(√∑N
i=1

(
α2
L(xi) + β2

L(xi)
)
,

√∑N
i=1

(
α2
M (xi) + β2

M (xi)
)) ,

If L = M , then

ρ4(L,M) =

∑N
i=1

(
α2
L(xi) + β2

L(xi)
)

max
(√∑N

i=1

(
α2
L(xi) + β2

L(xi)
)
,

√∑N
i=1

(
α2
L(xi) + β2

L(xi)
))

=

∑N
i=1

(
α2
L(xi) + β2

L(xi)
)

√∑N
i=1

(
α2
L(xi) + β2

L(xi)
)

=

√√√√ N∑
i=1

(
α2
L(xi) + β2

L(xi)
)

̸= 1.

Similarly, ρ4(L,M) ̸= 1 if L = M .
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Applying (7) and (8) to Example 2.6, we get C(A1,A2) = 0, T (A1) = T (A2) = 1.58, and so ρ4(A1,A2) =
0

max{
√
1.58,

√
1.58}

= 0 and ρ5(A1,A2) =
0√

1.58× 1.58
= 0. Again, these outputs are misinformation of the correla-

tion between A1 and A2.

2.2.4 Xu [51]

In [51], an approach for estimating correlation coefficient between IFSs were developed from different perspective. The
approach is as follows:

ρ6(L,M) =
1

2N

N∑
i=1

(∆αmin +∆αmax

∆αi +∆αmax
+

∆βmin +∆βmax

∆βi +∆βmax

)
, (10)

where
∆αi = |αL(xi)− αM (xi)|, ∆βi = |βL(xi)− βM (xi)|

∆αmin = min
i

|αL(xi)− αM (xi)|, ∆βmin = min
i

|βL(xi)− βM (xi)|

∆αmax = max
i

|αL(xi)− αM (xi)|, ∆βmax = max
i

|βL(xi)− βM (xi)|

 . (11)

The approach lacks reliability due to information loss occasioned by the omission of hesitation margin and its
inability to measure the correlation of some IFSs.

Example 2.7. Suppose B1 and B2 are IFSs given by B1 = {⟨x1, 0.4, 0.3⟩, ⟨x2, 0.3, 0.2⟩} and B2 = {⟨x1, 0.3, 0.2⟩, ⟨x2, 0.2, 0.1⟩}
in X = {x1, x2}.

Applying (10), we get the correlation coefficient using the information in Table 1.

Table 1: Computational Process

X ∆αi ∆βi

x1 0.1 0.1
x2 0.1 0.1

We see that
∆αmin = ∆αmax = 0.1,∆βmin = ∆βmax = 0.1.

Hence

ρ6(B1,B2) =
1

4

[
(0.1 + 0.1)

(0.1 + 0.1)
+

(0.1 + 0.1)

(0.1 + 0.1)
+

(0.1 + 0.1)

(0.1 + 0.1)
+

(0.1 + 0.1)

(0.1 + 0.1)

]
= 1.

This result does not corroborate with Definition 2.5, and so it is not reliable.

2.2.5 Xu and Cai [52]

Due to the limitation of the approach in [51], an enhanced correlation measure was envisaged to mitigate the setback
and improve reliability. The approach for measuring correlation coefficient in [52] is:

ρ7(L,M) =
1

3N

N∑
i=1

(∆αmin +∆αmax

∆αi +∆αmax
+

∆βmin +∆βmax

∆βi +∆βmax
+

∆γmin +∆γmax

∆γi +∆γmax

)
, (12)

where
∆αi = |αL(xi)− αM (xi)|, ∆βi = |βL(xi)− βM (xi)|

∆γi = |γL(xi)− γM (xi)|
∆αmin = min

i
|αL(xi)− αM (xi)|, ∆βmin = min

i
|βL(xi)− βM (xi)|

∆γmin = min
i

|γL(xi)− γM (xi)|

∆αmax = max
i

|αL(xi)− αM (xi)|, ∆βmax = max
i

|βL(xi)− βM (xi)|

∆γmax = max
i

|γL(xi)− γM (xi)|


. (13)
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The approach lacks reliability due to its inability to measure the correlation of some IFSs. Applying (12) to Example
2.7, we get the correlation coefficient using the information in Table 2.

Table 2: Computational Process

X ∆αi ∆βi ∆γi
x1 0.1 0.1 0.2
x2 0.1 0.1 0.2

It follows that
∆αmin = 0.1, ∆βmin = 0.1, ∆γmin = 0.2

∆αmax = 0.1, ∆βmax = 0.1, ∆γmax = 0.2.

Hence

ρ7(B1,B2) =
1

6

[
(0.1 + 0.1)

(0.1 + 0.1)
+

(0.1 + 0.1)

(0.1 + 0.1)
+

(0.1 + 0.1)

(0.1 + 0.1)
+

(0.1 + 0.1)

(0.1 + 0.1)
+

(0.2 + 0.2)

(0.2 + 0.2)
+

(0.2 + 0.2)

(0.2 + 0.2)

]
= 1.

This result does not corroborate with Definition 2.5 since B1 ̸= B2, and so it is not reliable.

2.2.6 Huang and Guo [29]

The approaches in [51, 52] were observed to have some limitations. First, the approaches yield 0/0, which is mathemat-
ically undefined whenever the IFSs are equal. Normally, the correlation coefficient of equal IFSs should be 1. Secondly,
the approaches yield a perfect correlation coefficient 1 even when the IFSs are not equal. Due to these setbacks, Huang
and Guo [29] introduced a novel approach as follows:

ρ8(L,M) =
1

2N

N∑
i=1

(
µi(1−∆αi) + νi(1−∆βi)

)
, (14)

where

µi =
c−∆αi −∆αmax

c−∆αmin −∆αmax

νi =
c−∆βi −∆βmax

c−∆βmin −∆βmax

 , (15)

for c > 2, and
∆αi = |αL(xi)− αM (xi)|, ∆βi = |βL(xi)− βM (xi)|

∆αmin = min
i

|αL(xi)− αM (xi)|, ∆βmin = min
i

|βL(xi)− βM (xi)|

∆αmax = max
i

|αL(xi)− αM (xi)|, ∆βmax = max
i

|βL(xi)− βM (xi)|

 . (16)

One cannot rely on the results from this method because it omits the hesitation margin component in the computation.

Example 2.8. Suppose C1 and C2 are IFSs given by C1 = {⟨x1, 0.9, 0.1⟩, ⟨x2, 0.7, 0.2⟩} and C2 = {⟨x1, 0.1, 0.8⟩, ⟨x2, 0.6, 0.4⟩}
in X = {x1, x2}.

Applying (14), we get the correlation coefficient using the information in Table 3.

Table 3: Computational Process

X ∆αi ∆βi

x1 0.8 0.7
x2 0.1 0.2
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We see that
∆αmin = 0.1,∆αmax = 0.8,

∆βmin = 0.2,∆βmax = 0.7.

Thus,

µ1 =
3− 0.8− 0.8

3− 0.1− 0.8
= 0.6667, ν1 =

3− 0.7− 0.7

3− 0.2− 0.7
= 0.7619,

µ2 =
3− 0.1− 0.8

3− 0.1− 0.8
= 1, ν2 =

3− 0.2− 0.7

3− 0.2− 0.7
= 1.

Hence

ρ8(C1, C2) =
1

4

[
0.6667(1− 0.8) + (1− 0.1) + 0.7619(1− 0.7) + (1− 0.2)

]
= 0.5155.

This result shows that a minimum correlation exists between the IFSs. That is, the correlation coefficient has a low
performance index.

3 Hybridized intuitionistic fuzzy correlation coefficient

In this work, we introduce and discuss an efficient method to compute the correlation coefficient for IFSs. This is
obtained by the inclusion of the hesitation margin and the number of the parameters of IFSs to enhance reliability
unlike the approach in [29]. In fact, this approach hybridizes the intuitionistic fuzzy correlation coefficient approaches
in [29, 51, 52]. The new approach is a hybridized method of the approaches in [29, 51, 52] because it crossbred the
existing approaches with an enhanced performance and interpretation by

• extending the approach in [29] through the inclusion of hesitation margin and parametric number of IFSs, and

• employing parametric absolute difference, minimum parametric absolute difference, and maximum parametric
absolute difference, respectively as seen in [29, 51, 52].

By combining the attributes of the approaches in [29, 51, 52], a new method is developed which resolves the limitations
of the approaches in [29, 51, 52].

Assume there are two arbitrary IFSs L and M in X = {x1, · · · , xn} where n < ∞, then the correlation coefficient
for the IFSs can be measured by:

ρ̃(L,M) =
1

3N

N∑
i=1

(
µi(1−∆αi) + νi(1−∆βi) + πi(1−∆γi)

)
, (17)

where

µi =
c−∆αi −∆αmax

c−∆αmin −∆αmax

νi =
c−∆βi −∆βmax

c−∆βmin −∆βmax

πi =
c−∆γi −∆γmax

c−∆γmin −∆γmax


, (18)

for c > 2, and
∆αi = |αL(xi)− αM (xi)|, ∆βi = |βL(xi)− βM (xi)|

∆γi = |γL(xi)− γM (xi)|
∆αmin = min

i
|αL(xi)− αM (xi)|, ∆βmin = min

i
|βL(xi)− βM (xi)|

∆γmin = min
i

|γL(xi)− γM (xi)|

∆αmax = max
i

|αL(xi)− αM (xi)|, ∆βmax = max
i

|βL(xi)− βM (xi)|

∆γmax = max
i

|γL(xi)− γM (xi)|


. (19)
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In some cases, it is of necessity to consider the weights of elements of X while computing the correlation coefficient.
For instance, in multi-attribute decision-making cases, every feature does has dissimilar significant and so needs to be
apportioned a dissimilar weight. By considering the weights of the elements of X, (17) becomes

ρ̃ω(L,M) =
1

3

N∑
i=1

ωi

(
µi(1−∆αi) + νi(1−∆βi) + πi(1−∆γi)

)
, (20)

where the parameters are the same as in (18) and (19), and ωi ≥ 0 for
∑N

i=1 ωi = 1. If ω =
(

1
N , 1

N , · · · , 1
N

)T
, then (17)

and (20) are the same.

3.1 Numerical illustrations of the new IFCC approach

Some examples of IFSs are considered to illustrate the steps involve in the computation of correlation coefficient based
on the new approach.

Example 3.1. Suppose L1 and L2 are IFSs in X = {x1, x2, x3} defined by

L1 = {⟨x1, 0.1, 0.2, 0.7⟩, ⟨x2, 0.2, 0.1, 0.7⟩, ⟨x3, 0.1, 0.6, 0.3⟩},

L2 = {⟨x1, 0.3, 0.0, 0.7⟩, ⟨x2, 0.2, 0.2, 0.6⟩, ⟨x3, 0.3, 0.0, 0.7⟩}.

By mere observation, L1 and L2 are related since L1 ⊆ L2. We calculate the correlation coefficient concerning the
IFSs via the new approach using the information in Table 4.

Table 4: Computational Process

X ∆αi ∆βi ∆γi
x1 0.2 0.2 0.0
x2 0.0 0.1 0.1
x3 0.2 0.6 0.4

where
∆αmin = 0.0, ∆βmin = 0.1, ∆γmin = 0.0,

∆αmax = 0.2, ∆βmax = 0.6, ∆γmax = 0.4.

Thus

µ1 =
3− 0.2− 0.2

3− 0.0− 0.2
= 0.9286, ν1 =

3− 0.2− 0.6

3− 0.1− 0.6
= 0.9565, π1 =

3− 0.0− 0.4

3− 0.0− 0.4
= 1,

µ2 =
3− 0.0− 0.2

3− 0.0− 0.2
= 1, ν2 =

3− 0.1− 0.6

3− 0.1− 0.6
= 1, π2 =

3− 0.1− 0.4

3− 0.0− 0.4
= 0.9615,

µ3 =
3− 0.2− 0.2

3− 0.0− 0.2
= 0.9286, ν3 =

3− 0.6− 0.6

3− 0.1− 0.6
= 0.7826, π3 =

3− 0.4− 0.4

3− 0.0− 0.4
= 0.8462.

Hence

ρ̃(L1,L2) =
1

9

(
(0.9286× 0.8) + (0.9565× 0.8) + (1× 1) + (1× 1) + (1× 0.9) + (0.9615× 0.9)

+ (0.9286× 0.8) + (0.7826× 0.4) + (0.8462× 0.6)
)

= 0.7597.

This result corroborates the relationship between L1 and L2.

Example 3.2. Suppose M1 and M2 are IFSs in X = {x1, x2, x3, x4} defined by

M1 = {⟨x1, 0.7, 0.2, 0.1⟩, ⟨x2, 0.6, 0.1, 0.3⟩, ⟨x4, 0.5, 0.4, 0.1⟩},

M2 = {⟨x1, 0.8, 0.1, 0.1⟩, ⟨x2, 0.7, 0.1, 0.2⟩, ⟨x3, 0.3, 0.4, 0.3⟩}.
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Similarly, we compute the correlation coefficient between the IFSs through the new approach using the information
in Table 5.

Table 5: Computational Process

X ∆αi ∆βi ∆γi
x1 0.1 0.1 0.0
x2 0.1 0.0 0.1
x3 0.2 0.6 0.3
x4 0.5 0.6 0.1

where
∆αmin = 0.1, ∆βmin = 0.0, ∆γmin = 0.0,

∆αmax = 0.5, ∆βmax = 0.6, ∆γmax = 0.3.

So,

µ1 =
3− 0.1− 0.5

3− 0.1− 0.5
= 1, ν1 =

3− 0.1− 0.6

3− 0.0− 0.6
= 0.9583, π1 =

3− 0.0− 0.3

3− 0.0− 0.3
= 1,

µ2 =
3− 0.1− 0.5

3− 0.1− 0.5
= 1, ν2 =

3− 0.0− 0.6

3− 0.0− 0.6
= 1, π2 =

3− 0.1− 0.3

3− 0.0− 0.3
= 0.963,

µ3 =
3− 0.2− 0.5

3− 0.1− 0.5
= 0.9583, ν3 =

3− 0.6− 0.6

3− 0.0− 0.6
= 0.75, π3 =

3− 0.3− 0.3

3− 0.0− 0.3
= 0.8889,

µ4 =
3− 0.5− 0.5

3− 0.1− 0.5
= 0.8333, ν4 =

3− 0.6− 0.6

3− 0.0− 0.6
= 0.75, π4 =

3− 0.1− 0.3

3− 0.0− 0.3
= 0.963.

Hence

ρ̃(M1,M2) =
1

12

(
(1× 0.9) + (0.9583× 0.9) + (1× 1) + (1× 0.9) + (1× 1) + (0.963× 0.9)

+ (0.9583× 0.8) + (0.75× 0.4) + (0.8889× 0.7) + (0.8333× 0.5) + (0.75× 0.4) + (0.963× 0.9)
)

= 0.7334,

which interprets the correlation between M1 and M2.

3.2 Comparative analysis

The superiority of the new IFCC method over the existing IFCC methods is unveiled by presenting a comparative
analysis as follows. By applying the new IFCC method to Example 2.6, we have ρ̃(A1,A2) = 0.3333, while the
IFCC methods in [24, 53, 57] give ρ1(A1,A2) = 0.0, ρ2(A1,A2) = 0.0, ρ3(A1,A2) = 0.0, ρ4(A1,A2) = 0.0, and
ρ5(A1,A2) = 0.0.

Though the correlation between A1 and A2 is weak by mere observation, the IFCC methods in [24, 53, 57] give a
misleading interpretation that the correlation does not exist at all. On the contrary, the new IFCC method gives a
correlation value that tallies with the mere observation. This proves the advantage of the new IFCC methods over the
methods in [24, 53, 57].

By applying the new IFCC method to Example 2.7, we have a correlation coefficient ρ̃(B1,B2) = 0.8667, while the
IFCC methods in [51, 52] give correlation coefficients ρ6(B1,B2) = 1 and ρ7(B1,B2) = 1. Of course, a strong correlation
exists between B1 and B2 but certainly not perfect. Correlation coefficient can only be perfect if B1 = B2. This speaks
to the limitation of the IFCC methods in [51, 52]. Again, this proves the advantage of the new IFCC methods over the
methods in [51, 52].

Finally, we apply the new IFCC method to Example 2.8, and get a correlation coefficient ρ̃(C1, C2) = 0.6437. By
applying the IFCC method in [29], we have ρ8(C1, C2) = 0.5155. The new IFCC method is more reliable compare to the
IFCC method [29] because it take account of all the parametric definition of the concerned IFSs. It is observed that as
the hesitation margin becomes smaller, the new IFCC method yields a result with high performance index compare to
the IFCC method in [29], which underscores the limitation of the IFCC method [29] and proves the advantage of the
new IFCC methods.

The new approach is an improved version of the method in [29] with high performance rating and reliability because
it does not provide any leeway for information loss as seen in [24, 29, 51].
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3.3 Some properties of the new IFCC approach

To substantiate the validity of the new approach, we present some of its properties.

Theorem 3.3. Suppose L and M are two IFSs in X, then the new IFCC ρ̃(L,M) satisfies the commutative property:

(i) ρ̃(L,M) = ρ̃(M,L),

(ii) ρ̃ω(L,M) = ρ̃ω(M,L).

Proof. To prove (i), we recall that

ρ̃(L,M) =
1

3N

N∑
i=1

(
µi(1−∆αi) + νi(1−∆βi) + πi(1−∆γi)

)
,

and then

ρ̃(L,M) =
1

3N

N∑
i=1

(
µi

(
1− |αL(xi)− αM (xi)|

)
+ νi

(
1− |βL(xi)− βM (xi)|

)
+ πi

(
1− |γL(xi)− γM (xi)|

))

=
1

3N

N∑
i=1

(
µi

(
1− |αM (xi)− αL(xi)|

)
+ νi

(
1− |βM (xi)− βL(xi)|

)
+ πi

(
1− |γM (xi)− γL(xi)|

))
= ρ̃(M,L),

which proofe (i). The prove of (ii) is similar to (i).

Theorem 3.4. If L and M are two IFSs in X, then the new correlation coefficient ρ̃(L,M) satisfies

(i) ρ̃(L,M) = 1 iff L = M ,

(ii) ρ̃ω(L,M) = 1 iff L = M .

Proof. First, we establish (i). Suppose L = M . Then |αL(xi) − αM (xi)| = 0, |βL(xi) − βM (xi)| = 0, and |γL(xi) −
γM (xi)| = 0. Deductively,

∆αi = ∆βi = ∆γi = 0,

∆αmin = ∆βmin = ∆γmin = 0, and

∆αmax = ∆βmax = ∆γmax = 0.

Thus µi = νi = πi = 1, and thus ρ̃(L,M) =
1

3N

∑N
i=1 3N = 1.

Conversely, if ρ̃(L,M) = 1 then L and M have perfect relation, and so L = M . Hence, (i) holds. The prove of (ii)
is similar to (i).

Theorem 3.5. Suppose ρ̃(L,M) and ρ̃ω(L,M) are correlation coefficients between IFSs L and M in X, then ρ̃(L,M) ∈
[0, 1] and ρ̃ω(L,M) ∈ [0, 1].

Proof. We need to prove that 0 ≤ ρ̃(L,M) ≤ 1, i.e. ρ̃(L,M) ≥ 0 and ρ̃(L,M) ≤ 1. Certainly, ρ̃(L,M) ≥ 0. Now, we
show that ρ̃(L,M) ≤ 1.

To see this, let us assume that

N∑
i=1

(
µi(1−∆αi)

)
= ξ,

N∑
i=1

(
νi(1−∆βi)

)
= η,

N∑
i=1

(
πi(1−∆γi)

)
= κ.
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By Cauchy-Schwarz inequality’s principle, we get

ρ̃(L,M) =
1

3N

N∑
i=1

(
µi(1−∆αi) + νi(1−∆βi) + πi(1−∆γi)

)

≤

∑N
i=1

(
µi(1−∆αi)

)
+
∑N

i=1

(
νi(1−∆βi)

)
+
∑N

i=1

(
πi(1−∆γi)

)
3N

=
ξ + η + κ

3N
.

Thus,

ρ̃(L,M)− 1 =
ξ + η + κ

3N
− 1 =

ξ + η + κ− 3N

3N
= − (3N − ξ − η − κ)

3N
≤ 0,

which implies that ρ̃(L,M) ≤ 1. Hence, ρ̃(L,M) ∈ [0, 1]. Similarly, the proof of ρ̃ω(L,M) ∈ [0, 1] follows.

4 Application examples

We demonstrate the hand-on relevance of the new correlation coefficient approach and the similar approaches [29, 51, 52]
in cases of pattern recognition to project the viability of the new approach. To start with, pattern recognition is the
art of categorizing patterns based on machine learning algorithm. Pattern recognition has to do with the grouping of
data based on an already gained knowledge to aid inference. In most cases, the art of pattern recognition is enmeshed
with uncertainties, which justifies the use of soft computing approach of IFCC technique.

To achieve this, we suppose there are known patterns within a sample space and an unknown pattern within the
same space that needed to be grouped into any of the similar known pattern using IFCC technique. The correlation
concerning the known pattern and the unknown pattern which yields the greatest correlation coefficient value determine
the grouping or classification. The intuitionistic fuzzy data presented in [50] is employed for the application discussions.

4.1 Pattern recognition of mineral fields

Table 6: Mineral Fields as IFVs

Feature Space
Patterns s1 s2 s3 s4 s5 s6
αĈ1

βĈ1

γĈ1

0.739
0.125
0.136

0.033
0.818
0.149

0.188
0.626
0.186

0.492
0.358
0.150

0.020
0.628
0.352

0.739
0.125
0.136

αĈ2

βĈ2

γĈ2

0.124
0.665
0.211

0.030
0.825
0.145

0.048
0.800
0.152

0.136
0.648
0.216

0.019
0.823
0.158

0.300
0.653
0.047

αĈ3

βĈ3

γĈ3

0.449
0.387
0.164

0.662
0.298
0.040

1.000
0.000
0.000

1.000
0.000
0.000

1.000
0.000
0.000

1.000
0.000
0.000

αĈ4

βĈ4

γĈ4

0.280
0.715
0.005

0.521
0.368
0.111

0.470
0.423
0.107

0.295
0.658
0.047

0.188
0.806
0.006

0.735
0.118
0.147

αĈ5

βĈ5

γĈ5

0.326
0.452
0.222

1.000
0.000
0.000

0.182
0.725
0.093

0.156
0.765
0.079

0.049
0.896
0.055

0.675
0.263
0.062

αM̂

βM̂

γM̂

0.629
0.303
0.068

0.524
0.356
0.120

0.210
0.689
0.101

0.218
0.753
0.029

0.069
0.876
0.055

0.658
0.256
0.086

Firstly, we think through a case of pattern recognition of certain mineral fields. Given there are five categories of
mineral fields which are featured in the content of six minerals, and there is a category of typical hybrid mineral.
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We represent the five categories of the typical hybrid mineral by IFSs Ĉ1, Ĉ2, Ĉ3, Ĉ4, and Ĉ5 in the feature space
S = {s1, · · · , s6}. Assuming there is another unclassified category of hybrid mineral M̂ , then we determine which field
this unclassified category of hybrid mineral M̂ can be classified with. The IFVs of the mineral fields are given in Table 6.

In order to classify the unknown hybrid mineral M̂ , we compute its correlation coefficients with each Ĉi, for
i = 1, 2, 3, 4, 5 using the new correlation coefficient approach and similar approaches [29, 51, 52] to obtain the following
results:

Our new approach yields;

ρ̃(Ĉ1, M̂) = 0.7880, ρ̃(Ĉ2, M̂) = 0.7541, ρ̃(Ĉ3, M̂) = 0.6121,

ρ̃(Ĉ4, M̂) = 0.8532, ρ̃(Ĉ5, M̂) = 0.8723,

which shows that the unknown hybrid mineral M̂ can be classified with Ĉ5 since ρ̃(Ĉ5, M̂) is the greatest.
The approach of Xu [51] yields;

ρ6(Ĉ1, M̂) = 0.7934, ρ6(Ĉ2, M̂) = 0.7602, ρ6(Ĉ3, M̂) = 0.7602,

ρ6(Ĉ4, M̂) = 0.7595, ρ6(Ĉ5, M̂) = 0.8455.

The approach of Xu and Cai [52] yields;

ρ7(Ĉ1, M̂) = 0.8074, ρ7(Ĉ2, M̂) = 0.7718, ρ7(Ĉ3, M̂) = 0.7596,

ρ7(Ĉ4, M̂) = 0.7580, ρ7(Ĉ5, M̂) = 0.8210.

The approach of Huang and Guo [29] yields;

ρ8(Ĉ1, M̂) = 0.7480, ρ8(Ĉ2, M̂) = 0.6871, ρ8(Ĉ3, M̂) = 0.4626,

ρ8(Ĉ4, M̂) = 0.8016, ρ8(Ĉ5, M̂) = 0.8473.

Table 7 presents the results of the IFCC values.

Table 7: Results for Mineral Fields Classification

IFCC Methods (Ĉ1, M̂) (Ĉ2, M̂) (Ĉ3, M̂) (Ĉ4, M̂) (Ĉ5, M̂) Classifications

New IFCC 0.7880 0.7541 0.6121 0.8532 0.8723 M̂ belongs to Ĉ5

Xu [51] 0.7934 0.7602 0.7602 0.7595 0.8455 M̂ belongs to Ĉ5

Xu and Cai [52] 0.8074 0.7718 0.7596 0.7580 0.8210 M̂ belongs to Ĉ5

Huang and Guo [29] 0.7480 0.6871 0.4626 0.8016 0.8473 M̂ belongs to Ĉ5

Similarly, the existing IFCC approaches yield the same pattern recognition, but the new approach shows that a
better correlation exists between the unknown hybrid mineral M̂ and the mineral field Ĉ5.

4.2 Pattern recognition of building materials

In this second case, a pattern recognition problem regarding the classification/grouping of some building materials is
considered. Assuming there are four given classes of building material, which are represented by IFSs M̂1, M̂2, M̂3,
and M̂4 in the feature space S = {s1, s2, · · · , s12}.
Given another kind of unknown building material N̂ , we seek to associate the unknown pattern N̂ with any of the
appropriate known patterns based on the intuitionistic fuzzy correlation measures. The intuitionistic fuzzy information
of the patterns are presented in Table 8.
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Table 8: Building Materials as IFVs

Feature Space
Patterns s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12
αM̂1

βM̂1

γM̂1

0.173
0.524
0.303

0.102
0.818
0.080

0.530
0.326
0.144

0.965
0.008
0.027

0.420
0.351
0.229

0.008
0.956
0.036

0.331
0.512
0.157

1.000
0.000
0.000

0.215
0.625
0.160

0.432
0.534
0.034

0.750
0.126
0.124

0.432
0.432
0.136

αM̂2

βM̂2

γM̂2

0.510
0.365
0.125

0.627
0.125
0.248

1.000
0.000
0.000

0.125
0.648
0.227

0.026
0.823
0.151

0.732
0.153
0.115

0.556
0.303
0.141

0.650
0.267
0.083

1.000
0.000
0.000

0.145
0.762
0.093

0.047
0.923
0.030

0.760
0.231
0.009

αM̂3

βM̂3

γM̂3

0.495
0.387
0.118

0.603
0.298
0.099

0.987
0.006
0.007

0.073
0.849
0.078

0.037
0.923
0.040

0.690
0.268
0.042

0.147
0.812
0.041

0.213
0.653
0.134

0.501
0.284
0.215

1.000
0.000
0.000

0.324
0.483
0.193

0.045
0.912
0.043

αM̂4

βM̂4

γM̂4

1.000
0.000
0.000

1.000
0.000
0.000

0.857
0.123
0.020

0.734
0.158
0.108

0.021
0.896
0.083

0.076
0.912
0.012

0.152
0.712
0.136

0.113
0.756
0.131

0.489
0.389
0.122

1.000
0.000
0.000

0.386
0.485
0.129

0.028
0.912
0.060

αN̂

βN̂

γN̂

0.978
0.003
0.019

0.980
0.012
0.008

0.798
0.132
0.070

0.693
0.213
0.094

0.051
0.876
0.073

0.123
0.756
0.121

0.152
0.721
0.127

0.113
0.732
0.155

0.494
0.368
0.138

0.987
0.000
0.013

0.376
0.423
0.201

0.012
0.897
0.091

To obtain the grouping of the unknown building material N̂ with M̂i, for i = 1, 2, 3, 4, we calculate its correlation
coefficients with each M̂i using the new approach and similar approaches [29, 51, 52] to get the following results:
New approach yields;

ρ̃(M̂1, N̂) = 0.6414, ρ̃(M̂2, N̂) = 0.6118,

ρ̃(M̂3, N̂) = 0.8143, ρ̃(M̂4, N̂) = 0.9632,

which shows that the unknown building material N̂ can be associated with building material M̂4 because the correlation
coefficient between (M̂4, N̂) is the greatest.
The approach of Xu [51] yields;

ρ6(M̂1, N̂) = 0.8098, ρ6(M̂2, N̂) = 0.7030,

ρ6(M̂3, N̂) = 0.8086, ρ6(M̂4, N̂) = 0.8113.

The approach of Xu and Cai [52] yields;

ρ7(M̂1, N̂) = 0.8195, ρ7(M̂2, N̂) = 0.7184,

ρ7(M̂3, N̂) = 0.7854, ρ7(M̂4, N̂) = 0.8289.

The approach of Huang and Guo [29] yields;

ρ8(M̂1, N̂) = 0.5182, ρ8(M̂2, N̂) = 0.4818,

ρ8(M̂3, N̂) = 0.7550, ρ8(M̂4, N̂) = 0.9642.

Table 9 presents the results of the IFCC values.

Table 9: Results for Classification of Building Materials

IFCC Methods (M̂1, N̂) (M̂2, N̂) (M̂3, N̂) (M̂4, N̂) Classifications

New IFCC 0.6414 0.6118 0.8143 0.9632 N̂ belongs to M̂4

Xu [51] 0.8098 0.7030 0.8086 0.8113 N̂ belongs to M̂4

Xu and Cai [52] 0.8195 0.7184 0.7854 0.8289 N̂ belongs to M̂4

Huang and Guo [29] 0.5182 0.4818 0.7550 0.9642 N̂ belongs to M̂4

From the existing IFCC approaches, it follows that the unknown building material N̂ can be associated with building
material M̂4, akin to the interpretation from the new approach. In the whole, our approach is better than the approach
in [29, 51, 52].
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5 Conclusions

In this work, we have developed a new IFCC approach which measures correlation reliably better than the existing
approaches [29, 51, 52]. The new approach is an improved version of the method in [29] with a better reliability rating
because it does not provide any leeway for information loss unlike the approaches in [24, 29, 51]. The properties of the
new approach were discussed, and easy to follow illustrative examples of the approach were provided. By comparative
analysis, it has been shown that where the existing approaches fail, the new IFCC approach gives a better measure of
correlation. Finally, the new approach was applied to tackle problems of pattern recognition because of its flexibility in
decision-making. The following are some of advantages of the new approach; (i) it incorporates the complete parameters
of IFSs to avoid error of omission, (ii) it hybridizes the IFCC approaches in [29, 51, 52] with reliable output, reasonable
interpretation, and mathematical correctness, (iii) it can correctly measure the correlation between two similar IFSs,
and also two equal IFSs unlike [51, 52], (iv) it possesses better performance rating which enhances reliable interpretation
than the other tri-parametric approaches in [52, 53, 57]. In future studies, the new approach could be investigated in
TOPSIS method, multiple criteria decision-making, and multiple group attributes decision-making based on spherical
fuzzy data, q-rung orthopair fuzzy data, and picture fuzzy data.
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A B S T R A C T

Transportation systems are a key part of sustainable development, and they need to be carefully evaluated to
show that they have a strong impact on the target area’s social, environmental, and economic sustainability.
For this reason, involving the developed decision support systems helps to shed light on the users’ demand
and provide unblemished policy decisions considering the existing situation. The ‘‘q-rung orthopair fuzzy set
(q-ROFS)’’ is a generalization of the ‘‘intuitionistic fuzzy sets (IFSs)’’ and ‘‘Pythagorean fuzzy sets (PFSs)’’
that expresses vague and uncertain data more efficiently. In the interim, the notion of ‘‘dual hesitant q-rung
orthopair fuzzy set (DHq-ROFS)’’ is presented to account for human hesitancy, which may be more applicable
to genuine ‘‘multicriteria group decision-making (MCGDM)’’ situations. The main goal of this study is to
address MCGDM problems using Heronian mean (HM) and DHq-ROF data. The first step is to introduce the
Frank t -norm and t -conorm-based DHq-ROF HM (DHq-ROFFHM) operator. DHq-ROFFHM’s features are next
described in depth. In addition, the DHq-ROF Frank weighted HM (DHq-ROFFWHM) operator is presented,
which takes into account different degrees of liking for input arguments. The DHq-ROF Frank weighted power
partitioned HM model is then used to come up with a way to solve models in MCGDM problems where
individual arguments are grouped together and have relationships with each other. A final example shows
how the established model can be implemented and how well it works.

. Introduction

Estimating the quality of service in the urban transportation system is important for making users happier, increasing productivity, and using
ore profitable methods. There are many ways to measure the service quality of urban transportation, such as how reliable it is, how easy it is to

et to, etc. But the goal of the evaluation process in all organizations is to ensure that the system is sustainable and that users are happy with it.
his is done by ensuring that the system is well organized and that all users get good, efficient service.

In the works that came before, a variety of models were used to analyze the resource quality of urban transportation networks. The most
dopted models for this target are: factor analysis (Jomnonkwao and Ratanavaraha, 2016); structural equation modeling (Eboli and Mazzulla,
007); SERVQUAL framework (Too and Earl, 2010), ‘‘multiple linear regression and logit and cluster analysis (Pina and Torres, 2001)’’. Ðalić et al.
2021) introduced a ‘‘novel integrated MCDM-SWOT-TOWS model for the strategic decision analysis of a transportation company’’. Respectively,
ecision support models were adopted for estimating and ameliorating the service quality of the public transport system, Gündoğdu et al. (2021)
ntegrated the Picture Fuzzy AHP and linear assignment models to evaluate public transportation service quality in the city of Budapest. Moslem

∗ Corresponding author at: School of Mathematics and Statistics, Southwest University, Beibei, Chongqing, 400715, China.
E-mail addresses: asarkarmth@gmail.com (A. Sarkar), sarbast.moslem@ucd.ie (S. Moslem), esztergar@mail.bme.hu (D. Esztergár-Kiss),

.akram@pucit.edu.pk (M. Akram), jls1980@163.com (L. Jin), math.tapan@gmail.com (T. Senapati).
ttps://doi.org/10.1016/j.engappai.2023.106505
eceived 11 August 2022; Received in revised form 16 February 2023; Accepted 19 May 2023
vailable online xxxx
952-1976/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.engappai.2023.106505
https://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2023.106505&domain=pdf
mailto:asarkarmth@gmail.com
mailto:sarbast.moslem@ucd.ie
mailto:esztergar@mail.bme.hu
mailto:m.akram@pucit.edu.pk
mailto:jls1980@163.com
mailto:math.tapan@gmail.com
https://doi.org/10.1016/j.engappai.2023.106505


A. Sarkar, S. Moslem, D. Esztergár-Kiss et al. Engineering Applications of Artificial Intelligence 124 (2023) 106505
List of Abbreviations

DM Decision maker
HFS Hesitant fuzzy set HFS
HM Heronian mean
IFS Intuitionistic fuzzy set
MCDM Multicriteria decision making
MCGDM Multicriteria group decision-making
PFS Pythagorean fuzzy set
𝒒-ROF 𝑞-rung orthopair fuzzy
𝒒-ROFN 𝑞-ROF number
𝒒-ROFS 𝑞-rung orthopair fuzzy set
DHFS Dual hesitant fuzzy set
DH𝒒-ROFN Dual hesitant 𝑞-ROF number
DH𝒒-ROFS Dual hesitant 𝑞-ROF set
PA Power average
PHM Power Heronian mean
DH𝒒-ROFDM DH𝑞-ROF decision matrix
DH𝒒-ROFFPA DH𝑞-ROF Frank power average
DH𝒒-ROFFPG DH𝑞-ROF Frank power geometric
DH𝒒-ROFFPWA DH𝑞-ROF Frank power weighted average
DH𝒒-ROFFPWG DH𝑞-ROF Frank power weighted geometric
DH𝒒-ROFFPHM DH𝑞-ROF Frank power Heronian mean
DH𝒒-ROFFPGHM DH𝑞-ROF Frank power geometric Heronian mean
DH𝒒-ROFFPWHM DH𝑞-ROF Frank power weighted Heronian mean
DH𝒒-ROFFPWGHM DH𝑞-ROF Frank power weighted geometric Heronian mean
DH𝒒-ROFFWPPHM DH𝑞-ROF Frank weighted power partitioned Heronian mean
HPFWA/HPFWG Hesitant Pythagorean fuzzy weighted average/geometric
DHPFHWA/
DHPFHWG

Dual hesitant Pythagorean fuzzy Hamacher weighted average/geometric

DHPFWBM/
DHPFGWHM

Dual hesitant Pythagorean fuzzy weighted Bonferroni mean/Heronian mean

DH𝒒-ROFWA/
DH𝒒-ROFWG

DH𝑞-ROF weighted average/geometric

DH𝒒-ROFWDBM/
DH𝒒-ROFWDGBM

DH𝑞-ROF weighted Dombi Bonferroni mean/geometric

𝒒-RDHFPWDMSM 𝑞-rung dual hesitant fuzzy power weighted dual Maclaurin symmetric mean
𝒒-RDHFWHM/
𝒒-RDHFWGHM

𝑞-rung dual hesitant fuzzy weighted Heronian mean/geometric

WHPFMSM Hesitant Pythagorean fuzzy weighted Maclaurin symmetric mean

and Çelikbilek (2020) conducted a combined model of AHP with ‘‘Multi Objective Optimization Method by Ratio Analysis (MOORA)’’ in a grey
environment to estimate the service quality of the public transport system in Budapest, Hungary. Tumsekcali et al. (2021) integrated AHP with
‘‘Weighted Aggregated Sum Product Assessment (WASPAS)’’ in an ‘‘interval-valued intuitionistic fuzzy (IVIF)’’ environment to evaluate public
transportation service quality in Istanbul, Turkey. Duleba et al. (2021) employed AHP with the interval-valued spherical fuzzy sets to spot the
light on the users, non-user citizens’ preferences regarding developing the public transport in Mersin, Turkey. Çelikbilek et al. (2022) applied
Best Worst Method with AHP and MOORA in a fuzzy environment to detect the most important criteria in the public transportation system of
Budapest. Alkharabsheh et al. (2022) spotted the demand for developing the public transport system in Amman, Jordan, by testing AHP in a fuzzy
environment.

Because the scenario research we did for putting the new model into place focused on qualities and options for improving urban transportation,
it was important to make a model with criteria and possible solutions. Nassereddine and Eskandari (2017), who calculated waiting time, trip time,
safety, suitability, and accessibility, conducted one of the most comprehensive analyses of the relevant parameters of urban transportation. Eboli
and Mazzulla (2015) shed light on the most important aspects of a public transportation system’s dependability and connectivity. Information
supply before and during travel has also occurred in several notable works (Felleson and Friman, 2012; Mouwen, 2015). Niknejad et al. (2020)
gave a broad overview of smart wearables, talking about things like the state-of-the-art literature, new developments, and problems that are still
to come.

On the basis of this research and the publicly available model by Duleba and Moslem (2019), we have combined these criteria and developed
a hierarchical model that is depicted in the case study section. In addition to the criteria, upgrade options for public transportation have been
identified. The four action plan simulations (Nassereddine and Eskandari, 2017) were based on the work of experts in the field and on what was
written about them. Mardani et al. (2016) talked about a systematic evaluation of strategies for making decisions in transportation systems that
take many factors into account.
2
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1.1. The motivation for developing DH𝒒-ROF Frank weighted power partitioned HM model

How to ensure efficient service quality and how to inspire individuals and businesses to engage in the decision-making process are crucial
questions for policymakers. For this aim, numerous models have been adopted, however, the most tremendous methodologies are MCDM
methodologies, such as, the ‘‘analytic hierarchy process (AHP)’’ and ‘‘best-worst method (BWM)’’. These methodologies have been applied in
order to specify the weights of the criteria in the decision process, however, the MCDM methodologies were combined with other methods to
determine the best alternative for the examined problem. Because of the multifaceted nature of modern challenges in decision-making, a single
‘‘decision-maker (DM)’’ cannot analyze all relevant information for all decision objectives. Thus, numerous decision-making challenges in the real
world necessitate ‘‘multicriteria group decision-making (MCGDM)’’.

DMs have difficulty describing the obscure and ambiguous attributes of the decision-making process, which is often complex and uncertain.
Consequently, the evaluation values of options offered by DMs are frequently marred by substantial ambiguity and uncertainties. Yager (2013, 2014)
suggested the PFS as an efficient technique for representing imprecision and uncertainty. As an expansion of IFSs, PFSs are much more effective and
ideal for handling complex fuzzy data. PFSs cannot manage circumstances in which the square sum of membership and non-membership degrees
exceeds one, which is their most significant deficiency. Yager (2016) presented a new idea, 𝑞-rung orthopair fuzzy sets, in order to successfully
manage such situations (𝑞-ROFSs). Please see Fig. 1 for further details. Saha et al. (2022) developed 𝑞-ROF improved power weighted aggregation
operators (AOs) and associated implementations in MCGDM issues. Mahmood et al. (2022) introduced Choquet-Frank AOs relying on 𝑞-ROF values
and related implementation in MCDM issues. After 𝑞-ROFSs were introduced, researchers began to look into their applications in several directions,
such as evaluating and emphasizing sustainable urban transport services (Deveci et al., 2022a), personal mobility in the metaverse with autonomous
vehicles (Deveci et al., 2022b), ‘‘a comprehensive model for socially responsible rehabilitation of mining sites’’ (Deveci et al., 2022c), ‘‘floating
offshore wind farm site selection in Norway’’ (Deveci et al., 2022d), ‘‘safe E-scooter operation alternative prioritization’’ (Deveci et al., 2022e), for
solving renewable energy source selection problems (Krishankumar et al., 2021), to solving green supplier selection problem (Krishankumar et al.,
2020), evaluation of renewable energy sources (Krishankumar et al., 2019).

In other terms, DMs frequently describe their decision data with reluctance, and they prefer to employ a collection of single values to represent
the ‘‘membership degree’’ and ‘‘non-membership degree’’. Consequently, Zhu et al. (2012) developed ‘‘dual hesitant fuzzy sets (DHFSs)’’, which
permit DMs to communicate their assessment data via a collection of possible membership values. Using the concepts of DHFS and 𝑞-ROFS, Xu
et al. (2018) came up with the concept of ‘‘dual hesitant 𝑞-ROF (DH𝑞-ROF) sets (DH𝑞-ROFS)’’. In their study, Naz et al. (2022) showed a numerical
imulation they made to help find the right medicine to stop COVID-19 epidemics. Akram et al. (2021) applied these sets to fuzzy graph theory.
evertheless, in many real-life decision-making difficulties, some scenarios in which the criteria interact with one another are frequently observed.
eliakov et al. (2007) characterized the ‘‘Heronian mean (HM)’’ operator, which has the advantageous characteristic of reflecting the correlation
f the aggregated variables, to deal with such cases. In numerous fuzzy contexts, the HM operator was effectively implemented.

The primary objective of this study is to develop a series of HM-based DH𝑞-ROF AOs and investigate some of their intriguing features. It is to
e mentioned here that a generalized distance measure has been presented for generating DMs’ power weights and attributes’ power weights. The
reated operators are then employed to address MCDM problems in DH𝑞-ROF settings using interactive criteria. In order to show the efficacy of
he suggested method, a real-world problem involving the evaluation of the quality of urban transport services in Budapest is studied and resolved.

.2. Contributions of this study

Due to the ever-increasing complexity of real-world decision-making scenarios, the following aspects must be addressed when developing an
ffective DH𝑞-ROF information aggregation tool to handle MCGDM problems:
1) An adverse effect is found on the aggregation result caused by some extreme attribute values provided by a biassed DM. To resolve that issue,
ager (2001) introduced the ‘‘power average (PA)’’ AO, which reduced the effect of unduly low and high arguments. PA reinforces the unreasonable
valuation values by calculating the support measures, and assigning them to produce different power weights. So, PA operators can be used as a
ood way to get rid of this kind of bias in the assessment process when things are not clear.
2) In practical MCGDM problems, the attributes are not always independent, i.e., interrelationships between attributes are often needed to be
onsidered. The AOs, having assumed that the arguments to be aggregated would have to be independent, cannot produce exact decision results.
eanwhile, there exist some novel aggregation operations, viz., ‘‘Bonferroni mean (BM)’’ (Bonferroni, 1950), HM (Beliakov et al., 2007), etc., which

an consider the correlation between input arguments. Yet, HM possesses more advantages than BM, as it ignores the calculation redundancy and
akes the correlation between an attribute and itself into account.
3) The preferences of DMs usually change dynamically according to their pessimistic or optimistic views towards an evaluated object. The required
Os for MCGDM must be sufficiently comprehensive and adaptable to capture all DMs’ preferences while aggregating evaluation values.

Frank’s 𝑡-norm and 𝑡-conorm (Frank, 1979), which are intriguing expansions of Lukasiewicz and probabilistic 𝑡-norm and 𝑡-conorm, are a class
f continuous triangular norms that are both comprehensive and adaptable. Due to the fact that the Frank 𝑡-norm and 𝑡-conorm incorporate a
arameter, they are more adaptable in the procedure of data integration and better suited to modeling logical decision-making situations.

Therefore, with the above discussions in mind, this paper is aimed at defining some Frank 𝑡-norm & 𝑡-conorm based DH𝑞-ROF PA AOs, viz.,
H𝑞-ROF Frank PA (DH𝑞-ROFFPA), DH𝑞-ROF Frank power weighted average (DH𝑞-ROFFPWA), DH𝑞-ROF Frank power geometric (DH𝑞-ROFFPG)
nd DH𝑞-ROF Frank power weighted geometric (DH𝑞-ROFFPWG) operators. Also, combining PA with HM operators, a series of AOs, viz., DH𝑞-ROF
rank power HM (DH𝑞-ROFFPHM) and DH𝑞-ROF Frank power weighted HM (DH𝑞-ROFFPWHM) operators, are introduced in order to develop an
CGDM approach.

.3. Organization of the study

In order to achieve the above objectives, this paper is organized as follows: Section 2 introduces some fundamental concepts related to DH𝑞-
OFSs. In Section 3, firstly, Frank 𝑡-norm & 𝑡-conorm based operational laws of the DH𝑞-ROFNs are defined, and then a generalized distance
easure for DH-ROFSs is established. Based on the new operational rules of DH𝑞-ROFNs and PA and HM operators, several AOs, viz., DH𝑞-ROFFPA,
H𝑞-ROFFPWA, DH𝑞-ROFFPHM and DH𝑞-ROFFPWHM; (geometric form) DH𝑞-ROFFPG, DH𝑞-ROFFPWG, DH𝑞-ROFFPGHM and DH𝑞-ROFFPWGHM
perators, are introduced, followed by a discussion of their characteristics and unique instances in Section 4. Based on these AOs, Section 5 develops
he DH𝑞-ROF Frank weighted power partitioned HM model. Section 6 defines and answers the research-based real-world decision-making challenge.
he ranking explanation and sensitivity analysis are covered in Section 7. In Section 8, comparisons are made between the proposed method and

ther pertinent methods to establish its quality. In Section 9, the conclusion and consequences of the planned study are presented.
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Fig. 1. Comparison of space ranges of IFSs, PFSs, and 𝑞-ROFSs.

. Preliminaries

In this section, the fundamental ideas of 𝑞-ROFS and DH𝑞-ROFS (Yager, 2013, 2014) are described briefly. Following this, a novel distance
easure for DH𝑞-ROFNs is created.

.1. 𝒒-ROFS

efinition 1 (Yager, 2016). Let 𝑋 be a universe of discourse. A 𝑞-ROFS, R on 𝑋 is represented by R =
{(

𝑥, 𝜇R (𝑥) , 𝜈R (𝑥)
)

|𝑥 ∈ 𝑋
}

, where
R ∶𝑋 → [0, 1] and 𝜈R ∶𝑋 → [0, 1] represent the membership and non-membership functions, respectively, to describe the degree of belongingness
f the element 𝑥 ∈ 𝑋 to the set R, meeting the requirement that

0 ≤
(

𝜇R (𝑥)
)𝑞 +

(

𝜈R (𝑥)
)𝑞 ≤ 1, 𝑞 ≥ 1.,

he formula for the degree of indeterminacy is

𝜋R (𝑥) =
[(

𝜇R (𝑥)
)𝑞 +

(

𝜈R (𝑥)
)𝑞 −

(

𝜇R (𝑥)
)𝑞 (𝜈R (𝑥)

)𝑞] 1
𝑞 .

For convenience, Yager (2016) designated
(

𝜇R (𝑥) , 𝜈R (𝑥)
)

as a 𝑞-ROFN and marked it as 𝑟 = (𝜇, 𝜈).

2.2. DH𝒒-ROFS

Based on the 𝑞-ROFSs (Yager, 2016) and DHFSs (Zhu et al., 2012), Xu et al. (2018) suggested the idea and fundamental operations of the
DH𝑞-ROFSs.

Definition 2 (Xu et al., 2018). Let 𝑋 be a fixed set. A DH𝑞-ROFS D̃ on 𝑋 is described as:

D̃ =
(⟨

𝑥, ℎ̃D̃ (𝑥) , �̃�D̃ (𝑥)
⟩

|𝑥 ∈ U
)

, (1)

where ℎ̃D̃ (𝑥) and �̃�D̃ (𝑥) are two sets of real numbers in [0, 1], reflecting the possible membership degrees, 𝛾 ∈ [0, 1], and non-membership degrees,
𝜂 ∈ [0, 1], respectively, of the element 𝑥 ∈ 𝑋 to the set D̃ fulfilling the conditions:

0 ≤
(

𝑚𝑎𝑥𝛾∈ℎ̃D̃(𝑥) {𝛾}
)𝑞

+
(

𝑚𝑎𝑥𝜂∈�̃�D̃(𝑥) {𝜂}
)𝑞

≤ 1. (2)

The degree of indeterminacy is given as 𝜋d̃ =
(

1 − 1
|ℎ̃|

∑

𝛾∈ℎ̃ 𝛾
𝑞 − 1

|�̃�|
∑

𝜂∈�̃� 𝜂
𝑞
)

1
𝑞 .

For convenience, Xu et al. (2018) called the pair D̃ =
(

ℎ̃ 𝑥 , �̃� 𝑥
)

as a DH𝑞-ROF number (DH𝑞-ROFN) denoted by d̃ =
(

ℎ̃, �̃�
)

.
D̃ ( ) D̃ ( )

4
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H
m
o

2

D
𝑃

Definition 3 (Xu et al., 2018). Let d̃ =
(

ℎ̃, �̃�
)

be a DH𝑞-ROFN. Then the score function 𝑆
(

d̃
)

of d̃, given by

𝑆
(

d̃
)

= 1
2

⎛

⎜

⎜

⎝

1 + 1
|

|

ℎ̃|
|

∑

𝛾∈ℎ̃

𝛾𝑞 − 1
|�̃�|

∑

𝜂∈�̃�
𝜂𝑞
⎞

⎟

⎟

⎠

, (3)

and, the accuracy function 𝐴
(

d̃
)

of d̃, is given by

𝐴
(

d̃
)

=
⎛

⎜

⎜

⎝

1
|

|

ℎ̃|
|

∑

𝛾∈ℎ̃

𝛾𝑞 + 1
|�̃�|

∑

𝜂∈�̃�
𝜂𝑞
⎞

⎟

⎟

⎠

, (4)

where |

|

ℎ̃|
|

and |�̃�| are the number of elements in ℎ̃ and �̃�, respectively.

The following is how DHq-ROFNs are ordered:

Definition 4 (Xu et al., 2018). Let d̃𝑖 =
(

ℎ̃𝑖, �̃�𝑖
)

(𝑖 = 1, 2) be any two DH𝑞-ROFNs,

(i) If 𝑆
(

d̃1
)

> 𝑆
(

d̃2
)

, then d̃1 is superior to d̃2, denoted by d̃1 ≻ d̃2;
(ii) If 𝑆

(

d̃1
)

= 𝑆
(

d̃2
)

, then

• If 𝐴
(

d̃1
)

> 𝐴
(

d̃2
)

, then d̃1 ≻ d̃2;
• If 𝐴

(

d̃1
)

= 𝐴
(

d̃2
)

, then d̃1 is equivalent to d̃2, denoted by d̃1 ≈ d̃2.

2.3. Frank operation

Frank operations (Frank, 1979) include the ‘‘Frank product and Frank sum’’, which are examples of ‘‘triangular norms and triangular conforms’’,
respectively.

‘‘Frank product ⊗𝐹 is a 𝑡-norm and Frank sum ⊕𝐹 is a 𝑡-conorm’’, both of which are classified as follows (𝜉 > 1):

𝑥 ⊕𝐹 𝑦 = 1 − log𝜉

(

1 +

(

𝜉1−𝑥 − 1
) (

𝜉1−𝑦 − 1
)

𝜉 − 1

)

∀ (𝑥, 𝑦) ∈ [0, 1] × [0, 1] (5)

𝑥 ⊗𝐹 𝑦 = log𝜉

(

1 +
(𝜉𝑥 − 1) (𝜉𝑦 − 1)

𝜉 − 1

)

∀ (𝑥, 𝑦) ∈ [0, 1] × [0, 1] (6)

We can reasonably claim some intriguing results using limit theory:

(i) ‘‘If 𝜉 → 1, then 𝑥⊕𝐹 𝑦→ 𝑥+ 𝑦− 𝑥𝑦, 𝑥⊗𝐹 𝑦 → 𝑥𝑦, the Frank product and Frank sum are simplified to the probabilistic product (product) and
probabilistic sum’’;

(ii) ‘‘If 𝜉 → ∞, then 𝑥 ⊕𝐹 𝑦 → min (𝑥 + 𝑦, 1), 𝑥 ⊗𝐹 𝑦 → max (0, 𝑥 + 𝑦 − 1), the Frank product and Frank sum are simplified to the Lukasiewicz
product and Lukasiewicz sum, respectively’’.

2.4. HM operator

Definition 5 (Beliakov et al., 2007). Let 𝑎𝑖 (𝑖 = 1, 2,… , 𝑛) be a collection of nonnegative numbers. If

𝐻𝑀
(

𝑎1, 𝑎2,… , 𝑎𝑛
)

= 2
𝑛 (𝑛 + 1)

𝑛
∑

𝑖,𝑗=1
𝑖≤𝑗

√

𝑎𝑖𝑎𝑗 ,

then 𝐻𝑀
(

𝑎1, 𝑎2,… , 𝑎𝑛
)

is called the Heronian mean (HM).

By implementing two parameters 𝜓 and 𝜙, Sýkora (2009) developed the basic HM to a more generalized version:

𝐻𝑀𝜓,𝜙
𝜔

(

𝑎1, 𝑎2,… , 𝑎𝑛
)

=

⎛

⎜

⎜

⎜

⎝

2
𝑛 (𝑛 + 1)

𝑛
∑

𝑖,𝑗=1
𝑖≤𝑗

(

𝜔𝑖𝑎𝑖
)𝜓 (

𝜔𝑗𝑎𝑗
)𝜙

⎞

⎟

⎟

⎟

⎠

1
𝜓+𝜙

.

M can take into account the interdependencies between any two input variables. In many circumstances, input statements can be partitioned into
ultiple unique kinds, where the members of the same type are interdependent, and the members of the other kinds are independent. The PHM

perator, given this context, is suggested by Liu et al. (2018).

.5. PHM operator

efinition 6 (Liu et al., 2018). Let
(

𝑎1, 𝑎2,… , 𝑎𝑛
)

be a collection of input arguments, which is partitioned into 𝛿 distinct sorts 𝑃1, 𝑃2,… , 𝑃𝛿 , where

𝑡 =
{

𝑎𝑡1 , 𝑎𝑡2 ,… , 𝑎𝑡
|𝑃𝑡|

}

(𝑡 = 1, 2,… , 𝛿), ∑𝛿
𝑡=1

|

|

𝑃𝑡|| = 𝑛 and |

|

𝑃𝑡|| denotes the cardinality of 𝑃𝑡. For any, 𝜓, 𝜙 ≥ 0, the PHM operator is presented as
follows:

𝑃𝐻𝑀𝜓,𝜑 (𝑎1, 𝑎2,… , 𝑎𝑛
)

= 1
𝛿

⎛

⎜

⎜

⎜

𝛿
∑

𝑡=1

⎛

⎜

⎜

⎜

2
|

|

𝑃𝑡||
(

|

|

𝑃𝑡|| + 1
)

|𝑃𝑡|
∑

𝑖,𝑗=1

𝑎𝑡𝑖
𝜓𝑎𝑡𝑗

𝜙

⎞

⎟

⎟

⎟

⎞

⎟

⎟

⎟

1
𝜓+𝜑

(7)
⎝ ⎝ 𝑖≤𝑗 ⎠⎠

5
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2.6. The power average operator

The power average (PA), which was first made by Yager (2001), is an important AO that helps reduce the negative effects of decision-makers
presenting too many or too few arguments. The conventional PA can accumulate a set of discrete values whose weighting vectors rely solely on
the input data, and its definition is described in the following:

Definition 7 (Yager, 2001). Let
(

𝑎1, 𝑎2,… , 𝑎𝑛
)

be the set of evaluated values, the PA operator is the mapping defined by

𝑃𝐴
(

𝑎1, 𝑎2,… , 𝑎𝑛
)

=
∑

(

1 + 𝑇
(

𝑎𝑖
))

∑𝑛
𝑘=1

(

1 + 𝑇
(

𝑎𝑘
))𝑎𝑖,

where 𝑇
(

𝑎𝑖
)

=
∑𝑛

𝑗=1
𝑖≠𝑗

𝑆𝑢𝑝
(

𝑎𝑖, 𝑎𝑗
)

, 𝑆𝑢𝑝
(

𝑎𝑖, 𝑎𝑗
)

= 1 − 𝑑
(

𝑎𝑖, 𝑎𝑗
)

and 𝑆𝑢𝑝
(

𝑎𝑖, 𝑎𝑗
)

is the support degree for 𝑎 from 𝑏, which satisfies the following three

properties:
(1) 𝑆𝑢𝑝

(

𝑎𝑖, 𝑎𝑗
)

∈ [0, 1];
(2) 𝑆𝑢𝑝

(

𝑎𝑖, 𝑎𝑗
)

= 𝑆𝑢𝑝
(

𝑎𝑗 , 𝑎𝑖
)

;
(3) If

(

𝑎𝑖, 𝑎𝑗
)

≤ 𝑑
(

𝑎𝑙 , 𝑎𝑟
)

, then 𝑆𝑢𝑝
(

𝑎𝑖, 𝑎𝑗
)

≥ 𝑆𝑢𝑝
(

𝑎𝑙 , 𝑎𝑟
)

, where 𝑑
(

𝑎𝑖, 𝑎𝑗
)

represents the distance between 𝑎𝑖 and 𝑎𝑗 .

3. Frank 𝒕-norm & 𝒕-conorm operations on DH𝒒-ROFNs

Frank 𝑡-norms and 𝑡-conorms, which play an important role in the aggregation of fuzzy numbers, are utilized to resolve a range of decision-
making challenges. Many operations that are founded on Frank t-conorms and t-norms in the DHq-ROF context are presented in this section. These
operations are specified by the following:

Definition 8. Let d̃𝑖 =
⟨

ℎ̃𝑖, �̃�𝑖
⟩

(𝑖 = 1, 2), d̃ =
⟨

ℎ̃, �̃�
⟩

be any three DH𝑞-ROFNs, and 𝜆 > 0; then, based on Frank’s 𝑡-conorms and 𝑡-norms, we derive
the following operational rules for the DH𝑞-ROFNs (𝜁 > 1 and 𝜆 > 0):

(1) d̃1 ⊕𝐹 d̃2 =

⟨

⋃

𝛾𝑖∈ℎ̃𝑖 ,𝑖=1,2

⎧

⎪

⎨

⎪

⎩

(

1 − log𝜉

(

1 +

(

𝜉1−𝛾1
𝑞
−1

)(

𝜉1−𝛾2
𝑞
−1

)

𝜉−1

))
1
𝑞
⎫

⎪

⎬

⎪

⎭

,
⋃

𝜂𝑖∈�̃�𝑖 ,𝑖=1,2

⎧

⎪

⎨

⎪

⎩

(

log𝜉

(

1 +

(

𝜉𝜂1
𝑞
−1

)(

𝜉𝜂2
𝑞
−1

)

𝜉−1

))
1
𝑞
⎫

⎪

⎬

⎪

⎭

⟩

;

(2) d̃1 ⊗𝐹 d̃2 =

⟨

⋃

𝛾𝑖∈ℎ̃𝑖 ,𝑖=1,2

⎧

⎪

⎨

⎪

⎩

(

log𝜉

(

1 +

(

𝜉𝛾1
𝑞
−1

)(

𝜉𝛾2
𝑞
−1

)

𝜉−1

))
1
𝑞
⎫

⎪

⎬

⎪

⎭

,
⋃

𝜂𝑖∈�̃�𝑖 ,𝑖=1,2

⎧

⎪

⎨

⎪

⎩

(

1 − log𝜉

(

1 +

(

𝜉1−𝜂1
𝑞
−1

)(

𝜉1−𝜂2
𝑞
−1

)

𝜉−1

))
1
𝑞
⎫

⎪

⎬

⎪

⎭

⟩

;

(3) 𝜆 ⊙𝐹 d̃ =

⟨

⋃

𝛾∈ℎ̃

⎧

⎪

⎨

⎪

⎩

(

1 − log𝜉

(

1 +

(

𝜉1−𝛾𝑞−1
)𝜆

(𝜉−1)𝜆−1

))

1
𝑞 ⎫
⎪

⎬

⎪

⎭

,
⋃

𝜂∈�̃�

⎧

⎪

⎨

⎪

⎩

(

log𝜉

(

1 +

(

𝜉𝜂𝑞−1
)𝜆

(𝜉−1)𝜆−1

))

1
𝑞 ⎫
⎪

⎬

⎪

⎭

⟩

;

(4) d̃𝜆 =

⟨

⋃

𝛾∈ℎ̃

⎧

⎪

⎨

⎪

⎩

(

log𝜉

(

1 +

(

𝜉𝛾𝑞−1
)𝜆

(𝜉−1)𝜆−1

))

1
𝑞 ⎫
⎪

⎬

⎪

⎭

,
⋃

𝜂∈�̃�

⎧

⎪

⎨

⎪

⎩

(

1 − log𝜉

(

1 +

(

𝜉1−𝜂𝑞−1
)𝜆

(𝜉−1)𝜆−1

))

1
𝑞 ⎫
⎪

⎬

⎪

⎭

⟩

.

4. Development of DH𝒒ROF AOs

In this section, the power AOs are modified to accept DH𝑞-ROF data as input. After presenting the idea of distance between DH𝑞-ROFNs, we
uggest several novel distance measures for DH𝑞-ROFNs.

.1. Distance measure of DH𝒒-ROFNs

Let d̃1 =
⟨

ℎ̃1, �̃�1
⟩

and d̃2 =
⟨

ℎ̃2, �̃�2
⟩

be any two DH𝑞-ROFNs, then the distance measure between d̃1 and d̃2 is defined as 𝑑
(

d̃1, d̃2
)

, which satisfies
the following properties:

(P1) 0 ≤ 𝑑
(

d̃1, d̃2
)

≤ 1;
(P2) 𝑑

(

d̃1, d̃2
)

= 0 if and only if d̃1 = d̃2;
(P3) 𝑑

(

d̃1, d̃2
)

= 𝑑
(

d̃2, d̃1
)

(P4) Let d̃3 be any DH𝑞-ROFN, if d̃1 ≤ d̃2 ≤ d̃3, then 𝑑
(

d̃1, d̃2
)

≤ 𝑑
(

d̃1, d̃3
)

and 𝑑
(

d̃2, d̃3
)

≤ 𝑑
(

d̃1, d̃3
)

.

It should be noted that the number of entries in various DH𝑞-ROFNs may vary. If we define the number of entries in ℎ (𝑥) as 𝑙ℎ (𝑑 (𝑥)) = #ℎ and the
number of entries in 𝑔 (𝑥) as 𝑙𝑔 (𝑑 (𝑥)) = #𝑔, then we may write 𝑙 (𝑑 (𝑥)) =

(

𝑙ℎ (𝑑 (𝑥)) , 𝑙𝑔 (𝑑 (𝑥))
)

= (#ℎ, #𝑔). Let two DH𝑞-ROFNs d̃1 and d̃2, in most cases,
𝑙
(

d̃1
)

≠ 𝑙
(

d̃2
)

, i.e., 𝑙ℎ
(

d̃1
)

≠ 𝑙ℎ
(

d̃2
)

and 𝑙𝑔
(

d̃1
)

≠ 𝑙𝑔
(

d̃2
)

. For convenience, let 𝑙 = 𝑙ℎ+𝑙𝑔 , where 𝑙ℎ = max
{

𝑙ℎ
(

d̃1
)

, 𝑙ℎ
(

d̃2
)}

; 𝑙𝑔 = max
{

𝑙𝑔
(

d̃1
)

, 𝑙𝑔
(

d̃2
)}

.
When comparing the two, the smaller one needs to be prolonged until they are both the same length. Repeating the same value several times is
the greatest way to lengthen the shorter one. The decision-makers’ preferences for risk play a major role in determining this value. Pessimists
anticipate negative results and may contribute the least, whilst optimists anticipate beneficial results and may contribute the most. For efficient
functioning, we assume that two DH𝑞-ROFNs d̃1 and d̃2 have the same length

(

𝑙ℎ, 𝑙𝑔
)

. There is also a possibility that the values in a DH𝑞-ROFN are
not in the correct sequence; nonetheless, we are free to rearrange them in any order we see fit. For a DH𝑞-ROFN d̃, let 𝜎 ∶ (1, 2,… , 𝑛) → (1, 2,… , 𝑛)

be a permutation that satisfies: 𝛾[d̃] ≤ 𝛾[d̃] , 𝛾[d̃] ∈ ℎ[d̃], 𝑖 = 1, 2,… , 𝑙
(

d̃
)

; 𝜂[d̃] ≤ 𝜂[d̃] , 𝜂[d̃] ∈ 𝑔[d̃], 𝑖 = 1, 2,… , 𝑙
(

d̃
)

.
𝜎(𝑖) 𝜎(𝑖+1) ℎ 𝜎(𝑖) 𝜎(𝑖+1) 𝑔

6
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Definition 9. Let two DH𝑞-ROFNs d̃1 =
⟨

ℎ̃1, �̃�1
⟩

and d̃2 =
⟨

ℎ̃2, �̃�2
⟩

. Then the distance between d̃1 and d̃2, denoted as 𝑑
(

d̃1, d̃2
)

, is defined as follows:

𝑑
(

d̃1, d̃2
)

=
⎛

⎜

⎜

⎝

1
𝑙

⎛

⎜

⎜

⎝

𝑙ℎ
∑

𝑖=1

|

|

|

|

(

𝛾[d̃1]𝜎(𝑖)

)𝑞
−
(

𝛾[d̃2]𝜎(𝑖)

)𝑞
|

|

|

|

𝜀
+

𝑙𝑔
∑

𝑖=1

|

|

|

|

(

𝜂[d̃1]𝜎(𝑖)

)𝑞
−
(

𝜂[d̃2]𝜎(𝑖)

)𝑞
|

|

|

|

𝜀⎞
⎟

⎟

⎠

⎞

⎟

⎟

⎠

1
𝜀

, with 𝜀 > 0. (8)

is referred to as the generalized DH𝑞-ROF distance between d̃1 and d̃2.

The following are two particular cases of the generalized DH𝑞-ROF distance 𝑑
(

d̃1, d̃2
)

:
1. If 𝜀 = 1, then 𝑑

(

d̃1, d̃2
)

is transformed to a DH𝑞-ROF Hamming distance

𝑑𝐻
(

�̃�1, �̃�2
)

= 1
𝑙

⎛

⎜

⎜

⎝

𝑙ℎ
∑

𝑖=1

|

|

|

|

(

𝛾[d̃1]𝜎(𝑖)

)𝑞
−
(

𝛾[d̃2]𝜎(𝑖)

)𝑞
|

|

|

|

+
𝑙𝑔
∑

𝑖=1

|

|

|

|

(

𝜂[d̃1]𝜎(𝑖)

)𝑞
−
(

𝜂[d̃2]𝜎(𝑖)

)𝑞
|

|

|

|

⎞

⎟

⎟

⎠

2. if 𝜀 = 2, then 𝑑
(

d̃1, d̃2
)

is transformed to a DH𝑞-ROF Euclidean distance

𝑑𝐸
(

d̃1, d̃2
)

=
⎛

⎜

⎜

⎝

1
𝑙

⎛

⎜

⎜

⎝

𝑙ℎ
∑

𝑖=1

|

|

|

|

(

𝛾[d̃1]𝜎(𝑖)

)𝑞
−
(

𝛾[d̃2]𝜎(𝑖)

)𝑞
|

|

|

|

2
+

𝑙𝑔
∑

𝑖=1

|

|

|

|

(

𝜂[d̃1]𝜎(𝑖)

)𝑞
−
(

𝜂[d̃2]𝜎(𝑖)

)𝑞
|

|

|

|

2⎞
⎟

⎟

⎠

⎞

⎟

⎟

⎠

1
2

Next, we shall show that the developed distance measures satisfy axiom definition of distance measure.

Proposition 1. Let d̃1, d̃2 and d̃3 be any three DH𝑞-ROFNs, then 𝑑
(

d̃1, d̃2
)

is the distance measure.

Proof. We prove 𝑑
(

d̃1, d̃2
)

satisfy axioms (P1)–(P4).
(P1) Let d̃1 and d̃2 be two DH𝑞-ROFNs, then

|

|

|

|

(

𝛾[d̃1]𝜎(𝑖)

)𝑞
−
(

𝛾[d̃2]𝜎(𝑖)

)𝑞
|

|

|

|

𝜀
≥ 0 and

|

|

|

|

(

𝜂[d̃1]𝜎(𝑖)

)𝑞
−
(

𝜂[d̃2]𝜎(𝑖)

)𝑞
|

|

|

|

𝜀
≥ 0

⇒

𝑙ℎ
∑

𝑖=1

|

|

|

|

(

𝛾[d̃1]𝜎(𝑖)

)𝑞
−
(

𝛾[d̃2]𝜎(𝑖)

)𝑞
|

|

|

|

𝜀
≥ 0 and

𝑙𝑔
∑

𝑖=1

|

|

|

|

(

𝜂[d̃1]𝜎(𝑖)

)𝑞
−
(

𝜂[d̃2]𝜎(𝑖)

)𝑞
|

|

|

|

𝜀
≥ 0

⇒
⎛

⎜

⎜

⎝

1
𝑙

⎛

⎜

⎜

⎝

𝑙ℎ
∑

𝑖=1

|

|

|

|

(

𝛾[d̃1]𝜎(𝑖)

)𝑞
−
(

𝛾[d̃2]𝜎(𝑖)

)𝑞
|

|

|

|

𝜀
+

𝑙𝑔
∑

𝑖=1

|

|

|

|

(

𝜂[d̃1]𝜎(𝑖)

)𝑞
−
(

𝜂[d̃2]𝜎(𝑖)

)𝑞
|

|

|

|

𝜀⎞
⎟

⎟

⎠

⎞

⎟

⎟

⎠

1
𝜀

≥ 0

⇒ 𝑑
(

d̃1, d̃2
)

≥ 0.

Again from the definition of DH𝑞-ROFS, we have
|

|

|

|

(

𝛾[d̃1]𝜎(𝑖)

)𝑞
−
(

𝛾[d̃2]𝜎(𝑖)

)𝑞
|

|

|

|

𝜀
≤ 1 and

|

|

|

|

(

𝜂[d̃1]𝜎(𝑖)

)𝑞
−
(

𝜂[d̃2]𝜎(𝑖)

)𝑞
|

|

|

|

𝜀
≤ 1

⇒
⎛

⎜

⎜

⎝

1
𝑙

⎛

⎜

⎜

⎝

𝑙ℎ
∑

𝑖=1

|

|

|

|

(

𝛾[d̃1]𝜎(𝑖)

)𝑞
−
(

𝛾[d̃2]𝜎(𝑖)

)𝑞
|

|

|

|

𝜀
+

𝑙𝑔
∑

𝑖=1

|

|

|

|

(

𝜂[d̃1]𝜎(𝑖)

)𝑞
−
(

𝜂[d̃2]𝜎(𝑖)

)𝑞
|

|

|

|

𝜀⎞
⎟

⎟

⎠

⎞

⎟

⎟

⎠

1
𝜀

≤ 1

⇒ 𝑑
(

d̃1, d̃2
)

≤ 1

Hence, 0 ≤ 𝑑
(

d̃1, d̃2
)

≤ 1.
(P2)

𝑑
(

d̃1, d̃2
)

=
⎛

⎜

⎜

⎝

1
𝑙

⎛

⎜

⎜

⎝

𝑙ℎ
∑

𝑖=1

|

|

|

|

(

𝛾[d̃1]𝜎(𝑖)

)𝑞
−
(

𝛾[d̃2]𝜎(𝑖)

)𝑞
|

|

|

|

𝜀
+

𝑙𝑔
∑

𝑖=1

|

|

|

|

(

𝜂[d̃1]𝜎(𝑖)

)𝑞
−
(

𝜂[d̃2]𝜎(𝑖)

)𝑞
|

|

|

|

𝜀⎞
⎟

⎟

⎠

⎞

⎟

⎟

⎠

1
𝜀

=
⎛

⎜

⎜

⎝

1
𝑙

⎛

⎜

⎜

⎝

𝑙ℎ
∑

𝑖=1

|

|

|

|

(

𝛾[d̃2]𝜎(𝑖)

)𝑞
−
(

𝛾[d̃1]𝜎(𝑖)

)𝑞
|

|

|

|

𝜀
+

𝑙𝑔
∑

𝑖=1

|

|

|

|

(

𝜂[d̃2]𝜎(𝑖)

)𝑞
−
(

𝜂[d̃1]𝜎(𝑖)

)𝑞
|

|

|

|

𝜀⎞
⎟

⎟

⎠

⎞

⎟

⎟

⎠

1
𝜀

= 𝑑
(

d̃2, d̃1
)

.

(P3) Let d̃1 = d̃2 ⇔ 𝛾[d̃1]𝜎(𝑖) ≤ 𝛾[d̃2]𝜎(𝑖) and 𝜂[d̃1]𝜎(𝑖) ≤ 𝜂[d̃2]𝜎(𝑖)

⇔
⎛

⎜

⎜

⎝

1
𝑙

⎛

⎜

⎜

⎝

𝑙ℎ
∑

𝑖=1

|

|

|

|

(

𝛾[d̃1]𝜎(𝑖)

)𝑞
−
(

𝛾[d̃2]𝜎(𝑖)

)𝑞
|

|

|

|

𝜀
+

𝑙𝑔
∑

𝑖=1

|

|

|

|

(

𝜂[d̃1]𝜎(𝑖)

)𝑞
−
(

𝜂[d̃2]𝜎(𝑖)

)𝑞
|

|

|

|

𝜀⎞
⎟

⎟

⎠

⎞

⎟

⎟

⎠

1
𝜀

= 0

𝑑
(

d̃2, d̃1
)

= 0

(P4) Let d̃1 ≤ d̃2 ≤ d̃3 ⇒ 𝑆
(

d̃1
)

≤ 𝑆
(

d̃2
)

≤ 𝑆
(

d̃3
)

⇒
1
2

⎛

⎜

⎜

1 + 1
𝑙ℎ̃

∑

(

𝛾[d̃1]
)𝑞

− 1
𝑙�̃�

∑

(

𝜂[d̃1]
)𝑞⎞

⎟

⎟

≤ 1
2

⎛

⎜

⎜

1 + 1
𝑙ℎ̃

∑

(

𝛾[d̃2]
)𝑞

− 1
𝑙�̃�

∑

(

𝜂[d̃2]
)𝑞⎞

⎟

⎟

≤

⎝

1 𝛾∈ℎ̃ 1 𝜂∈�̃�
⎠ ⎝

2 𝛾∈ℎ̃ 2 𝜂∈�̃�
⎠

7
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E
w
a

1
2

⎛

⎜

⎜

⎝

1 + 1
𝑙ℎ̃3

∑

𝛾∈ℎ̃

(

𝛾 ≤[d̃3]
)𝑞

− 1
𝑙�̃�3

∑

𝜂∈�̃�

(

𝜂[d̃3]
)𝑞⎞

⎟

⎟

⎠

⇒
1
𝑙ℎ̃1

∑

𝛾∈ℎ̃

(

𝛾[d̃1]
)𝑞

− 1
𝑙�̃�1

∑

𝜂∈�̃�

(

𝜂[d̃1]
)𝑞

≤ 1
𝑙ℎ̃2

∑

𝛾∈ℎ̃

(

𝛾[d̃2]
)𝑞

− 1
𝑙�̃�2

∑

𝜂∈�̃�

(

𝜂[d̃2]
)𝑞

≤

1
𝑙ℎ̃3

∑

𝛾∈ℎ̃

(

𝛾[d̃3]
)𝑞

− 1
𝑙�̃�3

∑

𝜂∈�̃�

(

𝜂[d̃3]
)𝑞

− 1
𝑙ℎ̃1

∑

𝛾[d̃1]∈ℎ̃1

(

𝛾[d̃1]
)𝑞

+ 1
𝑙ℎ̃2

∑

𝛾∈ℎ̃

(

𝛾[d̃2]
)𝑞

+ 1
𝑙�̃�1

∑

𝜂[d̃1]∈�̃�1

(

𝜂[d̃1]
)𝑞

− 1
𝑙�̃�2

∑

𝜂∈�̃�

(

𝜂[d̃2]
)𝑞

≤

− 1
𝑙ℎ̃1

∑

𝛾[d̃1]∈ℎ̃1

(

𝛾[d̃1]
)𝑞

+ 1
𝑙ℎ̃3

∑

𝛾∈ℎ̃

(

𝛾[d̃3]
)𝑞

+ 1
𝑙�̃�1

∑

𝜂[d̃1]∈�̃�1

(

𝜂[d̃1]
)𝑞

− 1
𝑙�̃�3

∑

𝜂∈�̃�

(

𝜂[d̃3]
)𝑞

⇒
⎛

⎜

⎜

⎝

1
𝑙d̃1d̃2

⎛

⎜

⎜

⎝

𝑙ℎ
∑

𝑖=1

|

|

|

|

(

𝛾[d̃1]𝜎(𝑖)

)𝑞
−
(

𝛾[d̃2]𝜎(𝑖)

)𝑞
|

|

|

|

𝜀
+

𝑙𝑔
∑

𝑖=1

|

|

|

|

(

𝜂[d̃1]𝜎(𝑖)

)𝑞
−
(

𝜂[d̃2]𝜎(𝑖)

)𝑞
|

|

|

|

𝜀⎞
⎟

⎟

⎠

⎞

⎟

⎟

⎠

1
𝜀

≤

⎛

⎜

⎜

⎝

1
𝑙d̃1d̃3

⎛

⎜

⎜

⎝

𝑙ℎ
∑

𝑖=1

|

|

|

|

(

𝛾[d̃1]𝜎(𝑖)

)𝑞
−
(

𝛾[d̃3]𝜎(𝑖)

)𝑞
|

|

|

|

𝜀
+

𝑙𝑔
∑

𝑖=1

|

|

|

|

(

𝜂[d̃1]𝜎(𝑖)

)𝑞
−
(

𝜂[d̃3]𝜎(𝑖)

)𝑞
|

|

|

|

𝜀⎞
⎟

⎟

⎠

⎞

⎟

⎟

⎠

1
𝜀

⇒ 𝑑
(

d̃1, d̃2
)

≤ 𝑑
(

d̃1, d̃3
)

.

Similarly, we can prove 𝑑
(

d̃2, d̃3
)

≤ 𝑑
(

d̃1, d̃3
)

.
Hence, 𝑑

(

d̃1, d̃2
)

is a distance measure.

4.2. DH𝒒-ROFFPWA operator

In this subsection, we apply the PA into DH𝑞-ROFSs and present the DH𝑞-ROFFPWA operator.

Definition 10. Let d̃𝑖 =
⟨

ℎ̃𝑖, �̃�𝑖
⟩

(𝑖 = 1, 2,… , 𝑛) be a collection of DH𝑞-ROFNs. Then the DH𝑞-ROFFPWA operator is given as follows:

𝐷𝐻𝑞 − 𝑅𝑂𝐹𝐹𝑃𝑊 𝐴
(

d̃1, d̃2,… , d̃𝑛
)

= ⊕𝐹
𝑛
𝑖=1

(

𝑤𝑖
(

1 + 𝑇
(

d̃𝑖
))

∑𝑛
𝑘=1𝑤𝑘

(

1 + 𝑇
(

d̃𝑘
)) d̃𝑖

)

=

⟨

⋃

𝛾𝑖∈ℎ̃𝑖

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎜

⎝

1 −
log

(

1 +
∏𝑛

𝑖=1
(

𝜉1−𝛾𝑖𝑞 − 1
)𝛺𝑖

)

log 𝜉

⎞

⎟

⎟

⎟

⎠

1∕𝑞
⎫

⎪

⎬

⎪

⎭

,
⋃

𝜂𝑖∈�̃�𝑖

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎜

⎝

log
(

1 +
∏𝑛

𝑖=1
(

𝜉𝜂𝑖𝑞 − 1
)𝛺𝑖

)

log 𝜉

⎞

⎟

⎟

⎟

⎠

1∕𝑞
⎫

⎪

⎬

⎪

⎭

⟩

(9)

where 𝛺𝑖 =
𝑤𝑖(1+𝑇 (d̃𝑖))

∑𝑛
𝑘=1 𝑤𝑘(1+𝑇 (d̃𝑘))

, and 𝑇
(

d̃𝑖
)

=
∑𝑛

𝑗=1
𝑗≠𝑖

𝑆𝑢𝑝
(

d̃𝑖, d̃𝑗
)

.

To illustrate the applicability of the preceding theorem, the accompanying illustration is examined.

xample 1. Let 𝑃 = {⟨{0.5, 0.6, 0.7} , {0.2, 0.3}⟩ , ⟨{0.7, 0.9} , {0.3, 0.4}⟩ , ⟨{0.5, 0.75} , {0.4, 0.5}⟩} be a set of DH𝑞-ROFNs, which contains three elements
ith their corresponding weights 0.25, 0.35 and 0.4, respectively. Now utilize the proposed DH𝑞-ROFFPWA operator to aggregate those three input
rguments of 𝑃 as follows (suppose 𝑞 = 3, 𝜉 = 2):

Let the aggregated value of the elements contained in 𝑃 is denoted by �̃�. Thus

𝐷𝐻𝑞 − 𝑅𝑂𝐹𝐹𝑃𝑊 𝐴
(

d̃1, d̃2, d̃3
)

= ⊕𝐹
3
𝑖=1

(

𝑤𝑖
(

1 + 𝑇
(

d̃𝑖
))

∑3
𝑘=1𝑤𝑘

(

1 + 𝑇
(

d̃𝑘
))

d̃𝑖

)

=

⟨

⋃

𝛾𝑖∈ℎ̃𝑖

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎛

⎜

⎜

⎜

⎜

⎝

1 −
log

(

1 +
∏3

𝑖=1

(

21−𝛾𝑖3 − 1
)𝛺𝑖

)

log 2

⎞

⎟

⎟

⎟

⎟

⎠

1∕3
⎫

⎪

⎪

⎬

⎪

⎪

⎭

,
⋃

𝜂𝑖∈�̃�𝑖

⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎜

⎜

⎝

log
(

1 +
∏3

𝑖=1
(

2𝜂𝑖𝑞 − 1
)𝛺𝑖

)

log 2

⎞

⎟

⎟

⎟

⎠

1∕3
⎫

⎪

⎬

⎪

⎭

⟩

=
⟨

{0.5752, 0.6796, 0.6816, 0.7682, 0.5986, 0.6992, 0.7011, 0.7841, 0.6251, 0.7214, 0.7232, 0.8020} ,
{0.3065, 0.3379, 0.3379, 0.3722, 0.3384, 0.3727, 0.3728, 0.4101}

⟩

.

4.3. DH𝒒-ROF Frank weighted power partitioned HM AOs

Definition 11. Let d̃𝑖 =
⟨

ℎ̃𝑖, �̃�𝑖
⟩

(𝑖 = 1, 2,… , 𝑛) be a collection of DH𝑞-ROFNs that is partitioned into 𝛿 distinct sorts 𝑃1, 𝑃2,… , 𝑃𝛿 , where
𝑃𝑡 =

{

d̃𝑡1 , d̃𝑡2 ,… , d̃𝑡
|𝑃𝑡|

}

(𝑡 = 1, 2,… , 𝛿), ∑𝛿
𝑡=1

|

|

𝑃𝑡|| = 𝑛 and |

|

𝑃𝑡|| denotes the cardinality of 𝑃𝑡. 𝑆𝑢𝑝
(

d̃𝑖, d̃𝑗
)

= 1 − 𝑑
(

d̃𝑖, d̃𝑗
)

is the degree of support
for d̃𝑖 from d̃𝑗 , where 𝑑

(

d̃𝑖, d̃𝑗
)

is the distance between d̃𝑖 and d̃𝑗 . 𝑆𝑢𝑝
(

d̃𝑖, d̃𝑗
)

is satisfy (1) 𝑆𝑢𝑝
(

d̃𝑖, d̃𝑗
)

∈ [0, 1]; (2) 𝑆𝑢𝑝
(

d̃𝑖, d̃𝑗
)

= 𝑆𝑢𝑝
(

d̃𝑗 , d̃𝑖
)

;
(3) 𝑆𝑢𝑝

(

d̃𝑖, d̃𝑗
)

≥ 𝑆𝑢𝑝
(

d̃′𝑖 , d̃
′
𝑗

)

if |

|

|

d̃′𝑖 − d̃′𝑗
|

|

|

< |

|

|

d̃𝑖 − d̃𝑗
|

|

|

. 𝑤 =
(

𝑤1, 𝑤2,… , 𝑤𝑛
)𝑇 be the weights of d̃𝑖 (𝑖 = 1, 2,… , 𝑛), 𝑤𝑖 ∈ [0, 1], ∑𝑛

𝑖=1𝑤𝑖 = 1, and
𝑇
(

d̃𝑖
)

=
∑𝑛
𝑗=1,𝑖≠𝑗 𝑆𝑢𝑝

(

d̃𝑖, d̃𝑗
)

. Clearly, the support (Sup) measure is fundamentally an index of similarity. The greater the similarity and proximity

between two values, the greater their mutual support.
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t

w

T
(
b

The DH𝑞-ROF Frank weighted power partitioned HM (DH𝑞-ROFFWPPHM) operator is defined as follows:

𝐷𝐻𝑞 − 𝑅𝑂𝐹𝐹𝑊 𝑃𝑃𝐻𝑀𝜓,𝜑
𝑤

(

d̃1, d̃2,… , d̃𝑛
)

=

1
𝛿

⎛

⎜

⎜

⎜

⎝

⊕𝐹
𝛿
𝑡=1

⎛

⎜

⎜

⎜

⎝

2
|

|

𝑃𝑡||
(

|

|

𝑃𝑡|| + 1
)⊕𝐹

|𝑃𝑡|
𝑖.𝑗=1
𝑖≤𝑗

⎛

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎝

𝑛
𝑤𝑡𝑖

(

1 + 𝑇
(

d̃𝑡𝑖

))

∑𝑛
𝑣=1

(

1 + 𝑇
(

d̃𝑣
)) d̃𝑡𝑖

⎞

⎟

⎟

⎟

⎠

𝜓

⊗𝐹

⎛

⎜

⎜

⎜

⎝

𝑛
𝑤𝑡𝑗

(

1 + 𝑇
(

d̃𝑡𝑗

))

∑𝑛
𝑣=1

(

1 + 𝑇
(

d̃𝑣
)) d̃𝑡𝑗

⎞

⎟

⎟

⎟

⎠

𝜑
⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

1
𝜓+𝜑

(10)

hen 𝐷𝐻𝑞 − 𝑅𝑂𝐹𝐹𝑊 𝑃𝑃𝐻𝑀𝜓,𝜑
𝑤

(

d̃1, d̃2,… , d̃𝑛
)

is called the DH𝑞-ROFFWPPHM operator.

To simplify the above expression, let w𝑡𝑖 =
𝑤𝑡𝑖

(

1+𝑇
(

d̃𝑡𝑖

))

∑𝑛
𝑣=1 𝑤𝑣(1+𝑇 (d̃𝑣))

, w𝑡𝑗 =
𝑤𝑡𝑗

(

1+𝑇
(

d̃𝑡𝑗

))

∑𝑛
𝑣=1 𝑤𝑣(1+𝑇 (d̃𝑣))

then the equation can be written as

𝐷𝐻𝑞 − 𝑅𝑂𝐹𝐹𝑊 𝑃𝑃𝐻𝑀𝑝,𝑞
𝑤

(

d̃1, d̃2,… , d̃𝑛
)

=

1
𝛿

(

⊕𝐹
𝛿
𝑡=1

(

2
|

|

𝑃𝑡||
(

|

|

𝑃𝑡|| + 1
)⊕𝐹

|𝑃𝑡|
𝑖.𝑗=1
𝑖≤𝑗

((

𝑛w𝑡𝑖 d̃𝑡𝑖

)𝜓
⊗𝐹

(

𝑛w𝑡𝑗 d̃𝑡𝑗

)𝜑)
))

1
𝜓+𝜑

, (11)

here 𝜛𝑖 means the power weights of d̃𝑖.

heorem 1. Let d̃𝑖 (𝑖 = 1, 2,… , 𝑛) be a set of DH𝑞-ROFNs that is partitioned into 𝛿 distinct sorts 𝑃1, 𝑃2,… , 𝑃𝛿 , where 𝑃𝑡 =
{

d̃𝑡1 , d̃𝑡2 ,… , d̃𝑡
|𝑃𝑡|

}

𝑡 = 1, 2,… , 𝛿), ∑𝛿
𝑡=1

|

|

𝑃𝑡|| = 𝑛 and |

|

𝑃𝑡|| denotes the cardinality of 𝑃𝑡. Let 𝜓,𝜑 > 0 represent any numbers. Consequently, the aggregated value produced
y DH𝑞-ROFFWPPHM is also a DH𝑞-ROFN and

𝐷𝐻𝑞 − 𝑅𝑂𝐹𝐹𝑊 𝑃𝑃𝐻𝑀𝜓,𝜑 (d̃1, d̃2,… , d̃𝑛
)

=

⟨
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⎜

⎜
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⎛
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⎜
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⎜
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⎜

⎝

⎛

⎜

⎜
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⎜

⎝
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𝜁1−
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)

log 𝜁 − 1

⎞
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⎟

⎠
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𝛿 ⎞
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⎠
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⎠
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⎠
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⎪

⎪

⎬

⎪
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⋃
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⎪
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⎪
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⎪
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⎜

⎜

⎜

⎜
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⎜
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⎜
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⎜

⎜

⎜
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⎜
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⎜

⎜

⎜
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⎜
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⎜

⎜
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⎟

⎟

⎠
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⎟

⎠
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𝛿
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⎟

⎟
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⎟
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⎠
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⎟
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⎠

1
𝑞
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⎪

⎪
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⎪
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⎪

⎪

⎪

⎪

⎪

⎪
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(12)
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⎜

⎜

⎜

⎜
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⎜

⎜
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(𝜁 − 1)

/
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⎜

⎜

⎜

⎜

⎜

⎜

⎜
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⎜
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⎜
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⎜
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⎢

⎢

⎢
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⎢

⎢
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⎜

⎜
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⎞
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⎟
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⎠
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⎦ − 1

⎞

⎟

⎟

⎟

⎟

⎟
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⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞
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⎟

⎟
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⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟
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⎠

𝜓
⎛

⎜

⎜

⎜
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⎜
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⎜
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⎜
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⎜
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⎜

⎜

⎜

⎜

⎜

⎜
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⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜
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𝜁
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⎢
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⎢

⎢

⎢

⎢

⎢

⎢
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log
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⎜

⎜

⎜

⎜

⎜

⎜
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𝜁−1

⎛
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⎜
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⎠
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⎟
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⎟

⎠

log 𝜁

⎤

⎥

⎥

⎥

⎥
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⎥
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⎟

⎟

⎟
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⎟
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⎟
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⎟
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B

N
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⎟

⎠
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⎞
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⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎞

⎟
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⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝜑

,

𝐷 =

log

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎜

⎜

⎜

⎝

(𝜁 − 1)

/

∏𝛿
𝑡=1

⎛

⎜

⎜

⎜

⎜

⎝

∏
|𝑃𝑡|
𝑖,𝑗=1
𝑖≤𝑗

⎛

⎜

⎜

⎜

⎜

⎝

𝜁−1

𝜁

⎛

⎜

⎜

⎝
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log

( 𝜁−1
𝐶 +1

)
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⎟
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⎟

⎠

⎞
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⎟

⎠
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|𝑃𝑡|(|𝑃𝑡|+1) ⎞

⎟

⎟

⎟

⎟

⎟

⎠

+ 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

log 𝜁
,

where w𝑡𝑖 =
𝑤𝑡𝑖

(

1+𝑇
(

d̃𝑡𝑖

))

∑𝑛
𝑣=1 𝑤𝑣(1+𝑇 (d̃𝑣))

, w𝑡𝑗 =
𝑤𝑡𝑗

(

1+𝑇
(

d̃𝑡𝑗

))

∑𝑛
𝑣=1 𝑤𝑣(1+𝑇 (d̃𝑣))

.

Proof.
(

𝑛w𝑡𝑖 d̃𝑖

)𝜓
=

⟨

⋃

𝛾𝑖∈ℎ̃𝑖

{

(

𝑓−1 (𝜓𝑓
(

𝑔−1
(

𝑛𝜛𝑖𝑔
(

𝛾𝑖
𝑞)))))

1
𝑞

}

,
⋃

𝜂𝑖∈�̃�𝑖

{

(

𝑔−1
(

𝜓𝑔
(

𝑓−1 (𝑛𝜛𝑖𝑓
(

𝜂𝑖
𝑞)))))

1
𝑞

}

⟩

,

(

𝑛𝜛𝑗 d̃𝑗
)𝜑 =

⟨

⋃

𝛾𝑗∈ℎ̃𝑗

{

(

𝑓−1 (𝜑𝑓
(

𝑔−1
(

𝑛𝜛𝑗𝑔
(

𝛾𝑗
𝑞)))))

1
𝑞

}

,
⋃

𝜂𝑗∈�̃�𝑗

{

(

𝑔−1
(

𝜑𝑔
(

𝑓−1 (𝑛𝜛𝑗𝑓
(

𝜂𝑗
𝑞)))))

1
𝑞

}

⟩

,

and then
(

𝑛𝜛𝑖d̃𝑖
)𝜓 ⊗𝐹

(

𝑛𝜛𝑗 d̃𝑗
)𝜑 =

⟨

⋃

𝛾𝑖∈ℎ̃𝑖 ,𝑖=1,2

{

(

𝑓−1 (𝜓𝑓
(

𝑔−1
(

𝑛𝜛𝑖𝑔
(

𝛾𝑖
𝑞))) + 𝜑𝑓

(

𝑔−1
(

𝑛𝜛𝑗𝑔
(

𝛾𝑗
𝑞)))))

1
𝑞

}

,

⋃

𝜂𝑗∈�̃�𝑗 ,𝑖=1,2

{

(

𝑔−1
(

𝜓𝑔
(

𝑓−1 (𝑛𝜛𝑖𝑓
(

𝜂𝑖
𝑞))) + 𝜑𝑔

(

𝑓−1 (𝑛𝜛𝑗𝑓
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1
𝑞
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y mathematical induction, it can be shown that

⊕𝐹
𝑛
𝑖,𝑗=1
𝑖≤𝑗

((

𝑛𝜛𝑖d̃𝑖
)𝜓 ⊗𝐹
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⎜
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⎠
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(

𝑛𝜛𝑗 d̃𝑗
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⎜
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⎜

⎜

⎝

2
𝑛 (𝑛 + 1)

𝑛
∑

𝑖,𝑗=1
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(
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(

𝑛𝜛𝑖𝑔
(

𝛾𝑖
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(

𝑛𝜛𝑗𝑔
(

𝛾𝑗
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⎟
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⎪
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⎜
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𝑛 (𝑛 + 1)

𝑛
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𝑖,𝑗=1
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𝑓
(

𝑔−1
(

𝜓𝑔
(

𝑓−1 (𝑛𝜛𝑖𝑓
(

𝜂𝑖
𝑞))) + 𝜑𝑔

(

𝑓−1 (𝑛𝜛𝑗𝑓
(

𝜂𝑗
𝑞)))))

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

1
𝑞
⎫

⎪

⎪

⎬

⎪

⎪

⎭

⟩
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Now,
(

2 ⊕𝐹
𝑛
𝑖.𝑗=1

((

𝑛𝜛𝑖d̃𝑖
)𝜓 ⊗𝐹

(

𝑛𝜛𝑗 d̃𝑗
)𝜑)

)
1
𝑝+𝑞

=

𝑛 (𝑛 + 1) 𝑖≤𝑗
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(

𝑔−1
(

𝜓𝑔
(

𝑓−1 (𝑛𝜛𝑖𝑓
(

𝜂𝑖
𝑞))) + 𝜑𝑔
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⎟

⎟
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⎠
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⎠
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⎠
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⎠
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⎪

⎪

⎭

⟩

.

Hence the theorem.

5. A novel approach to solving the MCGDM problem using the proposed operators

5.1. Illustration of a major MCGDM issue

Assuming that 𝐴 =
{

𝐴1, 𝐴2,… , 𝐴𝑚
}

is a set of alternatives, MCGDM is the method by which a team of experts selects its most desired alternative
consists of a set of attributes C =

{

C1,C2,… ,C𝑛
}

by a group of experts 𝐷 =
{

𝐷1, 𝐷2,… , 𝐷𝑡
}

. The weight vector that corresponds to attributes is
written as 𝑤 =

{

𝑤1, 𝑤2,… , 𝑤𝑛
}

with the condition that 𝑤𝑖 ≥ 0 and ∑𝑛
𝑖=1𝑤𝑖 = 1, and the weight vector that corresponds to experts is written

as 𝜔 =
{

𝜔1, 𝜔2,… , 𝜔𝑡
}

with the condition that 𝜔𝑘 ≥ 0 and ∑𝑡
𝑘=1 𝜔𝑘 = 1. Because of the ambiguity of data, the attribute value C𝑗 with regard

to alternative 𝐴𝑖 as determined by expert 𝐷𝑘 is represented as DH𝑞-ROFN d̃𝑖𝑗 =
⟨

ℎ̃𝑖𝑗 , �̃�𝑖𝑗
⟩

, and the DH𝑞-ROF decision matrix (DH𝑞-ROFDM)
�̃�𝑘 =

[

𝑟𝑘𝑖𝑗
]

𝑚×𝑛
is generated.

Furthermore, depending on the features of attributes, the attributes are separated into 𝑑 distinct parts 𝐴1, 𝐴2,… , 𝐴𝑑 , and members of the same
part are interrelated, whilst members of different parts are unrelated. Listed below are the steps of the MCGDM approach we have devised for
selecting the optimal option.

5.2. The steps of MCGDM method

Step 1. Determine the support in between the DH𝑞-ROFN 𝑟𝑘𝑖𝑗 with other DH𝑞-ROFNs 𝑟𝑙𝑖𝑗 DH𝑞-ROFN (𝑘, 𝑙 = 1, 2,… , 𝑡)

𝑆𝑢𝑝
(

𝑟𝑘𝑖𝑗 , 𝑟
𝑙
𝑖𝑗

)

= 1 − 𝑑
(

𝑟𝑘𝑖𝑗 , 𝑟
𝑙
𝑖𝑗

)

, (𝑖 = 1, 2,… , 𝑚; 𝑗 = 1, 2,… , 𝑛) , (13)

where 𝑑
(

𝑟𝑘𝑖𝑗 , 𝑟
𝑙
𝑖𝑗

)

is the distance between DH𝑞-ROFNs 𝑟𝑘𝑖𝑗 and 𝑟𝑙𝑖𝑗 based on Definition 8.

Step 2. Determine the 𝑇
(

𝑟𝑘𝑖𝑗
)

of the DH𝑞-ROFN 𝑟𝑘𝑖𝑗 (𝑘 = 1, 2,… , 𝑡).

𝑇
(

𝑟𝑘𝑖𝑗
)

=
𝑡

∑

𝑙=1,𝑙≠𝑘
𝑆𝑢𝑝

(

𝑟𝑘𝑖𝑗 , 𝑟
𝑙
𝑖𝑗

)

, (𝑖 = 1, 2,… , 𝑚; 𝑗 = 1, 2,… , 𝑛) . (14)

Step 3. Determine the power weights 𝜛𝑘
𝑖𝑗 corresponding to the DH𝑞-ROFNs 𝑟𝑘𝑖𝑗 (𝑘 = 1, 2,… , 𝑡).

𝜛𝑘
𝑖𝑗 =

(

1 + 𝑇
(

𝑟𝑘𝑖𝑗
))

∑𝑡
𝑘=1

(

1 + 𝑇
(

𝑟𝑘𝑖𝑗
)) , (𝑖 = 1, 2,… , 𝑚; 𝑗 = 1, 2,… , 𝑛) . (15)

Step 4. According to the DH𝑞-ROFFPWA operator, aggregate the assessment of attributes 𝐶𝑗 reported by decision makers 𝐷𝑘 (𝑘 = 1, 2,… , 𝑡) for the
lternative 𝑋𝑖,

𝑟𝑖𝑗 = 𝐷𝐻𝑞 − 𝑅𝑂𝐹𝐹𝑃𝑊 𝐴
(

𝑟1𝑖𝑗 , 𝑟
2
𝑖𝑗 ,… , 𝑟𝑡𝑖𝑗

)

, (16)

nd derive the entire decision matrix �̃�𝑘 =
[

𝑟𝑖𝑗
]

𝑚×𝑛.
tep 5. Determine the support degree

(

𝑟𝑖𝑗 , 𝑟𝑖𝑙
)

(𝑗, 𝑙 = 1, 2,… , 𝑛).

𝑆𝑢𝑝
(

𝑟𝑖𝑗 , 𝑟𝑖𝑙
)

= 1 − 𝑑
(

𝑟𝑖𝑗 , 𝑟𝑖𝑙
)

, (𝑖 = 1, 2,… , 𝑚) . (17)

Step 6. Determine the
(

𝑟𝑖𝑗
)

(𝑖 = 1, 2,… , 𝑚);

𝑇
(

𝑟𝑖𝑗
)

=
𝑛
∑

𝑖=1,𝑗≠𝑙
𝑆𝑢𝑝

(

𝑟𝑖𝑗 , 𝑟𝑖𝑙
)

, (𝑗, 𝑙 = 1, 2,… , 𝑛) . (18)

Step 7. Determine the power weights 𝜛𝑖𝑗 corresponding to attribute 𝐶𝑗 (𝑗 = 1, 2,… , 𝑛),

𝜛𝑖𝑗 =

(

1 + 𝑇
(

𝑟𝑖𝑗
))

∑𝑛
𝑗=1

(

1 + 𝑇
(

𝑟𝑖𝑗
)) , (𝑖 = 1, 2,… , 𝑚) . (19)

Step 8. Determine the overall performance value of alternative 𝑋𝑖 (𝑖 = 1, 2,… , 𝑚) over all attributes.

𝑟𝑖 = 𝐷𝐻𝑞 − 𝑅𝑂𝐹𝐹𝑊 𝑃𝑃𝐻𝑀
(

𝑟𝑖1, 𝑟𝑖2,… , 𝑟𝑖𝑛
)

. (20)

Step 9. Determine the score function for each alternative, and then rank each alternative using the comparison method described in Section 2.
11
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Fig. 2. Aerial view of public transport routes of Budapest, Hungary (Elevation is illustrated with a vertical distortion factor of 2.0.).

Table 1
The main lines of public transport system in Budapest.

No Route type Number of routes

1 Daytime bus 240
2 Night-time bus 43
3 Tram 35
4 Trolleybus 16
5 Inner city train 6
6 Subway 4
7 Boat 3

6. Case study

This section sheds light on a real-world case study that was carried out in the capital city of Hungary, Budapest, which has for a very long time
been the main focus of the nation as well as an active cultural center. Budapest will have approximately 1,775,000 inhabitants in 2021, with a
0.23% increase from 2020, and this will make Budapest one of the biggest cities in Central Europe. Budapest city has a fairly extensive and efficient
urban transport system. It is considered a cheaper transport service than in most Western European cities. The urban transport system consists of
five main alternatives: buses, trams, metros, suburban and trolleybuses; all of them use an effective routes (Fig. 2). Where, bus lines are illustrated
in blue, trams are illustrated in yellow, trolleys are illustrated in red, and suburban railways are shown in green (the Danube flows approximately
from the north (upper right corner) to the south (lower left corner). These five large divisions are operated by BKV ‘‘Budapest Transit Company’’,
which is the main urban transport operator in Budapest, Hungary. The company operates the cogwheel railway, the funicular, and the boat service,
which are oriented towards tourists. The BKV Company provides transport services to around 1.3 billion commuters a year (BKV Zrt, 2022).

There are more than 347 routes of different urban transport alternatives which generate an easy accessibility for commuters to reach their
destinations, Table 1. Illustrate the main routes and their numbers for each alternative (BKV Zrt, 2022).

In our study, we shed light on evaluating the daytime bus system’s service quality in order to provide effective and reliable strategies for a
sustainable public bus transport system. The daytime bus service itself consists of 240 bus routes and 2611 km of network.

For this aim, we have constructed a hierarchy structure for the service quality (SQ) of the urban bus transport (UBT) system. The hierarchy
structure is formed of five main criteria and ten sub-criteria (Fig. 2 show the explanation of each of the criteria). The structure was created based on
the points of view of three transportation experts in the Department of Transport Technology and Economics at Budapest University of Technology
and Economics in Budapest, Hungary. After several meetings, the experts provided five alternatives (providing new vehicles, providing new lines,
modifying timetables, and changing stop locations) which assumed the most suitable solutions for ameliorating the service quality of the public
bus transport system in Budapest.

The expert’s choice promotes maximizing the objectivity of the proposed solutions. The shown model helps local government officials come up
with plans for improving the quality of public bus networks in the future.

The development of public bus transport service quality is related to several criteria. These criteria are defined to cover the real demand in
Budapest.

6.1. Definition of criteria of the urban bus transport service quality
The following main criteria are adopted as follows:

12
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Fig. 3. The service quality structure of the urban bus transportation.

Table 2
DH𝒒-ROFDM �̃�𝒌 provided by the DM 𝑫𝒌.

C1 C2 C3 C4 C5

1st DM’s weight 0.0786 0.1258 0.1590 0.2449 0.3917
2nd DM’s weight 0.0993 0.1488 0.3756 0.0626 0.3137
3rd DM’s weight 0.2657 0.0728 0.0728 0.1532 0.4355

(1) Approachability (C𝟏): It is the first major criterion of the UBT system’s service quality, and it refers to the service provided before to the
start of a trip, including directness, safety, and convenience at bus stops (Saif et al., 2019; Cheranchery et al., 2019; Miao et al., 2019).

(2) Directness (C𝟐): It is the second most important thing that determines the quality of the service provided by the UBT system. It has to do
with whether or not commuters want to switch service types and whether or not there are connections between different urban bus routes
or between urban buses and other kinds of urban transportation systems (Duleba and Moslem, 2019; Jin et al., 2019).

(3) Reliability (C𝟑): It is the third most important service quality criterion for the UBT system. It shows how trustworthy the system is by
providing the expected service perfectly and on time (Soza-Parra et al., 2019).

(4) Time availability (C𝟒): It is the fourth fundamental criterion of the UBT system’s service quality, and it corresponds to the amount of time
UBT is delivered along a route, as well as the start and end periods of UBT service throughout the day. (Scott et al., 2016; Deng and Yan,
2019).

(5) Speed (C𝟓): It is the fifth primary criterion of the UBT system’s service quality, and it relates to the speed of the entire travel process, which
includes the time passengers spend on-board between the departure and arrival points, as well as the pre-journey waiting time at bus stops
(Kujala et al., 2018; Ingvardson et al., 2018).

.2. Definition of alternatives for improving urban bus transport service quality

(1) Change stop locations (𝑨𝟏): Modifying the locations of the bus stops is an important alternative, and it increases user satisfaction before
starting the journey. However, its role in attracting new users is considered an important action.

(2) Provide new routes (𝑨𝟐): Creating new lines considering a fixed number of buses is considered a logical alternative in the event of the
limited budget of the operating company or organization. The effect of providing new routes has a positive impact on users’ satisfaction,
and it has a significant impact on attracting new users.

(3) Provide new buses (𝑨𝟑): New bus purchasing is an efficient alternative to increase the reliability of the urban bus transport service quality
system, which elevates users’ satisfaction and captivates non-users.

(4) Modifying timetables (𝑨𝟒): Changing the timetables to meet user demand is a critical alternative, and it has a great impact on improving
the service quality if the planners consider the real demand not only for the users’ side but also, taking into consideration the real demand
for the non-user side (see Fig. 3).

For aggregating the Alternative’s evaluation values, use the following weights:
Weight of criteria C1 = 0.0786, C2 = 0.1258, C3 = 0.1590, C4 = 0.2449 and C5 = 0.3917.
The DH𝒒-ROFDM �̃�𝒌 provided by the DM 𝑫𝒌 is represented in Table 2. The three DMs evaluate the four alternatives based on the five criteria

nd their judgmental values are listed in Tables 3–5.
Without loss of generality this case is analyzed, considering the value of, rung parameter 𝑞 = 3, Frank 𝑡-conorm & 𝑡-norm parameter 𝜁 = 2,

eronian mean parameters 𝜓 = 𝜑 = 1, and generalized DH𝑞-ROF distance parameter 𝜀 = 2.
13
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Table 3
DH𝑞-ROF DM 𝐷1.

C1 C2 C3 C4 C5

𝐴1 ⟨{0.8} , {0.6, 0.7}⟩ ⟨{0.7} , {0.6}⟩ ⟨{0.7, 0.8} , {0.5}⟩ ⟨{0.5} , {0.3}⟩ ⟨{0.7} , {0.2}⟩
𝐴2 ⟨{0.7} , {0.2}⟩ ⟨{0.8} , {0.2}⟩ ⟨{0.3, 0.4} , {0.5}⟩ ⟨{0.7, 0.8} , {0.1}⟩ ⟨{0.9} , {0.2}⟩
𝐴3 ⟨{0.6} , {0.5}⟩ ⟨{0.5, 0.6} , {0.4, 0.5}⟩ ⟨{0.5} , {0.6}⟩ ⟨{0.8} , {0.5, 0.7}⟩ ⟨{0.8} , {0.3}⟩
𝐴4 ⟨{0.7} , {0.2}⟩ ⟨{0.6} , {0.5}⟩ ⟨{0.6} , {0.5}⟩ ⟨{0.6} , {0.2}⟩ ⟨{0.6} , {0.5, 0.6}⟩

Table 4
DH𝑞-ROF DM 𝐷2.

C1 C2 C3 C4 C5

𝐴1 ⟨{0.8} , {0.3}⟩ ⟨{0.7} , {0.4, 0.5}⟩ ⟨{0.7, 0.8} , {0.4}⟩ ⟨{0.9} , {0.2}⟩ ⟨{0.6} , {0.2}⟩
𝐴2 ⟨{0.7, 0.8} , {0.1}⟩ ⟨{0.7} , {0.3}⟩ ⟨{0.3} , {0.5}⟩ ⟨{0.6} , {0.1}⟩ ⟨{0.8} , {0.2}⟩
𝐴3 ⟨{0.5} , {0.2}⟩ ⟨{0.5} , {0.3}⟩ ⟨{0.5, 0.7} , {0.3}⟩ ⟨{0.8} , {0.6, 0.7}⟩ ⟨{0.9} , {0.2}⟩
𝐴4 ⟨{0.6} , {0.3}⟩ ⟨{0.7} , {0.5}⟩ ⟨{0.4} , {0.6}⟩ ⟨{0.8, 0.9} , {0.3, 0.4}⟩ ⟨{0.7} , {0.6}⟩

Table 5
DH𝑞-ROF DM 𝐷3.

C1 C2 C3 C4 C5

𝐴1 ⟨{0.8} , {0.6}⟩ ⟨{0.7} , {0.4}⟩ ⟨{0.6, 0.7} , {0.3, 0.4}⟩ ⟨{0.7, 0.9} , {0.4}⟩ ⟨{0.6} , {0.4}⟩
𝐴2 ⟨{0.8} , {0.2}⟩ ⟨{0.6, 0.8} , {0.1, 0.2}⟩ ⟨{0.3} , {0.7}⟩ ⟨{0.8} , {0.1}⟩ ⟨{0.7, 0.9} , {0.1}⟩
𝐴3 ⟨{0.5, 0.6} , {0.1, 0.2}⟩ ⟨{0.8} , {0.3, 0.5}⟩ ⟨{0.2} , {0.6}⟩ ⟨{0.5} , {0.2}⟩ ⟨{0.8} , {0.2}⟩
𝐴4 ⟨{0.4, 0.5, 0.6} , {0.7}⟩ ⟨{0.90} , {0.2}⟩ ⟨{0.2} , {0.5}⟩ ⟨{0.5} , {0.5}⟩ ⟨{0.9} , {0.6}⟩

Step 1. Using Eq. (13), we obtain the support
(

d̃𝑘𝑖𝑗 , d̃
𝑙
𝑖𝑗

)

(𝑖 = 1, 2, 3, 4; 𝑗 = 1, 2, 3, 4, 5; 𝑘 = 1, 2, 3). For simplify,
(

𝑆𝑢𝑝
(

d̃𝑘𝑖𝑗 , d̃
𝑙
𝑖𝑗

))

4×5
is represented by 𝑆𝑘𝑙

nd indicated in the following way: (Assume that 𝑞 = 3)

𝑆12 = 𝑆21 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.7874 0.8977 0.9648 0.5727 0.9102

0.9023 0.8797 0.9786 0.8140 0.8466

0.8952 0.7508 0.8334 0.9475 0.8460

0.9092 0.9102 0.8747 0.7024 0.9098

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑆13 = 𝑆31 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.9267 0.8925 0.8796 0.6286 0.9019

0.8805 0.8520 0.8723 0.9024 0.7771

0.9034 0.9509 0.9173 0.6969 0.9866

0.7481 0.6279 0.8529 0.8952 0.6992

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑆23 = 𝑆32 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.8664 0.9648 0.8927 0.7748 0.9604

0.9023 0.8931 0.8459 0.7907 0.8412

0.9544 0.7695 0.7679 0.6810 0.8466

0.8189 0.7148 0.9244 0.6367 0.7271

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Step 2. We compute the 𝑇
(

𝑟𝑘𝑖𝑗
)

. For simplify,
[

𝑇
(

𝑟𝑘𝑖𝑗
)]

4×5
is denoted as 𝑇𝑘 and presented as follows:

𝑇1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1.7141 1.7902 1.8444 1.2013 1.8121

1.7828 1.7317 1.8510 1.7165 1.6237

1.7986 1.7017 1.7507 1.6443 1.8325

1.6573 1.5381 1.7277 1.5976 1.6090

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑇2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1.6538 1.8625 1.8575 1.3475 1.8706

1.8047 1.7728 1.8245 1.6047 1.6877

1.8496 1.5203 1.6013 1.6285 1.6925

1.7281 1.6250 1.7992 1.3391 1.6369

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑇3 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1.7930 1.8573 1.7723 1.4035 1.8623

1.7828 1.7450 1.7182 1.6931 1.6183

1.8577 1.7204 1.6852 1.3779 1.8331

1.5670 1.3427 1.7774 1.5319 1.4263

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

14



A. Sarkar, S. Moslem, D. Esztergár-Kiss et al. Engineering Applications of Artificial Intelligence 124 (2023) 106505

𝑆

S

S
a

Table 6
Aggregating DM with DH𝒒-ROFFPWA.

𝐶1 𝐶2 𝐶3 𝐶4 𝐶5

𝐴1

⟨

{0.8000} ,
{0.5187, 0.5335}

⟩ ⟨

{0.7000} ,
{0.4632, 0.5097}

⟩

⟨

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0.6904, 0.7000,
0.7610, 0.7679,
0.7231, 0.7314,
0.7846, 0.7907

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

{0.4104, 0.4242}

⟩

⟨

{0.6830, 0.7896} ,
{0.3137}

⟩ ⟨

{0.6391} ,
{0.2613}

⟩

𝐴2

⟨

{0.7657, 0.7857} ,
{0.1711}

⟩ ⟨

{0.7277, 0.7629} ,
{0.2063, 0.2383}

⟩ ⟨

{0.3000, 0.3329} ,
{0.5204}

⟩ ⟨

{0.7301, 0.7826} ,
{0.1000}

⟩ ⟨

{0.8186, 0.8790} ,
{0.1539}

⟩

𝐴3

⟨

{0.5210, 0.5811} ,
{0.1550, 0.2350}

⟩

⟨ {0.6735, 0.6943} ,
{

0.3340, 0.3735,
0.3635, 0.4062

}

⟩

⟨

{0.4811, 0.6307} ,
{0.3958}

⟩

⟨ {0.7434} ,
{

0.3882, 0.3973,
0.4713, 0.4822

}

⟩

⟨

{0.8343} ,
{0.2304}

⟩

𝐴4

⟨

{

0.5374, 0.5737,
0.6215

}

,

{0.4646}

⟩

⟨

{0.7385} ,
{0.4201}

⟩ ⟨

{0.4619} ,
{0.5605}

⟩ ⟨

{0.6137, 0.6539} ,
{0.2859, 0.2965}

⟩ ⟨

{0.7853} ,
{0.5631, 0.6000}

⟩

Step 3. We compute the power weights w𝑘
𝑖𝑗 =

𝑤𝑖(1+𝑇 (�̃�𝑖))
∑𝑛
𝑘=1 𝑤𝑘(1+𝑇 (�̃�𝑘))

. For simplify,
(

w𝑘
𝑖𝑗

)

4×5
is denoted as 𝑊𝑘 and presented as follows:

𝑊1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.1750 0.3564 0.2618 0.5114 0.3391

0.1769 0.3594 0.2648 0.5361 0.3413

0.1743 0.3723 0.2717 0.5505 0.3480

0.1798 0.3627 0.2570 0.5435 0.3517

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑊2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.2162 0.4324 0.6213 0.1394 0.2772

0.2252 0.4315 0.6196 0.1314 0.2800

0.2242 0.4108 0.6069 0.1399 0.2649

0.2332 0.4436 0.6231 0.1251 0.2847

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑊3 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.6088 0.2112 0.1168 0.3493 0.3837

0.5979 0.2090 0.1156 0.3325 0.3787

0.6016 0.2169 0.1214 0.3097 0.3870

0.5871 0.1937 0.1198 0.3314 0.3636

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

Step 4. For alternative 𝑋𝑗 , aggregate the assessments of attributes 𝐶𝑗 provided by decision-makers 𝐷𝑘 (𝑘 = 1, 2, 3) in accordance with Eq. (16) and
produce the comprehensive decision matrix shown in Table 6.
Step 5. We compute the 𝑆𝑢𝑝

(

𝑟𝑖𝑗 , 𝑟𝑖𝑙
)

(𝑖 = 1, 2, 3, 4; 𝑗, 𝑙 = 1, 2, 3, 4, 5) based on Eq. (17). To make things simpler,
(

𝑆𝑢𝑝
(

𝑟𝑖𝑗 , 𝑟𝑖𝑙
))

4×1 is represented as 𝑆𝑢𝑝𝑗𝑙

and the result is 𝑆12 = 𝑆21 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.8991

0.9619

0.9061

0.8169

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑆13 = 𝑆31 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.8928

0.6361

0.9508

0.9037

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑆14 = 𝑆41 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.8733

0.9653

0.8460

0.9265

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑆15 = 𝑆51 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.8213

0.8740

0.7081

0.7656

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑆23 = 𝑆32 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.9152

0.7137

0.9128

0.7732

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑆24 = 𝑆42 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.9027

0.9808

0.9390

0.8888

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

25 = 𝑆52 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.9060

0.8568

0.8458

0.8879

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑆34 = 𝑆43 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.9269

0.6601

0.8588

0.8449

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑆35 = 𝑆53 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.8514

0.5158

0.6676

0.7761

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑆45 = 𝑆54 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.8622

0.8524

0.8980

0.7962

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

tep 6. We derive the
(

𝑟𝑖𝑗
)

(𝑖 = 1, 2,… , 𝑚);
𝑇
(

𝑟𝑖𝑗
)

=
∑𝑛
𝑙=1,𝑗≠𝑖 𝑆𝑢𝑝

(

𝑟𝑖𝑗 , 𝑟𝑖𝑙
)

, (𝑗, 𝑙 = 1, 2,… , 𝑛)

𝑇 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

3.4865 3.6229 3.5862 3.5650 3.4409

3.4373 3.5132 2.5256 3.4586 3.0990

3.4110 3.6036 3.3900 3.5417 3.1195

3.4127 3.3668 3.2979 3.4564 3.2259

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

tep 7. Considering Eq. (19), we determine the power weight vector 𝜛𝑖 of alternative 𝑋𝑖 (𝑖 = 1, 2, 3, 4) with regard to the attributes 𝐶𝑗 (𝑗 = 1, 2,… , 5)
nd acquire 𝜔 = {0.0786, 0.1258, 0.1590, 0.2449, 0.3917}

𝜛𝑖,𝑗 =
𝑤𝑗

(

1 + 𝑇
(

�̃�𝑖𝑗
))

∑𝑛 ( ( ))
𝑣=1𝑤𝑣 1 + 𝑇 �̃�𝑖𝑣

15
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S

S

t

7

7

t

t
o
t
m

C
p

w

7

R
b

7

t
o
𝐴

d
i

𝑊 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0.0778 0.1294 0.1620 0.2480 0.3828

0.0851 0.1392 0.1265 0.2668 0.3824

0.0800 0.1353 0.1609 0.2589 0.3648

0.0806 0.1273 0.1576 0.2545 0.3799

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

tep 8. Applying the DH𝑞-ROFFPPWHM operator, we derive the overall performance of alternative 𝐴𝑖 (𝑖 = 1, 2, 3, 4) over all attributes.

𝐴1 =

⟨

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0.4960, 0.5176, 0.4972, 0.5186, 0.5062, 0.5259,

0.5074, 0.5269, 0.5003, 0.5210, 0.5015, 0.5220,

0.5106, 0.5295, 0.5118, 0.5305

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

{

0.7365, 0.7379, 0.7427, 0.7442,

0.7377, 0.7392, 0.7440, 0.7454

}⟩

;

𝐴2 =

⟨

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

0.5288, 0.5557, 0.5385, 0.5634, 0.5292, 0.5561,

0.5389, 0.5637, 0.5353, 0.5608, 0.5450, 0.5685,

0.5357, 0.5612, 0.5453, 0.5689, 0.5318, 0.5585,

0.5413, 0.5659, 0.5322, 0.5589, 0.5416, 0.5663,

0.5381, 0.5634, 0.5475, 0.5709, 0.5385, 0.5638,

0.5479, 0.5713

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

, {0.5695, 0.5787}

⟩

;

𝐴3 =

⟨

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0.5140, 0.5216, 0.5168,

0.5242, 0.5168, 0.5244,

0.5196, 0.5270

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

0.6703, 0.6716, 0.6814, 0.6827, 0.6767, 0.6779,

0.6875, 0.6888, 0.6751, 0.6764, 0.6860, 0.6873,

0.6815, 0.6827, 0.6921, 0.6933, 0.6867, 0.6880,

0.6980, 0.6993, 0.6931, 0.6944, 0.7042, 0.7054,

0.6915, 0.6929, 0.7026, 0.7040, 0.6980, 0.6993,

0.7088, 0.7101

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

⟩

;

𝐴4 = ⟨{0.4870, 0.4917, 0.4889, 0.4935, 0.4921, 0.4966} , {0.7724, 0.7761, 0.7745, 0.7783}⟩ .

tep 9. We assess the expected function of alternative 𝐴𝑖 (𝑖 = 1, 2, 3, 4) as 𝑆
(

𝐴1
)

= 0.3646, 𝑆
(

𝐴2
)

= 0.4892, 𝑆
(

𝐴3
)

= 0.4060, 𝑆
(

𝐴4
)

= 0.3264.
On the basis of the expected value of alternatives, the ranking result of alternatives can be obtained and shown as 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4. Thus

he most effective and reliable strategies for sustainable public bus transport system is to provide new routes (𝐴2).

. Discussion

.1. Ranking discussion

Our work led to the creation of a new model that helps operators and policymakers better understand what real users want and how to give it
o them. It also makes the transit system look different and improves the quality of service at the same time.

In compliance with the adopted outcomes, providing new routes (𝐴2) is the most significant alternative for improving the service quality of
he urban transportation system in Budapest. In terms of sustainable urban transportation, adding new serving lines is seen as a good idea that the
perator companies and local government officials should think about carefully along with the other strategic plans they are working on to help
he urban transportation network in Budapest improve along with other changes. With this in mind, putting more effort into making the new lines
ore direct to create a faster system, which will reduce travel time and make the current users happier, will bring in more potential users.

According to the obtained results, the second most significant alternative is changing stop locations (𝐴1) followed by providing new buses (𝐴3).
hanging where bus stops are located would usually have a big effect on how well the system works, so it needs to be planned carefully to give
eople the best access to bus stops.

The results show that modifying timetables (𝐴4) has the lowest influence on improving the quality of the urban transport service, as it was the
orst-ranked alternative. The reason is the efficient schedule, which used to meet the needs of commuters and make them happy.

.2. Sensitivity analysis

The effect of the rung parameter 𝑞, Frank parameter, 𝜁 and HM parameters, 𝜓 and 𝜑 on decision making outcomes obtained via the DH𝑞-
OFFPPWHM operator is currently being investigated. These parameters are crucial in the ranking of options. Different score values are produced
y providing distinct parameter values.

.2.1. The impact of the 𝒒 parameter on the ranking outcomes
The effect of the rung parameter 𝑞 on the decision result utilizing DH𝑞-ROFFPPWHM operator is explained comprehensively in Table 7. It is seen

hat keeping HM parameter fixed at 𝜑 = 𝜓 = 1, based on different performance values, orderings of the alternatives obtained for different values
f 𝑞 in [0, 10] remain same as 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4 when using the DH𝑞-ROFFPPWHM operator. Although the best alternative remains unaltered as
2.

On the other hand, regardless of how the value of the 𝑞 parameter is altered when using the DH𝑞-ROFFPPWHM operator, there is no discernible
ifference in the order in which the alternatives are ranked. Fig. 4 shows how the 𝑞 parameter affects the ranking result so that you can understand

t better.
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𝜁

Table 7
Ranking results varying rung parameter 𝒒 in DH𝒒-ROFFPPWHM (𝜻 = 𝟑).

Parameters 𝑆
(

𝐴1
)

𝑆
(

𝐴2
)

𝑆
(

𝐴3
)

𝑆
(

𝐴4
)

Rankings

𝑞 = 1 0.2847 0.3662 0.3022 0.2501 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4
𝑞 = 2 0.3216 0.4403 0.3547 0.2827 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4
𝑞 = 3 0.3646 0.4892 0.4060 0.3264 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4
𝑞 = 5 0.4323 0.5243 0.4714 0.4035 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4
𝑞 = 7 0.4703 0.5261 0.4977 0.4528 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4
𝑞 = 9 0.4889 0.5293 0.5058 0.4795 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4
𝑞 = 10 0.4939 0.5311 0.5070 0.4874 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4

Fig. 4. Score values of 𝐴𝑖 by IVDH𝑞-ROFWHM operator based on 𝑞 parameter (𝜑,𝜓 = 1).

Table 8
Ranking results varying Frank parameter 𝜻 in DH𝒒-ROFFPPWHM (𝒒 = 𝟑).

Parameters 𝑆
(

𝐴1
)

𝑆
(

𝐴2
)

𝑆
(

𝐴3
)

𝑆
(

𝐴4
)

Rankings

𝜁 = 1.1 0.3920 0.5082 0.4310 0.3537 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4
𝜁 = 2 0.3646 0.4892 0.4060 0.3264 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4
𝜁 = 3 0.3458 0.4752 0.3881 0.3081 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4
𝜁 = 4 0.3327 0.4646 0.3751 0.2955 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4
𝜁 = 6 0.3147 0.4490 0.3567 0.2786 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4
𝜁 = 8 0.3027 0.4374 0.3439 0.2675 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4
𝜁 = 10 0.2938 0.4281 0.3343 0.2594 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4

7.2.2. The impact of the Frank parameter 𝜻
To demonstrate the impact of the Frank parameter 𝜁 in the above example, the developed steps are repeatedly executed with different values of

. For convenience, the rung parameter is fixed at 𝑞 = 3 in this case. Table 8 shows both the total score values for the DH𝑞-ROFFPPWHM operator
and the ranking results for that operator. Even if different values of the Frank parameter 𝜁 lead to different score values, Table 8 shows that the
ranking results are always 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4. This can be seen even though the score values are varied.

When the value of the Frank parameter 𝜁 based on the DH𝑞-ROFFPPWHM operator is increased, the score values of the various alternatives
experience a considerable and noticeable decrease. In Fig. 5, the change in score values of different alternatives are visualized for 𝑞 = 3 as a fixed
value and varying 𝜁 in [1, 10]. It appears that the score values are on a downward trend there. As a result, it is possible to establish that a DM’s
outlook might be either pessimistic or optimistic dependent on the conviction they hold. So, DMs who have a negative outlook on an option based
on specific criteria are required to choose a larger value of the Frank parameter 𝜁 .

7.2.3. The influence of the HM parameters 𝝋 and 𝝍 on the ranking outcomes
During the aggregation process, the results that are obtained are dependent on the HM parameters, 𝜓 and 𝜑. In the previous step, various values

were given to the HM parameters 𝜓 and 𝜑 to show how they affect the model. Using the DH-ROFFPPWHM operator, we changed the values of the
parameters 𝜓 and 𝜑 at the same time in the range [0,10], keeping q and 𝜁 at the same value of 3. Table 9 show the score values of various options
𝐴𝑖 (𝑖 = 1, 2, 3, 4) and how they were ranked. Using the DH𝑞-ROFFPPWHM operator, distinct score values for each alternatives are obtained. From
Table 9, it is observed that using DH𝑞-ROFFPPWHM operator, the ranking result is obtained as 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4 varying the HM parameters 𝜓
and 𝜑. The best alternative continues to be 𝐴2.

Through the use of the DH𝑞-ROFFPPWHM operator, the score values of the various alternatives, 𝐴𝑖, are depicted geometrically in Figs. 6–9,
which helps provide a more transparent picture.
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Fig. 5. Effect of Frank parameter 𝜁 ∈ [1, 10] on score values of alternatives.

Table 9
Impact of HM parameters 𝝍 and 𝝓 on decision-making consequences.

Varying 𝝓 and 𝝍 Score values of alternatives Ranking order

𝑆
(

𝐴1
)

𝑆
(

𝐴2
)

𝑆
(

𝐴3
)

𝑆
(

𝐴4
)

DH𝒒-ROFFPPWHM

𝜓 = 1, 𝜙 = 1 0.3646 0.4892 0.4060 0.3264 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4
𝜓 = 1, 𝜙 = 5 0.3411 0.4831 0.3993 0.3028 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4
𝜓 = 1, 𝜙 = 10 0.3554 0.4874 0.4204 0.3083 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4
𝜓 = 2, 𝜙 = 2 0.3259 0.4672 0.3816 0.2968 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4
𝜓 = 2, 𝜙 = 6 0.3348 0.4736 0.3987 0.3002 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4
𝜓 = 2, 𝜙 = 10 0.3490 0.4790 0.4159 0.3061 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4
𝜓 = 3, 𝜙 = 3 0.3202 0.4623 0.3831 0.2939 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4
𝜓 = 3, 𝜙 = 7 0.3359 0.4702 0.4028 0.3012 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4
𝜓 = 3, 𝜙 = 10 0.3465 0.4747 0.4147 0.3056 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4
𝜓 = 5, 𝜙 = 5 0.3301 0.4625 0.3967 0.2983 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4
𝜓 = 5, 𝜙 = 10 0.3475 0.4711 0.4155 0.3059 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4
𝜓 = 10, 𝜙 = 10 0.3356 0.4712 0.4225 0.3084 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4

Fig. 6. Score value of change stop locations (𝐴1).

. Comparison with existing methods

To evaluate the efficacy of the developed technique, the preceding analytical expression is addressed using many available MCDM techniques
sing different AOs, based on HPFWA (Garg, 2018), HPFWG (Garg, 2018), WHPFMSM (Garg, 2019), DHPFHWA (Wei and Lu, 2017), DHPFHWG
Wei and Lu, 2017), DHPFWBM (Tang and Wei, 2019), DHPFGWHM (Tang et al., 2019), DHPF weighted Hamy Mean (Wei et al., 2019), DHPF
eighted dual Hamy Mean (Wei et al., 2019), DH𝒒-ROFWA (Wang et al., 2019a,b), DH𝒒-ROFWG (Wang et al., 2019a,b), DH𝒒-ROFWMM (Wang
t al., 2019a,b), 𝒒-RDHFWHM (Xu et al., 2018), DH𝒒-ROFWDBM (Sarkar and Biswas, 2021), DH𝒒-ROFWDGBM (Sarkar and Biswas, 2021) and
-RDHFPWDMSM (Li et al., 2022). The assessments are conducted in two distinct ways.

The assessments are made first based on the operators’ characteristics and then on the obtained results.
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Fig. 7. Score value of provide new routes (𝐴2).

Fig. 8. Score value of provide new buses (𝐴3).

Fig. 9. Score value of modifying timetables (𝐴4).

When comparing the approach based on the operator’s characteristics, it is worth noting that all of the existing AOs, including the established
AOs, can acquire hesitant fuzzy data. By taking into account 𝑞 = 2, the existing AOs (Garg, 2018, 2019; Wei and Lu, 2017; Tang and Wei, 2019; Tang
et al., 2019; Wei et al., 2019) established in hesitant Pythagorean fuzzy environments can be viewed as a special type of comparable operators in
DH𝑞-ROF contexts. Except for the developed operators, none of the aforementioned operators took into account Frank 𝑡-norm and 𝑡-conorms, which
makes the decision aggregation procedure more flexible. When power partition operator, HM and Frank 𝑡-norm and 𝑡-conorms are combined under
DH𝑞-ROF context, the established operators become more versatile and powerful than current operators, considering interdependencies among
input arguments. Table 10 summarizes the characteristics of the present operators. This table shows how the proposed approaches cover a wide
range of existing methods.

The previous approaches (Garg, 2018, 2019; Wei and Lu, 2017; Tang and Wei, 2019; Tang et al., 2019; Wei et al., 2019; Wang et al., 2019a,b;
Xu et al., 2018; Sarkar and Biswas, 2021; Li et al., 2022) will now be compared based on achieved results. Notable is the fact that, for some values
of the parameters associated with the established method, the ranking of alternatives from different approaches stays the same as the ranking
19
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Table 10
Considered characteristics of diverse methodologies.

Methods Consideration of Consideration of Adaptability owing to Capturing information
interrelationships hesitancy the Frank operation by 𝑞-ROF

HPFWA/HPFWG (Garg, 2018) No Yes No No
WHPFMSM (Garg, 2019) Yes Yes No No
DHPFHWA/DHPFHWG (Wei and Lu, 2017) No Yes No No
DHPFWBM/DHPFWGBM (Tang and Wei, 2019) Yes Yes No No
DHPFGWHM (Tang et al., 2019) Yes Yes No No
DHPF weighted Hamy Mean/DHPF weighted dual Hamy Mean (Wei et al., 2019) Yes Yes No No
DH𝒒-ROFWA/DH𝒒-ROFWG (Wang et al., 2019a,b) No Yes No Yes
DH𝒒-ROFWMM/DH𝒒-ROFWDMM (Wang et al., 2019a,b) Yes Yes No Yes
𝒒-RDHFWHM (Xu et al., 2018) Yes Yes No Yes
DH𝒒-ROFWDBM/DH𝒒-ROFWDGBM (Sarkar and Biswas, 2021) Yes Yes No Yes
𝒒-RDHFPWDMSM (Li et al., 2022) Yes Yes No Yes
Proposed method Yes Yes Yes Yes

Table 11
Comparative analysis with the existing methods with regard to score values and ranking of the alternatives.

AOs Score values Ranking

HPFWA (Garg, 2018) 𝑆
(

𝐴1
)

= 0.7104, 𝑆
(

𝐴2
)

= 0.7756, 𝑆
(

𝐴3
)

= 0.7278, 𝑆
(

𝐴4
)

= 0.6550 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4
HPFWG (Garg, 2018) 𝑆

(

𝐴1
)

= 0.6621, 𝑆
(

𝐴2
)

= 0.6806, 𝑆
(

𝐴3
)

= 0.6251, 𝑆
(

𝐴4
)

= 0.5600 𝐴2 ≻ 𝐴1 ≻ 𝐴3 ≻ 𝐴4
WHPFMSM (Garg, 2019) 𝑆

(

𝐴1
)

= 0.3740, 𝑆
(

𝐴2
)

= 0.4289, 𝑆
(

𝐴3
)

= 0.3977, 𝑆
(

𝐴4
)

= 0.3749 𝐴2 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴1
DHPFHWA (Wei and Lu, 2017) 𝑆

(

𝐴1
)

= 0.7019, 𝑆
(

𝐴2
)

= 0.7631, 𝑆
(

𝐴3
)

= 0.7130, 𝑆
(

𝐴4
)

= 0.6364 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4
DHPFHWG (Wei and Lu, 2017) 𝑆

(

𝐴1
)

= 0.6723, 𝑆
(

𝐴2
)

= 0.7043, 𝑆
(

𝐴3
)

= 0.6496, 𝑆
(

𝐴4
)

= 0.5784 𝐴2 ≻ 𝐴1 ≻ 𝐴3 ≻ 𝐴4
DHPFWBM (Tang and Wei, 2019) 𝑆

(

𝐴1
)

= 0.3955, 𝑆
(

𝐴2
)

= 0.4498, 𝑆
(

𝐴3
)

= 0.4011, 𝑆
(

𝐴4
)

= 0.3789 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4
DHPFWGBM (Tang and Wei, 2019) 𝑆

(

𝐴1
)

= 0.7649, 𝑆
(

𝐴2
)

= 0.7539, 𝑆
(

𝐴3
)

= 0.7245, 𝑆
(

𝐴4
)

= 0.7095 𝐴1 ≻ 𝐴2 ≻ 𝐴3 ≻ 𝐴4
DHPFGWHM (Tang et al., 2019) 𝑆

(

𝐴1
)

= 0.2449, 𝑆
(

𝐴2
)

= 0.3173, 𝑆
(

𝐴3
)

= 0.2519, 𝑆
(

𝐴4
)

= 0.2030 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4
DHPF weighted Hamy Mean (Wei et al., 2019) 𝑆

(

𝐴1
)

= 0.9305, 𝑆
(

𝐴2
)

= 0.9315, 𝑆
(

𝐴3
)

= 0.9222, 𝑆
(

𝐴4
)

= 0.9113 𝐴2 ≻ 𝐴1 ≻ 𝐴3 ≻ 𝐴4
DHPF weighted dual Hamy Mean (Wei et al., 2019) 𝑆

(

𝐴1
)

= 0.2093, 𝑆
(

𝐴2
)

= 0.2752, 𝑆
(

𝐴3
)

= 0.1936, 𝑆
(

𝐴4
)

= 0.1631 𝐴2 ≻ 𝐴1 ≻ 𝐴3 ≻ 𝐴4
DH𝒒-ROFWA (Wang et al., 2019a,b) 𝑆

(

𝐴1
)

= 0.6678, 𝑆
(

𝐴2
)

= 0.7134, 𝑆
(

𝐴3
)

= 0.6846, 𝑆
(

𝐴4
)

= 0.6284 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4
DH𝒒-ROFWG (Wang et al., 2019a,b) 𝑆

(

𝐴1
)

= 0.6363, 𝑆
(

𝐴2
)

= 0.6479, 𝑆
(

𝐴3
)

= 0.6120, 𝑆
(

𝐴4
)

= 0.5600 𝐴2 ≻ 𝐴1 ≻ 𝐴3 ≻ 𝐴4
DH𝒒-ROFWMM (Wang et al., 2019a,b) 𝑆

(

𝐴1
)

= 0.4694, 𝑆
(

𝐴2
)

= 0.4985, 𝑆
(

𝐴3
)

= 0.4843, 𝑆
(

𝐴4
)

= 0.4705 𝐴2 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴1
DH𝒒-ROFWDMM (Wang et al., 2019a,b) 𝑆

(

𝐴1
)

= 0.7239, 𝑆
(

𝐴2
)

= 0.7177, 𝑆
(

𝐴3
)

= 0.6524, 𝑆
(

𝐴4
)

= 0.6469 𝐴1 ≻ 𝐴2 ≻ 𝐴3 ≻ 𝐴4
𝒒-RDHFWHM (Xu et al., 2018) 𝑆

(

𝐴1
)

= 0.2809, 𝑆
(

𝐴2
)

= 0.3622, 𝑆
(

𝐴3
)

= 0.2893, 𝑆
(

𝐴4
)

= 0.2349 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4
DH𝒒-ROFWDBM (Sarkar and Biswas, 2021) 𝑆

(

𝐴1
)

= 0.5818, 𝑆
(

𝐴2
)

= 0.6063, 𝑆
(

𝐴3
)

= 0.5784, 𝑆
(

𝐴4
)

= 0.5991 𝐴2 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴3
DH𝒒-ROFWDGBM (Sarkar and Biswas, 2021) 𝑆

(

𝐴1
)

= 0.7377, 𝑆
(

𝐴2
)

= 0.7703, 𝑆
(

𝐴3
)

= 0.6601, 𝑆
(

𝐴4
)

= 0.6460 𝐴2 ≻ 𝐴1 ≻ 𝐴3 ≻ 𝐴4
𝒒-RDHFPWDMSM (Li et al., 2022) 𝑆

(

𝐴1
)

= 0.8101, 𝑆
(

𝐴2
)

= 0.8161, 𝑆
(

𝐴3
)

= 0.7831, 𝑆
(

𝐴4
)

= 0.7488 𝐴2 ≻ 𝐴1 ≻ 𝐴3 ≻ 𝐴4
Proposed operator (DH𝒒-ROFPPWHM) 𝑆

(

𝐴1
)

= 0.3646, 𝑆
(

𝐴2
)

= 0.4892, 𝑆
(

𝐴3
)

= 0.4060, 𝑆
(

𝐴4
)

= 0.3264 𝐴2 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴4

from the established method. In Table 11 and Fig. 10, the results of the comparison are provided comprehensively. Table 11 shows the resulting
score values and ranks using all of the existing methods (Garg, 2018, 2019; Wei and Lu, 2017; Tang and Wei, 2019; Tang et al., 2019; Wei et al.,
2019; Wang et al., 2019a,b; Xu et al., 2018; Sarkar and Biswas, 2021; Li et al., 2022) under discussion, as well as the suggested approach with the
values 𝜓 = 𝜙 = 1, 𝑞 = 3, and 𝜁 = 3. Table 11 and Fig. 10 reveal that, despite minor variations in the ranking orders, the best alternative achieved
by various methods is nearly equivalent to the strategy provided in this research. Consequently, this case confirms the viability of the suggested
strategy.

By adjusting the rung parameter 𝑞; Frank parameter 𝜁 ; and HM parameters 𝜓, 𝜙, different score values of the alternatives can be produced.
Let us say a DM has a predisposition against some specific alternatives for some mysterious reason. While assessing those alternatives, the DM

ffers some extreme values (from the pessimistic/optimistic views).
When current all-but-power operators, Li et al. (2022), are used to acquire results, the results would be biased as a result of the DM’s impact on

he outcomes. Because of the influence of biased DM, 𝐷𝑘 on alternative, 𝐴𝑖, changes in optimal choice while applying some existing approaches are
he cause. The impact of extreme values provided by any biased DMs during the evaluation process can be lessened by power AOs. By calculating
he supports and generating the rational result, the developed operators DH𝑞-ROFFPPWHM, who have the advantage of power AOs, can eliminate
he impact of unreasonable extreme values. But the fact that there are other operators does not change the effect that biased DMs’ bad data has
n how decisions turn out.

There are interrelationships among the attributes in the same subsets, but there are no interrelationships among those in the different subsets.
he HPFWA (Garg, 2018), HPFWG (Garg, 2018), DHPFHWA (Wei and Lu, 2017), DHPFHWG (Wei and Lu, 2017), DH𝑞-ROFWA (Wang et al.,
019a,b), and DH𝑞-ROFWG (Wang et al., 2019a,b) operators cannot deal with this kind of complex interrelationships among the attributes, while
he proposed operator utilizes the PPHM to capture the interrelationships among the attributes.

The AOs used in the existing methods (Garg, 2018, 2019; Tang and Wei, 2019; Tang et al., 2019; Wei et al., 2019; Wang et al., 2019a,b; Xu
t al., 2018; Li et al., 2022) are based on algebraic operations, which are not general and flexible in nature. The proposed aggregation method
mploys Frank 𝑡-norm and 𝑡-conorms. Thus, the developed operators possess the ability to make the aggregation process more robust and smooth
y varying the parameters of Frank 𝑡-norm and 𝑡-conorms in the aggregation functions.

As was previously discussed, the developed method has the crucial quality of lessening the impact of excessive evaluation values brought
n by biased DMs. The suggested method can also capture DHq-ROF information, which allows the total of the 𝑞th powers of membership and
on-membership degrees to not exceed one and can represent a higher degree of uncertainty. The existing methods developed by operators (Garg,

018, 2019; Wei and Lu, 2017; Tang and Wei, 2019; Tang et al., 2019; Wei et al., 2019) are unable to address such situations.
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Fig. 10. The radar chart of ranking results on solving with various existing methods.

9. Conclusions

The proposed model is a pioneering model that can make the urban transport system more attractive and sustainable. But local government
officials and operator companies should work on improving the quality of service by making sure the public transportation system works well. Our
study shed light on MCGDM problems using HM and DH𝑞-ROF data. The generated operator is used to figure out how to solve MCGDM problems
with models with relationships between arguments that have been grouped together.

The model was used to figure out how good the public bus system in Budapest is at getting people where they need to go. The research showed
that adding new routes (𝐴2) was the most popular and best-scored way to improve the service quality of Budapest’s public transportation system.
The obtained results would aid local decision-makers in their future strategic plans for improving the quality of public transportation to improve
the city’s image and reduce commuter numbers, which is a key factor in reducing private car numbers and pollution. As a suggestion for future
research, different stakeholders should be involved so that we can learn more about their needs for improving and making strategic plans for the
current system.

Despite this, the study introduced numerous excellent concepts to the subject of decision-making. Researchers will be able to apply this DM
approach to a variety of problems, such as renewable energy source selection (Mishra et al., 2022a), biomass crop selection (Mishra et al., 2022b),
selecting cold chain logistics distribution centers (Rong et al., 2022), risk investment assessment (Tan et al., 2022), ‘‘fuel cell and hydrogen
components supplier selection’’ (Alipour et al., 2021), and medical diagnosis problems, among others. We will try to use the new DM technique
of enhanced other fuzzy sets, like ‘‘Fermatean fuzzy sets (Senapati and Yager, 2019a,b, 2020), picture fuzzy sets (Jana et al., 2019), complex
fuzzy sets, cubic intuitionistic sets (Senapati et al., 2021), bipolar soft sets (Shabir and Naz, 2013; Mahmood, 2020), bipolar complex fuzzy sets
(Mahmood and Ur Rehman, 2022), extended Pythagorean fuzzy sets (Saeidi et al., 2022), interval-valued Pythagorean fuzzy sets (Senapati and
Chen, 2021), hesitant multi-fuzzy soft set (Dey et al., 2020), 2-tuple linguistic q-rung picture fuzzy sets (Akram et al., 2023), probabilistic linguistic
sets (Krishankumar et al., 2022), and dual probabilistic linguistic set (Saha et al., 2021)’’ to make decisions in the real world in the near future.
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Linguistic 𝑞-rung orthopair fuzzy prioritized
aggregation operators based on Hamacher 𝑡-norm
and 𝑡-conorm and their applications to multicriteria

group decision making

Nayana DEB, Arun SARKAR and Animesh BISWAS

The linguistic 𝑞-rung orthopair fuzzy (L𝑞-ROF) set is an important implement in the
research area in modelling vague decision information by incorporating the advantages of 𝑞-
rung orthopair fuzzy sets and linguistic variables. This paper aims to investigate the multicriteria
decision group decision making (MCGDM) with L𝑞-ROF information. To do this, utilizing
Hamacher 𝑡-norm and 𝑡-conorm, some L𝑞-ROF prioritized aggregation operators viz., L𝑞-
ROF Hamacher prioritized weighted averaging, and L𝑞-ROF Hamacher prioritized weighted
geometric operators are developed in this paper. The defined operators can effectively deal with
different priority levels of attributes involved in the decision making processes. In addition,
Hamacher parameters incorporated with the proposed operators make the information fusion
process more flexible. Some prominent characteristics of the developed operators are also well-
proven. Then based on the proposed aggregation operators, an MCGDM model with L𝑞-ROF
context is framed. A numerical example is illustrated in accordance with the developed model
to verify its rationality and applicability. The impacts of Hamacher and rung parameters on
the achieved decision results are also analyzed in detail. Afterwards, a comparative study with
other representative methods is presented in order to reflect the validity and superiority of the
proposed approach.

Key words: linguistic 𝑞-rung orthopair fuzzy set, multicriteria group decision making,
Hamacher operations, prioritized aggregation operator

1. Introduction

Multicriteria decision making (MCDM) has emerged as an important branch
in modern decision science. It refers to find a suitable choice based on the
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evaluation information by a decision-maker (DM) from a collection of alternatives
under a set of criteria. If the evaluation of alternatives against a certain criterion
is performed under multiple DMs instead of a single DM, then the process is
termed as multicriteria group decision making (MCGDM). With the increase
in vagueness of environment day by day and the inherent fuzziness connected
with human perception, decision information cannot always be provided using
crisp numbers. In response to this issue Zadeh [1] first introduced the notion of
fuzzy set. After that, several extensions of fuzzy set were developed, including
intuitionistic fuzzy sets (IFSs) [2], interval-valued IFSs [3], Pythagorean fuzzy
sets (PFSs) [4, 5], interval-valued PFS [6, 7], Fermatin fuzzy sets (FFSs) [8] etc.
Since these extensions of fuzzy sets appear, they have received more and more
attention in solving decision-making problems [9–15]. By enlarging the scope of
IFS, PFS and FFS, recently, another variant of fuzzy set, 𝑞-rung orthopair fuzzy
(𝑞-ROF) set (𝑞-ROFS) [16], has been developed as an efficient tool in terms of
capturing uncertainty during the process of MCGDM. For 𝑞-ROFSs membership
degree ` and non-membership degree a satisfy the condition that sum of their
𝑞-th power is less than or equal to 1, i.e., `𝑞 + a𝑞 ¬ 1. As a more generalized
fuzzy set, 𝑞-ROFS include fuzzy sets, IFSs, PFSs, and FFSs as special cases with
certain conditions. For instance, 𝑞-ROFS reduces to IFS, PFS, FFS by taking the
value of rung parameter 𝑞 = 1, 2, 3, respectively. So 𝑞-ROFS is the most valuable
and focused extension of fuzzy sets in which DMs can modify the range of their
judgement values by varying rung parameter 𝑞 based on different indeterminate
degrees.
So far, 𝑞-ROFSs have attracted many scholars attention. Liu and Wang [17]

investigated multi-attribute decision making (MADM) problems with 𝑞-ROF
information on developing 𝑞-ROF weighted averaging (WA) and weighted ge-
ometric (WG) operators. They [18] further extended Archimedean Bonferroni
mean operators to 𝑞-ROF environment. Heronian mean was utilized to fuse 𝑞-
ROF data, and thereby a MADM approach was developed by Wei et al. [19].
On the basis of the cosine function, Wang et al. [20] studied novel similarity
measures for 𝑞-ROFSs. Further, a study on induced logarithmic distance mea-
sures for 𝑞-ROFSs was conducted by Zeng et al. [21]. In recent days, a variety of
applications [22–28] on 𝑞-ROFSs have been developed by numerous researchers.
However, 𝑞-ROFS theory has successfully been applied in several decision-

making processes, but in real-world issues, many attribute values are present
that are often difficult to express quantitatively. In such cases, it seems suitable to
express them using a qualitative form. To address such situations, Liu and Liu [29]
invented linguistic 𝑞-ROF (L𝑞-ROF) set (L𝑞-ROFS), following the advantage of
𝑞-ROFS and linguistic variables [30], which is a generalization of linguistic
intuitionistic fuzzy (LIF) set (LIFS) [31] and linguistic Pythagorean fuzzy (LPF)
set (LPFS) [32]. In recent years, several significant researches on L𝑞-ROFS have
been carried out, along with numerous decision-making theories.
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In short, L𝑞-ROFS have been studied effectually from different perspectives,
including information measures [33,34], traditional decision techniques [35,36],
aggregation operators [29, 37–41]. Nevertheless, to generate the ranking of al-
ternatives, aggregation operators usually can address decision making situations
more effectively than conventional decision techniques because aggregation oper-
ators can produce a ranking of alternatives along with their collective evaluation
values. In contrast, traditional techniques can be only able to produce ranking
results. Liu and Liu [29] introduced some aggregation operators based on power
Bonferroni mean and utilized them for MCGDM under L𝑞-ROF environment.
An interactional partitioned Heronian mean based decision method with L𝑞-ROF
information has been developed by Lin et al. [37]. Further, Liu and Liu [38] in-
vestigated L𝑞-ROF power Muirhead mean aggregation operators for MCGDM.
Recently, Akram et al. [39] proposed anEinsteinmodel in order to build a L𝑞-ROF
group decision-making framework, and Liu et al. [40] developed some general-
ized point weighted aggregation operators for L𝑞-ROF group decision-making
context as well.
It is important that in the process of MCDM, the required aggregation op-

erators must be general and flexible enough to capture the relationship between
the different criteria when aggregating the values of attributes. Assuming that
the criteria are at the same priority level may lead to serious loss of information.
Yager [42] introduced the prioritized averaging operator to overcome these issues,
which may take into account various priority levels of criteria during the aggre-
gating procedure. However, so far, the aggregated operators to fuse L𝑞-ROF
information have not taken prioritization relation among criteria into account.
Thus, introducing the concept prioritized aggregation (PA) operator in L𝑞-ROF
environment for developing someMCGDM techniques would be a useful study in
Literature. It is important to point out that among the existing aggregation opera-
tors for L𝑞-ROF numbers (L𝑞-ROFNs), most of the aggregation functions involve
algebraic sum and product in order to carry the aggregation process. However,
the operational rules play an important role in aggregating decision information.
Hamacher operations [43], a generalized form of algebraic and Einstein opera-
tions [44], have significant importance in the aggregation process by means of
a flexible parameter. Several achievements [45–47] have been discovered in the
past decades employing Hamacher operational rules in the aggregation process.
Therefore motivated by the idea of Hamacher 𝑡-norms and 𝑡-conorms with PA op-
erators, some L𝑞-ROF aggregation operators, viz., L𝑞-ROFHamacher prioritized
WA (L𝑞-ROFHPWA), and L𝑞-ROF Hamacher prioritized WG (L𝑞-ROFHPWG)
operators have been developed in this paper.
The paper is structured as follows. Section 2 reviews several fundamental con-

cepts such as L𝑞-ROFSs, Hamacher 𝑡-norms and 𝑡-conorms and PA operators.
Hamacher operational laws for L𝑞-ROFNs are proposed in Section 3. Section 4
introduces some newly L𝑞-ROF PA operators based on Hamacher operations,
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viz., L𝑞-ROFHPWA and L𝑞-ROFHPWG operators. Further, some characteris-
tics of these developed operators are also exhibited in this section. Section 5
illustrates an MCGDM approach utilizing the proposed aggregation operators.
A numerical example utilizing the developed approach has been provided in Sec-
tion 6. Comparative and sensitivity analyses are discussed in Section 7. Finally,
an overall summarization and scope for future studies have been demonstrated in
Section 8.

2. Preliminaries

Some basic ideas of linguistic term set (LTS), L𝑞-ROFS, PA operator, and
Hamacher 𝑡-norm and 𝑡-conorm are briefly discussed in this section.

2.1. LTS

Definition 1 [48] Let 𝔖 = {𝔖0, 𝔖1, 𝔖2, . . . , 𝔖𝑡} be a finite-ordered discrete
set with odd cardinality and the terms 𝔖0, 𝔖1, 𝔖2, . . . , 𝔖𝑡 can be specified in
terms of various real-world scenarios. Then 𝔖 is said to be a LTS if it satisfies
the following conditions:

(i) If 𝑖 > 𝑗 , then 𝔖𝑖 > 𝔖 𝑗 , implies 𝔖𝑖 is superior than 𝔖 𝑗 (Ordered);

(ii) ¬(𝔖𝑖) = 𝔖 𝑗 , where 𝑗 = 𝑡 − 𝑖 (Negation);

(iii) If 𝑖 ¬ 𝑗 , that is, 𝔖𝑖 ¬ 𝔖 𝑗 , then min
(
𝔖𝑖,𝔖 𝑗

)
= 𝔖𝑖 (Min operator);

(iv) If 𝑖  𝑗 , that is, 𝔖𝑖  𝔖 𝑗 , then max
(
𝔖𝑖,𝔖 𝑗

)
= 𝔖𝑖 (Max operator).

For example, when an expert wants to evaluate the quality of comforts of a car,
he/she may feel more convenient to assess it using LTS as

𝔖 = {𝔖0, 𝔖1, 𝔖2, . . . , 𝔖6}
= {extreme low, very low, low, medium, high, very high, extreme high} .

Further, Xu [49] prolonged the notion of discrete LTS 𝔖 to continuous LTS
(CLTS) 𝔖 such that 𝔖 = {𝔖ℏ |𝔖0 ¬ 𝔖ℏ ¬ 𝔖𝑡 , ℏ ∈ [0, 𝑡]} and the components
likewise meet all of the preceding requirements.

2.2. Lq-ROFS

Definition 2 [29] An L𝑞-ROFS B̃ defined in a universe of discourse 𝑋 =

{𝑥1, 𝑥2, . . . , 𝑥𝑛} is represented by

B̃ =

{〈
𝑥,𝔖𝛾B̃

(𝑥),𝔖ZB̃
(𝑥)

〉 �� 𝑥 ∈ 𝑋

}
, (1)
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where 𝔖𝛾B̃
(𝑥), 𝔖ZB̃

(𝑥) ∈ 𝔖[0,𝑡] denote the linguistic membership and non-

membership degrees, respectively satisfying the condition 0 ¬
(
𝛾B̃

)𝑞
+
(
ZB̃

)𝑞
¬ 𝑡𝑞

(𝑞  1) for every 𝑥 ∈ 𝑋 . For convenience, Liu and Liu [29] represents a L𝑞-ROFN
as 𝛽 =

〈
𝔖𝛾,𝔖Z

〉
. The linguistic indeterminacy degree of 𝑥 to 𝛽 is presented as

𝔖𝜋
𝛽
(𝑥) = 𝔖

(𝑡𝑞−𝛾𝑞−Z𝑞)
1
𝑞
.

Definition 3 [29] Let 𝛽 =
〈
𝔖𝛾,𝔖Z

〉
be an L𝑞-ROFN, the score function, 𝑆

(
𝛽

)
,

and accuracy function, 𝐴
(
𝛽

)
, of the L𝑞-ROFN can be defined as

𝑆

(
𝛽

)
=

(
𝑡𝑞 + 𝛾𝑞 − Z𝑞

2

) 1
𝑞

, (2)

and
𝐴

(
𝛽

)
= (𝛾𝑞 + Z𝑞)

1
𝑞 . (3)

The following comparison method based on the score and accuracy functions is
presented to compare any two L𝑞-ROFNs.
Definition 4 [29] Let 𝛽1 =

〈
𝔖𝛾1 ,𝔖Z1

〉
, 𝛽2 =

〈
𝔖𝛾2 , 𝔖Z2

〉
be any two L𝑞-ROFNs

(i) If 𝑆
(
𝛽1

)
< 𝑆

(
𝛽2

)
, then 𝛽1 ≺ 𝛽2;

(ii) If 𝑆
(
𝛽1

)
= 𝑆

(
𝛽2

)
, then

• if 𝐴
(
𝛽1

)
< 𝐴

(
𝛽2

)
, then 𝛽1 ≺ 𝛽2 which means 𝛽2 is better than 𝛽1;

• if 𝐴
(
𝛽1

)
= 𝐴

(
𝛽2

)
, then 𝛽1 ≈ 𝛽2, which means 𝛽1 is equal to 𝛽2.

2.3. PA operator

Yager [42] originally introduced the PA operator, which is presented in the
following:

Definition 5 [42] Consider {𝐶𝑖 | 𝑖 = 1, 2, . . . , 𝑛} as a collection of criteria, the
linear ordering 𝐶1 � 𝐶2 � . . . � 𝐶𝑛 represents their priority. This ordering
reveals that if 𝑗 < 𝑘 then criteria𝐶 𝑗 has a higher priority than𝐶𝑘 .𝐶 𝑗 (𝑥) ∈ [0, 1]
denotes the assessment value of any alternative 𝑥 evaluated on the criteria 𝐶 𝑗 .

If 𝑃𝐴
(
𝐶 𝑗 (𝑥)

)
=

𝑛∑︁
𝑗=1

𝑤 𝑗𝐶 𝑗 (𝑥), where 𝑤 𝑗 =
𝑇𝑗

𝑛∑
𝑗=1

𝑇𝑗

, 𝑇𝑗 =

𝑗−1∏
𝑘=1

𝐶𝑘 (𝑥)

( 𝑗 = 2, . . . , 𝑛), 𝑇1 = 1. Then 𝑃𝐴
(
𝐶 𝑗 (𝑥)

)
is called the PA operator.
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2.4. Hamacher t-norms and t-conorms

In 1978, Hamacher [43] introduced one of generalized 𝑡-norm and 𝑡-conorm,
which is known as Hamacher 𝑡-norms and 𝑡-conorms, and expressed as (𝜍 > 0):

• Hamacher 𝑡-norm: 𝑇𝐻
𝜍 (𝑥, 𝑦) = 𝑥𝑦

𝜍 + (1 − 𝜍) (𝑥 + 𝑦 − 𝑥𝑦) ,

• Hamacher 𝑡-conorm: 𝑆𝐻𝜍 (𝑥, 𝑦) =
𝑥 + 𝑦 − 𝑥𝑦 − (1 − 𝜍) 𝑥𝑦
1 − (1 − 𝜍) 𝑥𝑦 .

3. Hamacher t-norms and t-conorms based operational laws for Lq-ROFNs

According to the Hamacher 𝑡-norms and 𝑡-conorms, the following operational
rules of L𝑞-ROFNs are defined as follows.

Definition 6 Let 𝔖 = {𝔖ℏ : ℏ ∈ [0, 𝑡]} be a CLTS, 𝛽1 =
〈
𝔖𝛾1 ,𝔖Z1

〉
,

𝛽2 =
〈
𝔖𝛾2 ,𝔖Z2

〉
and 𝛽 =

〈
𝔖𝛾,𝔖Z

〉
be three L𝑞-ROFNs. Then, the Hamacher

operational laws of L𝑞-ROFNs are defined as (_ > 0)

(i) 𝛽1 ⊕𝐻 𝛽2 =

〈
𝔖

𝑡

(
𝑡𝑞𝛾

𝑞

1 +𝑡
𝑞𝛾

𝑞

2 −𝛾
𝑞

1 𝛾
𝑞

2 −(1−𝜍 )𝛾
𝑞

1 𝛾
𝑞

2
𝑡2𝑞−(1−𝜍 )𝛾𝑞1 𝛾

𝑞

2

) 1
𝑞
, 𝔖

𝑡

(
Z
𝑞

1 Z
𝑞

2
𝜍𝑡2𝑞+(1−𝜍 )(𝑡𝑞 Z 𝑞1 +𝑡𝑞 Z 𝑞2 −Z 𝑞1 Z

𝑞

2 )
) 1
𝑞

〉
;

(ii) 𝛽1 ⊗𝐻 𝛽2 =

〈
𝔖

𝑡

(
𝛾
𝑞

1 𝛾
𝑞

2
𝜍𝑡2𝑞+(1−𝜍 )(𝑡𝑞𝛾𝑞1 +𝑡𝑞𝛾𝑞2 −𝛾𝑞1 𝛾𝑞2 )

) 1
𝑞
, 𝔖

𝑡

(
𝑡𝑞 Z

𝑞

1 +𝑡𝑞 Z 𝑞2 −Z 𝑞1 Z
𝑞

2 −(1−𝜍 )Z 𝑞1 Z
𝑞

2
𝑡2𝑞−(1−𝜍 )Z 𝑞1 Z

𝑞

2

) 1
𝑞

〉
;

(iii) _𝛽 =

〈
𝔖

𝑡

(
(𝑡𝑞+𝛾𝑞 (𝜍−1))_−(𝑡𝑞−𝛾𝑞 )_

(𝑡𝑞+𝛾𝑞 (𝜍−1))_+(𝜍−1) (𝑡𝑞−𝛾𝑞 )_

) 1
𝑞
, 𝔖

𝑡

(
𝜍 Z 𝑞_

(𝑡𝑞+(𝜍−1) (𝑡𝑞−Z 𝑞 ))_+(𝜍−1)Z 𝑞_

) 1
𝑞

〉
;

(iv) 𝛽_ =

〈
𝔖

𝑡

(
𝜍𝛾𝑞_

(𝑡𝑞+(𝜍−1) (𝑡𝑞−𝛾𝑞 ))_+(𝜍−1)𝛾𝑞_

) 1
𝑞
, 𝔖

𝑡

(
(𝑡𝑞+Z 𝑞 (𝜍−1))_−(𝑡𝑞−Z 𝑞 )_

(𝑡𝑞+Z 𝑞 (𝜍−1))_+(𝜍−1) (𝑡𝑞−Z 𝑞 )_

) 1
𝑞

〉
.

4. Development of Hamacher operations-based PA operators
on Lq-ROF environment

In the following, utilizing Hamacher operations, the PA operator is extended
into L𝑞-ROFNs and L𝑞-ROFHPWA and L𝑞-ROFHPWG operators are proposed.
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Definition 7 Let
{
𝛽1, 𝛽2, ..., 𝛽𝑛

}
represents a collection of L𝑞-ROFNs, where

𝛽𝑖 =
〈
𝔖𝛾𝑖 ,𝔖Z𝑖

〉
(𝑖 = 1, 2, . . . , 𝑛) and 𝑞  1. Then L𝑞-ROFHPWA operator is

defined as

L𝑞-ROFHPWA
(
𝛽1, 𝛽2, ..., 𝛽𝑛

)
=

𝑛⊕
𝐻

𝑖=1

©«
𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝛽𝑖

ª®®®¬ (4)

where 𝜔 = (𝜔1, 𝜔2, . . . , 𝜔𝑛) is the weight vectors of 𝛽𝑖 with 𝜔𝑖 ∈ [0, 1] and

𝜔𝑖 =
𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

, 𝑇𝑖 =
𝑖−1∏
𝑘=1

𝑆

(
𝛽𝑘

)
𝑡

(𝑖 = 2, . . . , 𝑛), 𝑇1 = 1 and 𝑆

(
𝛽𝑖

)
is the score of 𝛽𝑖.

Theorem 1 Let 𝛽𝑖 =
〈
𝔖𝛾𝑖 ,𝔖Z𝑖

〉
(𝑖 = 1, 2, . . . , 𝑛) represents a collection of L𝑞-

ROFNs. Then, the aggregated result is also a L𝑞-ROFN based on L𝑞-ROFHPWA
operator, and

L𝑞-ROFHPWA
(
𝛽1, 𝛽2, ..., 𝛽𝑛

)
=

𝑛⊕
𝐻

𝑖=1

©«
𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝛽𝑖

ª®®®¬
=

〈
𝔖

𝑡

©«
𝑛∏
𝑖=1
(𝑡𝑞+(𝜍−1)𝛾𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
−

𝑛∏
𝑖=1
(𝑡𝑞−𝛾𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑛∏
𝑖=1
(𝑡𝑞+(𝜍−1)𝛾𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
+(𝜍−1)

𝑛∏
𝑖=1
(𝑡𝑞−𝛾𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

ª®®®®®®®¬

1
𝑞
,

𝔖

𝑡

©«
𝜍

𝑛∏
𝑖=1

Z

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑞

𝑖

𝑛∏
𝑖=1
(𝑡𝑞+(𝜍−1)(𝑡𝑞−Z 𝑞𝑖 ))

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
+(𝜍−1)

𝑛∏
𝑖=1

Z

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑞

𝑖

ª®®®®®®®®¬

1
𝑞

〉
.
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Proof. Based on Definition 6,

𝑇𝑖
𝑛∑
𝑖=1
𝑇𝑖

𝛽𝑖

=

〈
𝔖

𝑡

©«
(𝑡𝑞+𝛾𝑞𝑖 (𝜍−1))

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
−(𝑡𝑞−𝛾𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

(𝑡𝑞+𝛾𝑞𝑖 (𝜍−1))

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
+(𝜍−1)(𝑡𝑞−𝛾𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

ª®®®®®®¬

1
𝑞
, 𝔖

𝑡

©«
𝜍 Z

𝑞
𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑖

(𝑡𝑞+(𝜍−1)(𝑡𝑞−Z 𝑞𝑖 ))

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
+(𝜍−1)Z

𝑞
𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑖

ª®®®®®®®¬

1
𝑞

〉
.

Then, it can be obtained that

2⊕
𝐻

𝑖=1

©«
𝑇𝑖
2∑
𝑖=1

𝑇𝑖

𝛽𝑖

ª®®®®¬
=

𝑇1
2∑
𝑖=1

𝑇𝑖

𝛽1 ⊕𝐻

𝑇2
2∑
𝑖=1

𝑇𝑖

𝛽2 =

=

〈
𝔖

𝑡

©«
(𝑡𝑞+𝛾𝑞1 (𝜍−1))

𝑇1
2∑
𝑖=1

𝑇𝑖
−(𝑡𝑞−𝛾𝑞1 )

𝑇1
2∑
𝑖=1

𝑇𝑖

(𝑡𝑞+𝛾𝑞1 (𝜍−1))

𝑇1
2∑
𝑖=1

𝑇𝑖
+(𝜍−1)(𝑡𝑞−𝛾𝑞1 )

𝑇1
2∑
𝑖=1

𝑇𝑖

ª®®®®®®®¬

1
𝑞
, 𝔖

𝑡

©«
𝜍 Z

𝑇1
2∑
𝑖=1

𝑇𝑖

𝑞

1

(𝑡𝑞+(𝜍−1)(𝑡𝑞−Z 𝑞1 ))

𝑇1
2∑
𝑖=1

𝑇𝑖
+(𝜍−1)Z

𝑇1
2∑
𝑖=1

𝑇𝑖

𝑞

1

ª®®®®®®®¬

1
𝑞

〉
⊕𝐻

〈
𝔖

𝑡

©«
(𝑡𝑞+𝛾𝑞2 (𝜍−1))

𝑇2
2∑
𝑖=1

𝑇𝑖
−(𝑡𝑞−𝛾𝑞2 )

𝑇2
2∑
𝑖=1

𝑇𝑖

(𝑡𝑞+𝛾𝑞2 (𝜍−1))

𝑇2
2∑
𝑖=1

𝑇𝑖
+(𝜍−1)(𝑡𝑞−𝛾𝑞2 )

𝑇2
2∑
𝑖=1

𝑇𝑖

ª®®®®®®®¬

1
𝑞
, 𝔖

𝑡

©«
𝜍 Z

𝑇2
2∑
𝑖=1

𝑇𝑖

𝑞

2

(𝑡𝑞+(𝜍−1)(𝑡𝑞−Z 𝑞2 ))

𝑇2
2∑
𝑖=1

𝑇𝑖
+(𝜍−1)Z

𝑇2
2∑
𝑖=1

𝑇𝑖

𝑞

2

ª®®®®®®®¬

1
𝑞

〉
=

〈
𝔖

𝑡

©«
2∏
𝑖=1
(𝑡𝑞+(𝜍−1)𝛾𝑞𝑖 )

𝑇𝑖
2∑
𝑖=1

𝑇𝑖
−
2∏
𝑖=1
(𝑡𝑞−𝛾𝑞𝑖 )

𝑇𝑖
2∑
𝑖=1

𝑇𝑖

2∏
𝑖=1
(𝑡𝑞+(𝜍−1)𝛾𝑞𝑖 )

𝑇𝑖
2∑
𝑖=1

𝑇𝑖
+(𝜍−1)

2∏
𝑖=1
(𝑡𝑞−𝛾𝑞𝑖 )

𝑇𝑖
2∑
𝑖=1

𝑇𝑖

ª®®®®®®®®¬

1
𝑞
, 𝔖

𝑡

©«
𝜍
2∏
𝑖=1

Z

𝑇𝑖
2∑
𝑖=1

𝑇𝑖

𝑞

𝑖

2∏
𝑖=1
(𝑡𝑞+(𝜍−1)(𝑡𝑞−Z 𝑞𝑖 ))

𝑇𝑖
2∑
𝑖=1

𝑇𝑖
+(𝜍−1)

2∏
𝑖=1

Z

𝑇𝑖
2∑
𝑖=1

𝑇𝑖

𝑞

𝑖

ª®®®®®®®®®¬

1
𝑞

〉
.

So, the theorem is true for 𝑛 = 2.
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Now let theorem is true for 𝑛 = 𝑚, i.e.,

L𝑞-ROFHPWA
(
𝛽1, 𝛽2, . . . , 𝛽𝑚

)
=

𝑚⊕
𝐻

𝑖=1

(
𝑇𝑖
𝑚∑
𝑖=1

𝑇𝑖

𝛽𝑖

)

=

〈
𝔖

𝑡

©«
𝑚∏
𝑖=1
(𝑡𝑞+(𝜍−1)𝛾𝑞𝑖 )

𝑇𝑖
𝑚∑
𝑖=1

𝑇𝑖
−
𝑚∏
𝑖=1
(𝑡𝑞−𝛾𝑞𝑖 )

𝑇𝑖
𝑚∑
𝑖=1

𝑇𝑖

𝑚∏
𝑖=1
(𝑡𝑞+(𝜍−1)𝛾𝑞𝑖 )

𝑇𝑖
𝑚∑
𝑖=1

𝑇𝑖
+(𝜍−1)

𝑚∏
𝑖=1
(𝑡𝑞−𝛾𝑞𝑖 )

𝑇𝑖
𝑚∑
𝑖=1

𝑇𝑖

ª®®®®®®®¬

1
𝑞
,

𝔖

𝑡

©«
𝜍

𝑚∏
𝑖=1

Z

𝑇𝑖
𝑚∑
𝑖=1

𝑇𝑖

𝑞

𝑖

𝑚∏
𝑖=1
(𝑡𝑞+(𝜍−1)(𝑡𝑞−Z 𝑞𝑖 ))

𝑇𝑖
𝑚∑
𝑖=1

𝑇𝑖
+(𝜍−1)

𝑚∏
𝑖=1

Z

𝑇𝑖
𝑚∑
𝑖=1

𝑇𝑖

𝑞

𝑖

ª®®®®®®®®¬

1
𝑞

〉
.

Now would show that it is true for 𝑛 = 𝑚 + 1,

L𝑞-ROFHPWA
(
𝛽1, 𝛽2, ..., 𝛽𝑚, 𝛽𝑚+1

)
=

(
L𝑞-ROFHPWA

(
𝛽1, 𝛽2, . . . , 𝛽𝑚

))
⊕𝐻

𝑇𝑚+1
𝑚+1∑
𝑖=1

𝑇𝑖

𝛽𝑚+1

=

〈
𝔖

𝑡

©«
𝑚∏
𝑖=1
(𝑡𝑞+(𝜍−1)𝛾𝑞𝑖 )

𝑇𝑖
𝑚∑
𝑖=1

𝑇𝑖
−
𝑚∏
𝑖=1
(𝑡𝑞−𝛾𝑞𝑖 )

𝑇𝑖
𝑚∑
𝑖=1

𝑇𝑖

𝑚∏
𝑖=1
(𝑡𝑞+(𝜍−1)𝛾𝑞𝑖 )

𝑇𝑖
𝑚∑
𝑖=1

𝑇𝑖
+(𝜍−1)

𝑚∏
𝑖=1
(𝑡𝑞−𝛾𝑞𝑖 )

𝑇𝑖
𝑚∑
𝑖=1

𝑇𝑖

ª®®®®®®®¬

1
𝑞
,

𝔖

𝑡

©«
𝜍

𝑚∏
𝑖=1

Z

𝑇𝑖
𝑚∑
𝑖=1

𝑇𝑖

𝑞

𝑖

𝑚∏
𝑖=1
(𝑡𝑞+(𝜍−1)(𝑡𝑞−Z 𝑞𝑖 ))

𝑇𝑖
𝑚∑
𝑖=1

𝑇𝑖
+(𝜍−1)

𝑚∏
𝑖=1

Z

𝑇𝑖
𝑚∑
𝑖=1

𝑇𝑖

𝑞

𝑖

ª®®®®®®®®¬

1
𝑞

〉
⊕𝐻
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𝔖

𝑡

©«
(𝑡𝑞+𝛾𝑞𝑖 (𝜍−1))

𝑇𝑚+1
𝑚+1∑
𝑖=1

𝑇𝑖
−(𝑡𝑞−𝛾𝑞𝑖 )

𝑇𝑚+1
𝑚+1∑
𝑖=1

𝑇𝑖

(𝑡𝑞+𝛾𝑞𝑖 (𝜍−1))

𝑇𝑚+1
𝑚+1∑
𝑖=1

𝑇𝑖
+(𝜍−1)(𝑡𝑞−𝛾𝑞𝑖 )

𝑇𝑚+1
𝑚+1∑
𝑖=1

𝑇𝑖

ª®®®®®®®¬

1
𝑞
, 𝔖

𝑡

©«
𝜍 Z

𝑞
𝑇𝑚+1
𝑚+1∑
𝑖=1

𝑇𝑖

𝑖

(𝑡𝑞+(𝜍−1)(𝑡𝑞−Z 𝑞𝑖 ))

𝑇𝑚+1
𝑚+1∑
𝑖=1

𝑇𝑖
+(𝜍−1)Z

𝑞
𝑇𝑚+1
𝑚+1∑
𝑖=1

𝑇𝑖

𝑖

ª®®®®®®®¬

1
𝑞

〉
=

〈
𝔖

𝑡

©«
𝑚+1∏
𝑖=1
(𝑡𝑞+(𝜍−1)𝛾𝑞𝑖 )

𝑇𝑖
𝑚+1∑
𝑖=1

𝑇𝑖
−
𝑚+1∏
𝑖=1
(𝑡𝑞−𝛾𝑞𝑖 )

𝑇𝑖
𝑚+1∑
𝑖=1

𝑇𝑖

𝑚+1∏
𝑖=1
(𝑡𝑞+(𝜍−1)𝛾𝑞𝑖 )

𝑇𝑖
𝑚+1∑
𝑖=1

𝑇𝑖
+(𝜍−1)

𝑚+1∏
𝑖=1
(𝑡𝑞−𝛾𝑞𝑖 )

𝑇𝑖
𝑚+1∑
𝑖=1

𝑇𝑖

ª®®®®®®®®¬

1
𝑞
,

𝔖

𝑡

©«
𝜍
𝑚+1∏
𝑖=1

Z

𝑇𝑖
𝑚+1∑
𝑖=1

𝑇𝑖

𝑞

𝑖

𝑚+1∏
𝑖=1
(𝑡𝑞+(𝜍−1)(𝑡𝑞−Z 𝑞𝑖 ))

𝑇𝑖
𝑚+1∑
𝑖=1

𝑇𝑖
+(𝜍−1)

𝑚+1∏
𝑖=1

Z

𝑇𝑖
𝑚+1∑
𝑖=1

𝑇𝑖

𝑞

𝑖

ª®®®®®®®®®¬

1
𝑞

〉
.

Since it is valid for 𝑛 = 𝑚 + 1, theorem is proved for all 𝑛. 2

In the next, some particular cases, concerning parameter 𝜍, for L𝑞-ROFHPWA
operator are discussed.

• When 𝜍 = 1, L𝑞-ROFHPWA operator reduces to the L𝑞-ROF weighted
average (L𝑞-ROFPWA) operator as follows:

L𝑞-ROFPWA
(
𝛽1, 𝛽2, . . . , 𝛽𝑛

)
=

〈
𝔖

𝑡

©«
𝑡𝑞−

𝑛∏
𝑖=1
(𝑡𝑞−𝛾𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑡𝑞

ª®®®®®®®¬

1
𝑞
, 𝔖

𝑡

©«
𝑛∏
𝑖=1

(
Z𝑖
𝑡

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑞ª®®®®¬
1
𝑞

〉
.

• When 𝜍 = 2, L𝑞-ROFHPWA operator reduces to the L𝑞-ROF Einstein
weighted average (L𝑞-ROFEPWA) operator as follows:
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L𝑞-ROFEPWA
(
𝛽1, 𝛽2, . . . , 𝛽𝑛

)
=

〈
𝔖

𝑡

©«
𝑛∏
𝑖=1
(𝑡𝑞+𝛾𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
−

𝑛∏
𝑖=1
(𝑡𝑞−𝛾𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑛∏
𝑖=1
(𝑡𝑞+𝛾𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
+

𝑛∏
𝑖=1
(𝑡𝑞−𝛾𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

ª®®®®®®®¬

1
𝑞
, 𝔖

𝑡

©«
2

𝑛∏
𝑖=1

Z

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑞

𝑖

𝑛∏
𝑖=1
(𝑡𝑞+(𝑡𝑞−Z 𝑞𝑖 ))

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
+

𝑛∏
𝑖=1

Z

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑞

𝑖

ª®®®®®®®®¬

1
𝑞

〉
.

Example 1Let 𝛽1 = 〈𝔖4,𝔖4〉, 𝛽2 = 〈𝔖6,𝔖2〉, 𝛽3 = 〈𝔖5,𝔖3〉 and 𝛽4 = 〈𝔖7,𝔖2〉
be four L𝑞-ROFNs on LTS

{
𝑆𝑖

�� 𝑖 = 0, 1, . . . , 8}. Utilizing the score function of
L𝑞-ROFNs, 𝑆

(
𝛽1

)
= 6.3496, 𝑆

(
𝛽2

)
= 7.1138, 𝑆

(
𝛽3

)
= 6.7313 and 𝑆

(
𝛽4

)
=

7.5096 are obtained. So, 𝑇1 = 1, 𝑇2 = 0.7937, 𝑇3 = 0.7058 and 𝑇4 = 0.5939.
Then using L𝑞-ROFHPWA operator, the aggregated value of 𝛽1, 𝛽2, 𝛽3 and 𝛽4
is calculated as (Considering 𝜍 = 3, 𝑞 = 3)

L𝑞-ROFHPWA
(
𝛽1, 𝛽2, 𝛽3, 𝛽4

)
=

〈
𝔖

8

©«
4∏
𝑖=1
(83+(3−1)𝛾3𝑖 )

𝑇𝑖
4∑
𝑖=1

𝑇𝑖
−
4∏
𝑖=1
(83−𝛾3𝑖 )

𝑇𝑖
4∑
𝑖=1

𝑇𝑖

4∏
𝑖=1
(83+(3−1)𝛾3𝑖 )

𝑇𝑖
4∑
𝑖=1

𝑇𝑖
+(3−1)

4∏
𝑖=1
(83−𝛾3𝑖 )

𝑇𝑖
4∑
𝑖=1

𝑇𝑖

ª®®®®®®®®¬

1
3
,

𝔖

8

©«
3
4∏
𝑖=1

Z

3 𝑇𝑖
4∑
𝑖=1

𝑇𝑖

𝑖

4∏
𝑖=1
(83+(3−1)(83−Z 3𝑖 ))

𝑇𝑖
4∑
𝑖=1

𝑇𝑖
+(3−1)

4∏
𝑖=1

Z

3 𝑇𝑖
4∑
𝑖=1

𝑇𝑖

𝑖

ª®®®®®®®®®¬

1
3

〉
= 〈𝔖5.6021, 𝔖2.7571〉 .

Furthermore, the proposed L𝑞-ROFHPWA operator meets certain important
properties, which are stated as follows.

Theorem 2 (Idempotency) Let 𝛽𝑖 =
〈
𝔖𝛾𝑖 ,𝔖Z𝑖

〉
(𝑖 = 1, 2, . . . , 𝑛) be a col-

lection of 𝑛 L𝑞-ROFNs. If 𝛽𝑖 = 𝛽 =
〈
𝔖𝛾,𝔖Z

〉
for all 𝑖 = 1, 2, . . . , 𝑛, then

L𝑞-ROFHPWA
(
𝛽1, 𝛽2, . . . , 𝛽𝑛

)
= 𝛽.
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Proof. Since 𝛽𝑖 =
〈
𝔖𝛾𝑖 ,𝔖Z𝑖

〉
=

〈
𝔖𝛾,𝔖Z

〉
= 𝛽 for all 𝑖 = 1, 2, . . . , 𝑛;

Then,

L𝑞-ROFHPWA
(
𝛽1, 𝛽2, . . . , 𝛽𝑛

)
= L𝑞-ROFHPWA

(
𝛽, 𝛽, . . . , 𝛽

)

=

〈
𝔖

𝑡

©«
𝑛∏
𝑖=1

(𝑡𝑞+(𝜍−1)𝛾𝑞 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
−

𝑛∏
𝑖=1

(𝑡𝑞−𝛾𝑞 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑛∏
𝑖=1

(𝑡𝑞+(𝜍−1)𝛾𝑞 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
+(𝜍−1)

𝑛∏
𝑖=1

(𝑡𝑞−𝛾𝑞 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

ª®®®®®®®¬

1
𝑞
,

𝔖

𝑡

©«
𝜍

𝑛∏
𝑖=1

Z

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑞

𝑛∏
𝑖=1

(𝑡𝑞+(𝜍−1) (𝑡𝑞−Z 𝑞 ))

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
+(𝜍−1)

𝑛∏
𝑖=1

Z

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑞

ª®®®®®®®¬

1
𝑞

〉
=

〈
𝔖

𝑡

©«
(𝑡𝑞+(𝜍−1)𝛾𝑞 )

𝑇1
𝑛∑
𝑖=1

𝑇𝑖

+ 𝑇2
𝑛∑
𝑖=1

𝑇𝑖

+...+ 𝑇𝑛
𝑛∑
𝑖=1

𝑇𝑖
−(𝑡𝑞−𝛾𝑞 )

𝑇1
𝑛∑
𝑖=1

𝑇𝑖

+ 𝑇2
𝑛∑
𝑖=1

𝑇𝑖

+...+ 𝑇𝑛
𝑛∑
𝑖=1

𝑇𝑖

(𝑡𝑞+(𝜍−1)𝛾𝑞 )

𝑇1
𝑛∑
𝑖=1

𝑇𝑖

+ 𝑇2
𝑛∑
𝑖=1

𝑇𝑖

+...+ 𝑇𝑛
𝑛∑
𝑖=1

𝑇𝑖
+(𝜍−1) (𝑡𝑞−𝛾𝑞 )

𝑇1
𝑛∑
𝑖=1

𝑇𝑖

+ 𝑇2
𝑛∑
𝑖=1

𝑇𝑖

+...+ 𝑇𝑛
𝑛∑
𝑖=1

𝑇𝑖

ª®®®®®¬

1
𝑞
,

𝔖

𝑡

©«
𝜍 Z

𝑞

©«
𝑇1
𝑛∑
𝑖=1

𝑇𝑖

+ 𝑇2
𝑛∑
𝑖=1

𝑇𝑖

+...+ 𝑇𝑛
𝑛∑
𝑖=1

𝑇𝑖

ª®®®®¬

(𝑡𝑞+(𝜍−1) (𝑡𝑞−Z 𝑞 ))

𝑇1
𝑛∑
𝑖=1

𝑇𝑖

+ 𝑇2
𝑛∑
𝑖=1

𝑇𝑖

+...+ 𝑇𝑛
𝑛∑
𝑖=1

𝑇𝑖
+(𝜍−1)Z

𝑞

©«
𝑇1
𝑛∑
𝑖=1

𝑇𝑖

+ 𝑇2
𝑛∑
𝑖=1

𝑇𝑖

+...+ 𝑇𝑛
𝑛∑
𝑖=1

𝑇𝑖

ª®®®®¬

ª®®®®®®®®®¬

1
𝑞

〉
=

〈
𝔖

𝑡

(
(𝑡𝑞+(𝜍−1)𝛾𝑞 )−(𝑡𝑞−𝛾𝑞 )

(𝑡𝑞+(𝜍−1)𝛾𝑞 )+(𝜍−1) (𝑡𝑞−𝛾𝑞 )

) 1
𝑞
, 𝔖

𝑡

(
𝜍 Z 𝑞

(𝑡𝑞+(𝜍−1) (𝑡𝑞−Z 𝑞 ))+(𝜍−1)Z 𝑞
) 1
𝑞

〉
=

〈
𝔖𝛾, 𝔖Z

〉
.

Hence the theorem is proved. 2
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Theorem 3 (Boundedness) Let 𝛽𝑖 =
〈
𝑆𝛾𝑖 , 𝑆Z𝑖

〉
(𝑖 = 1, 2, . . . , 𝑛) be a collection of

L𝑞-ROFNs, and 𝛾− = {𝛾𝑖}, 𝛾+ = {𝛾𝑖}, Z− = {Z𝑖}, Z+ = {Z𝑖} then

𝛽− ¬ L𝑞-ROFHPWA
(
𝛽1, 𝛽2, . . . , 𝛽𝑛

)
¬ 𝛽+,

where 𝛽− =
〈
𝑆𝛾− , 𝑆Z+

〉
and 𝛽+ =

〈
𝑆𝛾+ , 𝑆Z−

〉
.

Proof. Let 𝑓 (𝑥) = 𝑡𝑞 + (𝜍 − 1)𝑥
𝑡𝑞 − 𝑥

, 𝑥 ∈ [0, 𝑡), then 𝑓 ′(𝑥) = 𝑡𝑞𝜍

(𝑡𝑞 − 𝑥)2
> 0, thus 𝑓

is an increasing function. Since 𝛾− ¬ 𝛾𝑖 ¬ 𝛾+, for all 𝑖 = 1, 2, . . . , 𝑛,

(𝑡𝑞 + (𝜍 − 1) (𝛾−)𝑞)
(𝑡𝑞 − (𝛾−)𝑞) ¬

(
𝑡𝑞 + (𝜍 − 1)𝛾𝑞

𝑖

)(
𝑡𝑞 − 𝛾

𝑞

𝑖

) ¬

(
𝑡𝑞 + (𝜍 − 1) (𝛾+)𝑞

)
(𝑡𝑞 − (𝛾+)𝑞) .

So,(
(𝑡𝑞 + (𝜍−1) (𝛾−)𝑞)

(𝑡𝑞 − (𝛾−)𝑞)

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
¬

( (
𝑡𝑞 + (𝜍−1)𝛾𝑞

𝑖

)(
𝑡𝑞 − 𝛾

𝑞

𝑖

) ) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

¬
( (
𝑡𝑞 + (𝜍−1) (𝛾+)𝑞

)
(𝑡𝑞 − (𝛾+)𝑞)

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

⇔
𝑛∏
𝑖=1

(
(𝑡𝑞 + (𝜍 − 1) (𝛾−)𝑞)

(𝑡𝑞 − (𝛾−)𝑞)

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
¬

𝑛∏
𝑖=1

( (
𝑡𝑞 + (𝜍 − 1)𝛾𝑞

𝑖

)(
𝑡𝑞 − 𝛾

𝑞

𝑖

) ) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

¬
𝑛∏
𝑖=1

( (
𝑡𝑞 + (𝜍 − 1) (𝛾+)𝑞

)
(𝑡𝑞 − (𝛾+)𝑞)

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖 ⇔ (𝑡𝑞 + (𝜍 − 1) (𝛾−)𝑞)
(𝑡𝑞 − (𝛾−)𝑞) + (𝜍 − 1)

¬
𝑛∏
𝑖=1

( (
𝑡𝑞 + (𝜍 − 1)𝛾𝑞

𝑖

)(
𝑡𝑞 − 𝛾

𝑞

𝑖

) ) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖 + (𝜍 − 1) ¬
(
𝑡𝑞 + (𝜍 − 1) (𝛾+)𝑞

)
(𝑡𝑞 − (𝛾+)𝑞) + (𝜍 − 1)

⇔ 1
(𝑡𝑞+(𝜍−1) (𝛾−)𝑞)

(𝑡𝑞−(𝛾−)𝑞) + (𝜍 − 1)


1

𝑛∏
𝑖=1

( (𝑡𝑞+(𝜍−1)𝛾𝑞𝑖 )
(𝑡𝑞−𝛾𝑞𝑖 )

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖 + (𝜍 − 1)


1

(𝑡𝑞+(𝜍−1) (𝛾+)𝑞)
(𝑡𝑞−(𝛾+)𝑞) + (𝜍 − 1)

⇔ 𝜍 (𝑡𝑞 − (𝛾−)𝑞)
𝜍𝑡𝑞


𝜍

𝑛∏
𝑖=1

(
𝑡𝑞 − 𝛾

𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑛∏
𝑖=1

(
𝑡𝑞 + (𝜍 − 1)𝛾𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖 + (𝜍 − 1)
𝑛∏
𝑖=1

(
𝑡𝑞 − 𝛾

𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖


𝜍

(
𝑡𝑞 − (𝛾+)𝑞

)
𝜍𝑡𝑞
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⇔ 1 − 𝜍 (𝑡𝑞 − (𝛾−)𝑞)
𝜍𝑡𝑞

¬ 1 −
𝜍

𝑛∏
𝑖=1

(
𝑡𝑞 − 𝛾

𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑛∏
𝑖=1

(
𝑡𝑞 + (𝜍 − 1)𝛾𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖 + (𝜍 − 1)
𝑛∏
𝑖=1

(
𝑡𝑞 − 𝛾

𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

¬ 1 − 𝜍 (𝑡𝑞 − (𝛾−)𝑞)
𝜍𝑡𝑞

⇔ (𝛾−)𝑞

𝑡𝑞

¬ 1 −
𝜍

𝑛∏
𝑖=1

(
𝑡𝑞 − 𝛾

𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑛∏
𝑖=1

(
𝑡𝑞 + (𝜍 − 1)𝛾𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖 + (𝜍 − 1)
𝑛∏
𝑖=1

(
𝑡𝑞 − 𝛾

𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

¬
(𝛾+)𝑞

𝑡𝑞

i.e.,

𝛾− ¬ 𝑡

©«
𝑛∏
𝑖=1

(
𝑡𝑞 + (𝜍 − 1)𝛾𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖 −
𝑛∏
𝑖=1

(
𝑡𝑞 − 𝛾

𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑛∏
𝑖=1

(
𝑡𝑞 + (𝜍 − 1)𝛾𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖 + (𝜍 − 1)
𝑛∏
𝑖=1

(
𝑡𝑞 − 𝛾

𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

ª®®®®®®¬

1
𝑞

¬ 𝛾+. (5)

Again let g(𝑦) =
(𝑡𝑞+(𝜍−1) (𝑡𝑞−𝑦))

𝑦
, 𝑦 ∈ (0, 𝑡], 𝜍 > 0, then g′(𝑦) = − 𝜍𝑡𝑞

𝑦2
< 0,

thus g(𝑦) is a decreasing function.
Since for all 𝑖, Z+  Z𝑖  Z−, then(
𝑡𝑞+(𝜍−1)

(
𝑡𝑞−(Z+)𝑞

) )
(Z+)𝑞 ¬

(
𝑡𝑞+(𝜍−1)

(
𝑡𝑞−Z𝑞

𝑖

) )
Z
𝑞

𝑖

¬
(𝑡𝑞+(𝜍−1) (𝑡𝑞−(Z−)𝑞))

(Z−)𝑞 ,

thus, ( (
𝑡𝑞 + (𝜍 − 1)

(
𝑡𝑞 − (Z+)𝑞

) )
(Z+)𝑞

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
¬

( (
𝑡𝑞 + (𝜍 − 1)

(
𝑡𝑞 − Z

𝑞

𝑖

) )
Z
𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

¬
(
(𝑡𝑞 + (𝜍 − 1) (𝑡𝑞 − (Z−)𝑞))

(Z−)𝑞
) 𝑇𝑖

𝑛∑
𝑖=1

𝑇𝑖 ⇔
𝑛∏
𝑖=1

( (
𝑡𝑞 + (𝜍 − 1)

(
𝑡𝑞 − (Z+)𝑞

) )
(Z+)𝑞

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
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¬
𝑛∏
𝑖=1

( (
𝑡𝑞 + (𝜍 − 1)

(
𝑡𝑞 − Z

𝑞

𝑖

) )
Z
𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

¬
𝑛∏
𝑖=1

(
(𝑡𝑞 + (𝜍 − 1) (𝑡𝑞 − (Z−)𝑞))

(Z−)𝑞
) 𝑇𝑖

𝑛∑
𝑖=1

𝑇𝑖

⇔
(
𝑡𝑞 + (𝜍 − 1)

(
𝑡𝑞 − (Z+)𝑞

) )
(Z+)𝑞 ¬

𝑛∏
𝑖=1

( (
𝑡𝑞 + 𝑡 (𝜍 − 1)

(
𝑡𝑞 − Z

𝑞

𝑖

) )
Z
𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

¬
(𝑡𝑞 + (𝜍 − 1) (𝑡𝑞 − (Z−)𝑞))

(Z−)𝑞 ⇔ 𝜍𝑡𝑞 − (𝜍 − 1) (Z+)𝑞

(Z+)𝑞 + (𝜍 − 1)

¬
𝑛∏
𝑖=1

( (
𝑡𝑞 + (𝜍 − 1)

(
𝑡𝑞 − Z

𝑞

𝑖

) )
Z
𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖 + (𝜍 − 1) ¬ 𝜍𝑡𝑞 − (𝜍 − 1) (Z−)𝑞

(Z−)𝑞 + (𝜍 − 1)

⇔ 1
𝜍𝑡𝑞

(Z+)𝑞


1

𝑛∏
𝑖=1

( (𝑡𝑞+(𝜍−1)(𝑡𝑞−Z𝑞𝑖 ))
Z
𝑞

𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖 + (𝜍 − 1)


1
𝜍𝑡𝑞

(Z−)𝑞

⇔ Z+  𝑡

©«
𝜍

𝑛∏
𝑖=1

Z

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑞

𝑖

𝑛∏
𝑖=1

(
𝑡𝑞 + (𝜍 − 1)

(
𝑡𝑞 − Z

𝑞

𝑖

) ) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖 + (𝜍 − 1)
𝑛∏
𝑖=1

Z

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑞

𝑖

ª®®®®®®®¬

1
𝑞

 Z−. (6)

From (5) and (6), it is clear that

𝑆

(
𝛽−

)
¬ 𝑆

(
L𝑞-ROFHPWA

(
𝛽1, 𝛽2, ..., 𝛽𝑛

))
¬ 𝑆

(
𝛽+

)
.

Therefore, 𝛽− ¬ L𝑞-ROFHPWA
(
𝛽1, 𝛽2, ..., 𝛽𝑛

)
¬ 𝛽+.

Definition 8 Let
{
𝛽1, 𝛽2, ..., 𝛽𝑛

}
be a set of L𝑞-ROFNs, where 𝛽𝑖 =

〈
𝔖𝛾𝑖 ,𝔖Z𝑖

〉
(𝑖 = 1, 2, . . . , 𝑛) and 𝑞  1. Then L𝑞-ROFHPWG operator is defined as

L𝑞-ROFHPWG
(
𝛽1, 𝛽2, ..., 𝛽𝑛

)
=

𝑛⊗
𝐻

𝑖=1

(
𝛽𝑖

)𝜔𝑖

, (7)

where 𝜔 = (𝜔1, 𝜔2, . . . , 𝜔𝑛) is the weight vectors of 𝛽𝑖 with 𝜔𝑖 ∈ [0, 1] and

𝜔𝑖 =
𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

, 𝑇𝑖 =
𝑖−1∏
𝑘=1

𝑆

(
𝛽𝑘

)
𝑡

(𝑖 = 2, . . . , 𝑛), 𝑇1 = 1 and 𝑆

(
𝛽𝑖

)
is the score of 𝛽𝑖.
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Theorem 4 Let 𝛽𝑖 =
〈
𝔖𝛾𝑖 ,𝔖Z𝑖

〉
(𝑖 = 1, 2, . . . , 𝑛) be a set of L𝑞-ROFNs. Then, the

aggregated result from the L𝑞-ROFHPWG operator is also a L𝑞-ROFN, where

L𝑞-ROFHPWG
(
𝛽1, 𝛽2, . . . , 𝛽𝑛

)
=

𝑛⊗
𝐻

𝑖=1

(
𝛽𝑖

) 𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

=

〈
𝔖

𝑡

©«
𝜍

𝑛∏
𝑖=1

𝛾

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑞

𝑖

𝑛∏
𝑖=1
(𝑡𝑞+(𝜍−1)(𝑡𝑞−𝛾𝑞𝑖 ))

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
+(𝜍−1)

𝑛∏
𝑖=1

𝛾

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑞

𝑖

ª®®®®®®®®¬

1
𝑞
,

𝔖

𝑡

©«
𝑛∏
𝑖=1
(𝑡𝑞+(𝜍−1)Z 𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
−

𝑛∏
𝑖=1
(𝑡𝑞−Z 𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑛∏
𝑖=1
(𝑡𝑞+(𝜍−1)Z 𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
+(𝜍−1)

𝑛∏
𝑖=1
(𝑡𝑞−Z 𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

ª®®®®®®®¬

1
𝑞

〉
.

Proof. Proof of this theorem is similar to the proof of Theorem 1.
Now, some particular cases of the L𝑞-ROFHPWG operator are discussed

based on parameter 𝜍.

• When 𝜍 = 1, L𝑞-ROFHPWG operator reduces to the L𝑞-ROF prioritized
weighted geometric (L𝑞-ROFPWG) operator as follows:

L𝑞-ROFPWG
(
𝛽1, 𝛽2, . . . , 𝛽𝑛

)
=

〈
𝔖

𝑡

©«
𝑛∏
𝑖=1
( 𝛾𝑖

𝑡 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑞ª®®®®¬
1
𝑞
, 𝔖

𝑡

©«
𝑡𝑞−

𝑛∏
𝑖=1
(𝑡𝑞−Z 𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑡𝑞

ª®®®®®®®¬

1
𝑞

〉
.

• When 𝜍 = 2, L𝑞-ROFHPWG operator reduces to the L𝑞-ROF Einstein
prioritized weighted geometric (L𝑞-ROFEPWG) operator as follows:
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L𝑞-ROFEPWG
(
𝛽1, 𝛽2, 𝑙𝑑𝑜𝑡𝑠, 𝛽𝑛

)
=

〈
𝔖

𝑡

©«
2

𝑛∏
𝑖=1

𝛾

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑞

𝑖

𝑛∏
𝑖=1
(𝑡𝑞+(𝑡𝑞−𝛾𝑞𝑖 ))

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
+

𝑛∏
𝑖=1

𝛾

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑞

𝑖

ª®®®®®®®®¬

1
𝑞
,𝔖

𝑡

©«
𝑛∏
𝑖=1
(𝑡𝑞+Z 𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
−

𝑛∏
𝑖=1
(𝑡𝑞−Z 𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

𝑛∏
𝑖=1
(𝑡𝑞+Z 𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖
+

𝑛∏
𝑖=1
(𝑡𝑞−Z 𝑞𝑖 )

𝑇𝑖
𝑛∑
𝑖=1

𝑇𝑖

ª®®®®®®®¬

1
𝑞

〉
.

Theorem 5 (Idempotency) Let 𝛽𝑖 =
〈
𝔖𝛾𝑖 ,𝔖Z𝑖

〉
(𝑖 = 1, 2, . . . , 𝑛) be a col-

lection of 𝑛 L𝑞-ROFNs. If 𝛽𝑖 = 𝛽 =
〈
𝔖𝛾,𝔖Z

〉
for all 𝑖 = 1, 2, . . . , 𝑛, then

L𝑞-ROFHPWG
(
𝛽1, 𝛽2, . . . , 𝛽𝑛

)
= 𝛽.

Theorem 6 (Boundedness) Let 𝛽𝑖 =
〈
𝔖𝛾𝑖 ,𝔖Z𝑖

〉
(𝑖 = 1, 2, . . . , 𝑛) be a collection

of L𝑞-ROFNs, and 𝛾− = min
𝑖

{𝛾𝑖}, 𝛾+ = max
𝑖

{𝛾𝑖}, Z− = min
𝑖

{Z𝑖}, Z+ = max
𝑖

{Z𝑖}
then

𝛽− ¬ L𝑞-ROFHPWG
(
𝛽1, 𝛽2, ..., 𝛽𝑛

)
¬ 𝛽+.

The proofs of Theorem 5 and 6 are analogous to the previous.

5. An MCGDM approach based on Lq-ROF prioritized aggregation operators

In this section, a novel MCGDM approach have been propounded, in which
the evaluation information is in the form of L𝑞-ROFNs.
For a group decision making problem, let E =

{
E (1) , E (2) , . . . , E (𝑢)} be the

set of the DMs and the linear ordering E (1) � E (2) � . . . � E (𝑢) represents
the prioritization relationship among the DMs’ in such a manner that DM, E (𝑘) ,
has a higher priority than DM, E (𝑙) , if 𝑘 < 𝑙. Suppose A = {𝐴1, 𝐴2, . . . , 𝐴𝑚}
be a discrete collection of alternatives. G = {G1,G2, . . . ,G𝑛} represents the set
of criteria with their prioritization as G1 � G2 � . . . � G𝑛, so that criteria G𝑗

has a higher priority than G𝑖, for 𝑗 < 𝑖. DMs provide their evaluation values
in terms of L𝑞-ROFNs based on LTS: 𝔖 = {𝔖0,𝔖1,𝔖2, . . . ,𝔖𝑡}. A L𝑞-ROF

decision matrix (L𝑞-ROFDM) 𝑋 (𝑙) =

[
𝛽
(𝑙)
𝑖 𝑗

]
𝑚×𝑛

=

[〈
𝔖

𝛾
(𝑙)
𝛽𝑖 𝑗

,𝔖
Z
(𝑙)
𝛽𝑖 𝑗

〉]
𝑚×𝑛
, where〈

𝔖
𝛾
(𝑙)
𝛽𝑖 𝑗

,𝔖
Z
(𝑙)
𝛽𝑖 𝑗

〉
denotes a L𝑞-ROFN given by the DM E (𝑙) for the alternative 𝐴𝑖
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under the criteria G𝑗 . Here corresponding to the DM E (𝑙) , 𝔖
𝛾
(𝑙)
𝛽𝑖 𝑗

indicates the

satisfaction degree of the alternative 𝐴𝑖 concerning the criteria G𝑗 ; whereas𝔖Z
(𝑙)
𝛽𝑖 𝑗

indicates that of dissatisfaction degree.
The purpose is to find the best suitable alternative(s) in light of the presented

approach. The computational process is summarized step-by-step as follows.

Step 1. Normalize X̃ (𝑙) , if required, into 𝑅(𝑙) =
[
�̃�
(𝑙)
𝑖 𝑗

]
𝑚×𝑛
as follows:

�̃�
(𝑙)
𝑖 𝑗

=



〈
𝔖

𝛾
(𝑙)
𝛽𝑖 𝑗

, 𝔖
Z
(𝑙)
𝛽𝑖 𝑗

〉
if G𝑗 is type of benefit criteria;〈

𝔖
Z
(𝑙)
𝛽𝑖 𝑗

, 𝔖
𝛾
(𝑙)
𝛽𝑖 𝑗

〉
if G𝑗 is type of cost criteria.

Step 2. Calculate the value of 𝑇 (𝑙)
𝑖 𝑗
(𝑙 = 1, 2, . . . , 𝑢) with the following equations.

𝑇
(𝑙)
𝑖 𝑗

=


1 for 𝑙 = 1,
𝑙−1∏
𝑘=1

𝑆

(
�̃�
(𝑘)
𝑖 𝑗

)
𝑡

for 𝑙 = 2, 3, . . . , 𝑢.
(8)

Step 3. To aggregate all the individual L𝑞-ROFDM 𝑅(𝑙) =

[
�̃�
(𝑙)
𝑖 𝑗

]
𝑚×𝑛

(𝑙 =

1, 2, . . . , 𝑢), using the L𝑞-ROFHPWA operator and obtain overall DM 𝑅 =[
�̃�𝑖 𝑗

]
𝑚×𝑛 as

�̃�𝑖 𝑗 = L𝑞-ROFHPWA
(
�̃�
(1)
𝑖 𝑗

, �̃�
(2)
𝑖 𝑗

, . . . , �̃�
(𝑢)
𝑖 𝑗

)
=

〈
𝔖

𝑡

©«

𝑢∏
𝑙=1

(
𝑡𝑞+(𝜍−1)

(
𝛾
(𝑙)
𝑖 𝑗

)𝑞 ) 𝑇
(𝑙)
𝑖 𝑗

𝑢∑
𝑙=1

𝑇
(𝑙)
𝑖 𝑗

−
𝑢∏
𝑙=1

(
𝑡𝑞−

(
𝛾
(𝑙)
𝑖 𝑗

)𝑞 ) 𝑇
(𝑙)
𝑖 𝑗

𝑢∑
𝑙=1

𝑇
(𝑙)
𝑖 𝑗

𝑢∏
𝑙=1

(
𝑡𝑞+(𝜍−1)

(
𝛾
(𝑙)
𝑖 𝑗

)𝑞 ) 𝑇
(𝑙)
𝑖 𝑗

𝑢∑
𝑙=1

𝑇
(𝑙)
𝑖 𝑗

+(𝜍−1)
𝑢∏
𝑙=1

(
𝑡𝑞−

(
𝛾
(𝑙)
𝑖 𝑗

)𝑞 ) 𝑇
(𝑙)
𝑖 𝑗

𝑢∑
𝑙=1

𝑇
(𝑙)
𝑖 𝑗

ª®®®®®®®®®®¬

1
𝑞
,
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𝔖

𝑡

©«
𝜍

𝑢∏
𝑙=1

(
Z
(𝑙)
𝑖 𝑗

)𝑞
𝑇
(𝑙)
𝑖 𝑗

𝑢∑
𝑙=1

𝑇
(𝑙)
𝑖 𝑗

𝑢∏
𝑙=1

(
𝑡𝑞+(𝜍−1)

(
𝑡𝑞−

(
Z
(𝑙)
𝑖 𝑗

)𝑞 )) 𝑇
(𝑙)
𝑖 𝑗

𝑢∑
𝑙=1

𝑇
(𝑙)
𝑖 𝑗

+(𝜍−1)
𝑢∏
𝑙=1

(
Z
(𝑙)
𝑖 𝑗

)
𝑇
(𝑙)
𝑖 𝑗

𝑢∑
𝑙=1

𝑇
(𝑙)
𝑖 𝑗

𝑞

ª®®®®®®®®®®¬

1
𝑞

〉
. (9)

or, using the L𝑞-ROFHPWG operator

�̃�′𝑖 𝑗 = L𝑞-ROFHPWG
(
�̃�
(1)
𝑖 𝑗

, �̃�
(2)
𝑖 𝑗

, . . . , �̃�
(𝑢)
𝑖 𝑗

)

=

〈
𝔖

𝑡

©«
𝜍

𝑢∏
𝑙=1

(
𝛾
(𝑙)
𝑖 𝑗

)𝑞
𝑇
(𝑙)
𝑖 𝑗

𝑢∑
𝑙=1

𝑇
(𝑙)
𝑖 𝑗

𝑢∏
𝑙=1

(
𝑡𝑞+(𝜍−1)

(
𝑡𝑞−

(
𝛾
(𝑙)
𝑖 𝑗

)𝑞 )) 𝑇
(𝑙)
𝑖 𝑗

𝑢∑
𝑙=1

𝑇
(𝑙)
𝑖 𝑗

+(𝜍−1)
𝑢∏
𝑙=1

(
𝛾
(𝑙)
𝑖 𝑗

)
𝑇
(𝑙)
𝑖 𝑗

𝑢∑
𝑙=1

𝑇
(𝑙)
𝑖 𝑗

𝑞

ª®®®®®®®®®®¬

1
𝑞
,

𝔖

𝑡

©«

𝑢∏
𝑙=1

(
𝑡𝑞+(𝜍−1)

(
Z
(𝑙)
𝑖 𝑗

)𝑞 ) 𝑇
(𝑙)
𝑖 𝑗

𝑢∑
𝑙=1

𝑇
(𝑙)
𝑖 𝑗

−
𝑢∏
𝑙=1

(
𝑡𝑞−

(
Z
(𝑙)
𝑖 𝑗

)𝑞 ) 𝑇
(𝑙)
𝑖 𝑗

𝑢∑
𝑙=1

𝑇
(𝑙)
𝑖 𝑗

𝑢∏
𝑙=1

(
𝑡𝑞+(𝜍−1)

(
Z
(𝑙)
𝑖 𝑗

)𝑞 ) 𝑇
(𝑙)
𝑖 𝑗

𝑢∑
𝑙=1

𝑇
(𝑙)
𝑖 𝑗

+(𝜍−1)
𝑢∏
𝑙=1

(
𝑡𝑞−

(
Z
(𝑙)
𝑖 𝑗

)𝑞 ) 𝑇
(𝑙)
𝑖 𝑗

𝑢∑
𝑙=1

𝑇
(𝑙)
𝑖 𝑗

ª®®®®®®®®®®¬

1
𝑞

〉
. (10)

Step 4. Calculate the values of 𝑇𝑖 𝑗 as

𝑇𝑖 𝑗 =


1 for 𝑗 = 1
𝑗−1∏
𝑘=1

𝑆 (�̃�𝑖𝑘 )
𝑡

for 𝑗 = 2, 3, . . . , 𝑛.
(11)
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Step 5. Aggregate the L𝑞-ROFNs �̃�𝑖 𝑗 for each alternative 𝐴𝑖 using the L𝑞-
ROFHPWA (or L𝑞-ROFHPWG) operators as follows:

�̃�𝑖 = L𝑞-ROFHPWA (�̃�𝑖1, �̃�𝑖2, . . . , �̃�𝑖𝑛)

=

〈
𝔖

𝑡

©«

𝑛∏
𝑗=1

(
𝑡𝑞+(𝜍−1)𝛾𝑞

𝑖 𝑗

)
𝑇𝑖 𝑗
𝑛∑
𝑗=1

𝑇𝑖 𝑗

−
𝑛∏
𝑗=1

(
𝑡𝑞−𝛾𝑞

𝑖 𝑗

)
𝑇𝑖 𝑗
𝑛∑
𝑗=1

𝑇𝑖 𝑗

𝑛∏
𝑗=1

(
𝑡𝑞+(𝜍−1)𝛾𝑞

𝑖 𝑗

)
𝑇𝑖 𝑗
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Step 6.Calculate the score values for each �̃�𝑖 (or �̃�′𝑖 ) (𝑖 = 1, 2, . . . , 𝑚) using Eq. (2).
Step 7. Rank the alternatives 𝐴𝑖 (𝑖 = 1, 2, . . . , 𝑚) based on the comparison rule
presented in Definition 4.
Based on the methodology developed in this paper, the following illustrative

example is considered and solved.

6. Illustrative example

In this section, a numerical example, previously studied by Arora and Garg
[50], has been illustrated from the field of global suppliers with L𝑞-ROF context.
Following notations are used to represent the MCGDM problem relating to

the selection of the best global suppliers by a manufacturing company to utilize
in their assembling process.
Suppose there are four alternatives 𝐴1, 𝐴2, 𝐴3 and 𝐴4 which are con-

sidered for evaluating over the five criteria {G1,G2,G3,G4,G5}. The priori-
tization relationship for the criterion is G1 � G2 � G3 � G4 � G5. The
different alternatives 𝐴𝑖 (𝑖 = 1, 2, 3, 4) are evaluated by the four DMs, E (𝑙)

(𝑙 = 1, 2, 3, 4) with priority levels E (1) � E (2) � E (3) � E (4) on the ba-
sis of the criteria G𝑖 (𝑖 = 1, 2, 3, 4, 5). DMs E (𝑙) (𝑙 = 1, 2, 3, 4) provide
his/her decision preferences in terms of L𝑞-ROFNs using the linguistic term set:
𝔖 = {𝔖0 = extremely poor,𝔖1 = very poor,𝔖2 = poor,𝔖3 = slightly poor,𝔖4 =
fair, 𝔖5 = slightly good,𝔖6 = good,𝔖7 = very good,𝔖8 = extremely good}. In
Tables 1, 2, 3 and 4, the decision information provided by the four DMs, E (1) ,
E (2) , E (3) and E (4) are presented in terms of L𝑞-ROFNs, respectively.

Table 1: L𝑞-ROFDM X̃ (1) provided by the DM E (1)

G1 G2 G3 G4 G5
𝐴1 (𝔖7,𝔖1) (𝔖6,𝔖2) (𝔖4,𝔖3) (𝔖7,𝔖1) (𝔖5,𝔖2)
𝐴2 (𝔖6,𝔖2) (𝔖5,𝔖2) (𝔖6,𝔖1) (𝔖6,𝔖2) (𝔖7,𝔖1)
𝐴3 (𝔖6,𝔖1) (𝔖5,𝔖3) (𝔖7,𝔖1) (𝔖5,𝔖1) (𝔖3,𝔖4)
𝐴4 (𝔖5,𝔖2) (𝔖7,𝔖1) (𝔖4,𝔖3) (𝔖6,𝔖1) (𝔖4,𝔖4)

The procedure of selecting the most desirable alternative(s) utilizing the
above-proposed operators are presented in the following steps.
Step 1. Since all the criteria are of the same type, the normalization process is
not needed for this problem, i.e., 𝑋 (𝑙) = 𝑅(𝑙) =

[
�̃�
(𝑙)
𝑖 𝑗

]
𝑚×𝑛
(𝑙 = 1, 2, 3, 4).
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Table 2: L𝑞-ROFDM X̃ (2) provided by the DM E (2)

G1 G2 G3 G4 G5
𝐴1 (𝔖7,𝔖1) (𝔖4,𝔖4) (𝔖6,𝔖2) (𝔖5,𝔖2) (𝔖3,𝔖5)
𝐴2 (𝔖7,𝔖1) (𝔖5,𝔖1) (𝔖6,𝔖1) (𝔖5,𝔖2) (𝔖4,𝔖3)
𝐴3 (𝔖5,𝔖2) (𝔖6,𝔖1) (𝔖7,𝔖1) (𝔖5,𝔖3) (𝔖4,𝔖4)
𝐴4 (𝔖6,𝔖2) (𝔖4,𝔖3) (𝔖5,𝔖2) (𝔖7,𝔖1) (𝔖5,𝔖3)

Table 3: L𝑞-ROFDM X̃ (3) provided by the DM E (3)

G1 G2 G3 G4 G5
𝐴1 (𝔖6,𝔖1) (𝔖5,𝔖2) (𝔖3,𝔖4) (𝔖7,𝔖1) (𝔖5,𝔖2)
𝐴2 (𝔖7,𝔖1) (𝔖6,𝔖2) (𝔖7,𝔖1) (𝔖6,𝔖2) (𝔖5,𝔖1)
𝐴3 (𝔖5,𝔖3) (𝔖5,𝔖2) (𝔖6,𝔖1) (𝔖4,𝔖3) (𝔖3,𝔖1)
𝐴4 (𝔖6,𝔖2) (𝔖7,𝔖1) (𝔖5,𝔖1) (𝔖5,𝔖2) (𝔖4,𝔖4)

Table 4: L𝑞-ROFDM X̃ (4) provided by the DM E (4)

G1 G2 G3 G4 G5
𝐴1 (𝔖5,𝔖3) (𝔖4,𝔖4) (𝔖7,𝔖1) (𝔖5,𝔖1) (𝔖4,𝔖2)
𝐴2 (𝔖6,𝔖1) (𝔖7,𝔖1) (𝔖6,𝔖1) (𝔖5,𝔖2) (𝔖6,𝔖1)
𝐴3 (𝔖5,𝔖2) (𝔖3,𝔖4) (𝔖6,𝔖2) (𝔖3,𝔖3) (𝔖5,𝔖2)
𝐴4 (𝔖4,𝔖3) (𝔖5,𝔖1) (𝔖4,𝔖2) (𝔖6,𝔖2) (𝔖5,𝔖2)

Step 2. Utilizing Eq. (8), the values of 𝑇𝑖 𝑗 are obtained as:

𝑇1𝑖 𝑗 =


1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 , 𝑇2𝑖 𝑗 =


0.9413 0.8892 0.8124 0.9413 0.8501
0.8892 0.8501 0.8921 0.8892 0.9413
0.8921 0.8414 0.9413 0.8532 0.7741
0.8501 0.9413 0.8124 0.8921 0.7937

 ,

𝑇3𝑖 𝑗 =


0.8860 0.7058 0.7224 0.8001 0.6286
0.8370 0.7253 0.7958 0.7559 0.7647
0.7583 0.7506 0.8860 0.7179 0.6144
0.7559 0.7647 0.6906 0.8397 0.6678

 ,
𝑇4𝑖 𝑗 =


0.8860 0.7058 0.7224 0.8001 0.6286
0.8370 0.7253 0.7958 0.7559 0.7647
0.7583 0.7506 0.8860 0.7179 0.6144
0.7559 0.7647 0.6906 0.8397 0.6678

 .
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Step 3. Based on the DMs’ information provided in Tables 1, 2, 3 and 4, the
proposed L𝑞-ROFHPWA operator, presented in Eq. (9), is utilized to aggregate
them into a collective matrix. The result obtained is summarized in Table 5.

Table 5: Collective L𝑞-ROFDM 𝑅 based on L𝑞-ROFHPWA operator

G1 G2 G3 G4 G5
𝐴1 (𝔖6.4811,𝔖1.2739) (𝔖5.0036,𝔖2.7792) (𝔖5.3178,𝔖2.3785) (𝔖6.2793,𝔖1.2059) (𝔖4.4125,𝔖2.6195)
𝐴2 (𝔖6.5691,𝔖1.2187) (𝔖5.7933,𝔖1.4508) (𝔖6.2900,𝔖1.0000) (𝔖5.5805,𝔖2.0000) (𝔖5.8300,𝔖1.3641)
𝐴3 (𝔖5.3499,𝔖1.7823) (𝔖5.0564,𝔖2.1833) (𝔖6.6134,𝔖1.1640) (𝔖4.5227,𝔖2.1264) (𝔖3.7615,𝔖2.6698)
𝐴4 (𝔖5.4024,𝔖2.1750) (𝔖6.1455,𝔖1.3558) (𝔖4.5377,𝔖1.9576) (𝔖6.1452,𝔖1.3678) (𝔖4.4942,𝔖3.2912)

Step 4. Using Eq. (11), the values of 𝑇𝑖 𝑗 are calculated as:

𝑇𝑖 𝑗 =


1.0000 0.9141 0.7716 0.6627 0.5995
1.0000 0.9186 0.8105 0.7338 0.6395
1.0000 0.8636 0.7348 0.6767 0.5646
1.0000 0.8635 0.7755 0.6482 0.5820

 .
Step 5. The collective value �̃�𝑖 of each alternative 𝐴𝑖 is obtained based on L𝑞-
ROFHPWA operator using Eq. (12).

�̃�1 = (𝔖5.6888, 𝔖1.9095) , �̃�2 = (𝔖6.0830, 𝔖1.3555) ,
�̃�3 = (𝔖5.3168, 𝔖1.8840) , �̃�4 = (𝔖5.4816, 𝔖1.8903) .

Step 6. The score values for each �̃�𝑖 (𝑖 = 1, 2, 3, 4) are calculated based on
Eq. (2) as:

𝑆 (�̃�1) = 7.0107, 𝑆 (�̃�2) = 7.1615, 𝑆 (�̃�3) = 6.8951, 𝑆 (�̃�4) = 6.9450.

Step 7. The rank of the alternatives 𝐴𝑖 (𝑖 = 1, 2, 3, 4) based on the comparison
rule presented in Definition 4 is found as 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3.
On the other hand, if the above MCGDM problem is solved with L𝑞-

ROFHPWG operator, the score values of four different alternatives are ob-
tained as:

𝑆
(
�̃�′1

)
= 6.8368, 𝑆

(
�̃�′2

)
= 7.0992, 𝑆

(
�̃�′3

)
= 6.7596, 𝑆

(
�̃�′4

)
= 6.8349.

Thus the ordering of the alternatives are found as 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3.

6.1. Influence of rung parameter q on decision making results

The proposed methodology allows DMs to flexibly change their range of
evaluation information with the use of rung parameter 𝑞. The parameter 𝑞 plays
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a significant role in the decision results. In solving the above numerical problem,
the parameter 𝑞 = 3 is considered. To investigate the impact of rung parameter
𝑞 on the decision result, the above problem is further solved based on different
values of the parameter 𝑞 from 1 to 10. For convenience, the Hamacher parameter
is kept fixed at 𝜍 = 3 in the computational process.

Table 6: Influence of rung parameter 𝑞 with L𝑞-ROFHPWA operator on ranking results

Parameter 𝑞 𝑆(𝐴1) 𝑆(𝐴2) 𝑆(𝐴3) 𝑆(𝐴4) Ranking
𝑞 = 1 5.878 6.3438 5.7277 5.7425 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝑞 = 2 6.7813 7.0339 6.6403 6.703 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝑞 = 3 7.0107 7.1615 6.8951 6.945 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝑞 = 4 7.1366 7.2364 7.0445 7.0817 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝑞 = 5 7.2323 7.3004 7.1590 7.1871 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝑞 = 6 7.3109 7.3578 7.2523 7.274 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝑞 = 7 7.3767 7.4091 7.3296 7.3466 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝑞 = 8 7.4322 7.4546 7.3941 7.4077 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝑞 = 9 7.4794 7.4949 7.4485 7.4594 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝑞 = 10 7.5199 7.5307 7.4947 7.5035 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

The obtained score values for each alternative are listed in Tables 6 and
7 using L𝑞-ROFHPWA and L𝑞-ROFHPWG operators, respectively. From the
ranking results as viewed from Table 7, it is inferred that slight differences in
the ranking results using L𝑞-ROFHPWG operator are found when parameter 𝑞
changes.Whereas, based on using L𝑞-ROFHPWAoperator in Table 6, the ranking
of alternatives is consistent with the rung parameter 𝑞. However, in all the cases,
𝐴2 is the optimal choice. This indicates that the parameter 𝑞 has a steadiness in
the decision results in terms of generating the best choice.
Further, in Figs. 1 and 2, a clear view of the impact of rung parameters

utilizing L𝑞-ROFHPWA and L𝑞-ROFHPWG operators, respectively, have been
depicted. From Figs.1 and2, it is observed that when the parameter 𝑞 ∈ [1, 10]
changes, the score values for the alternatives changes accordingly. It reveals from
Fig. 1 that different alternatives do not change their ordered positions. Thus for
L𝑞-ROFHPWA operator, the ranking of alternatives is stable. On the other hand,
in Fig. 2, there is a change in the ordered position of the alternatives 𝐴1 and 𝐴4
is noticed. As a consequence, the ranking of alternatives slightly differs based on
the L𝑞-ROFHPWG operator.
Finally, it is important to note that DMs can change the value of 𝑞 according

to their preferences for expressing their evaluation values in a wider range, which
makes the proposed methodology a flexible method.
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Table 7: Influence of rung parameter 𝑞 with L𝑞-ROFHPWG operator on ranking results

Parameter 𝑞 𝑆(𝐴1) 𝑆(𝐴2) 𝑆(𝐴3) 𝑆(𝐴4) Ranking
𝑞 = 1 5.6188 6.2362 5.5312 5.5679 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝑞 = 2 6.5615 6.9549 6.4661 6.5596 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝑞 = 3 6.8368 7.0992 6.7596 6.8349 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝑞 = 4 6.9933 7.1799 6.9371 6.9914 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝑞 = 5 7.1117 7.2468 7.0731 7.1104 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝑞 = 6 7.2096 7.3073 7.1840 7.2089 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝑞 = 7 7.2923 7.3624 7.2757 7.2920 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝑞 = 8 7.3625 7.4124 7.3519 7.3624 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝑞 = 9 7.4222 7.4575 7.4155 7.4223 𝐴2 � 𝐴4 � 𝐴1 � 𝐴3

𝑞 = 10 7.4730 7.4979 7.4689 7.4731 𝐴2 � 𝐴4 � 𝐴1 � 𝐴3
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Figure 1: Score values of alternative for
𝑞 ∈ [1, 10] based on L𝑞-ROFHPWA op-
erator (𝜍 = 3)
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Figure 2: Score values of alternative for
𝑞 ∈ [1, 10] based on L𝑞-ROFHPWG op-
erator (𝜍 = 3)

6.2. Influence of Hamacher parameter on decision making results

The proposed method carries the robustness of the Hamacher parameter 𝜍.
Varying the Hamacher parameter 𝜍 in (0, 10] the impact of the parameter on
decision results is investigated. For convenience, the rung parameter is kept fixed
at 𝑞 = 3 in the computational process.
In Tables 8 and 9, the achieved results based on L𝑞-ROFHPWA and L𝑞-

ROFHPWG operators are presented, respectively. The score of the alternatives
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varies accordingly with different parameters 𝜍 using L𝑞-ROFHPWA and L𝑞-
ROFHPWG operators.

Table 8: Ranking results for varying 𝜍 by using L𝑞-ROFHPWA operator

Parameter 𝜍 𝑆(𝐴1) 𝑆(𝐴2) 𝑆(𝐴3) 𝑆(𝐴4) Ranking
𝜍 = 1 7.0628 7.1870 6.9333 6.9859 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝜍 = 2 7.0299 7.1705 6.9094 6.9598 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝜍 = 3 7.0107 7.1615 6.8951 6.9450 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝜍 = 4 6.9976 7.1558 6.8852 6.9352 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝜍 = 5 6.9880 7.1518 6.8778 6.9282 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝜍 = 6 6.9807 7.1488 6.8720 6.9229 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝜍 = 7 6.9748 7.1465 6.8673 6.9187 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝜍 = 8 6.9699 7.1446 6.8634 6.9153 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝜍 = 9 6.9659 7.1431 6.8601 6.9125 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝜍 = 10 6.9624 7.1418 6.8572 6.9101 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

Table 9: Ranking results for varying 𝜍 by using L𝑞-ROFHPWG operator

Parameter 𝜍 𝑆(𝐴1) 𝑆(𝐴2) 𝑆(𝐴3) 𝑆(𝐴4) Ranking
𝜍 = 1 6.7963 7.0769 6.7349 6.8109 𝐴2 � 𝐴4 � 𝐴1 � 𝐴3

𝜍 = 2 6.8232 7.0920 6.7516 6.8270 𝐴2 � 𝐴4 � 𝐴1 � 𝐴3

𝜍 = 3 6.8368 7.0992 6.7596 6.8349 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝜍 = 4 6.8455 7.1036 6.7646 6.8399 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝜍 = 5 6.8516 7.1065 6.7681 6.8433 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝜍 = 6 6.8563 7.1086 6.7708 6.8459 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝜍 = 7 6.8600 7.1102 6.7730 6.8480 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝜍 = 8 6.8631 7.1115 6.7748 6.8497 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝜍 = 9 6.8657 7.1125 6.7763 6.8511 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

𝜍 = 10 6.8679 7.1133 6.7777 6.8523 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

To visualize in effect in a better way, Figs. 3 and 4 are provided based on
different values of 𝜍 ∈ (0, 10]. In light of Fig. 3, the presented results reveal that
no change in ranking order is found while using L𝑞-ROFHPWA operator. On
the other hand, from Fig. 4, it is perceived that 𝜍 ∈ (0, 2.6050) the ranking is
𝐴2 � 𝐴4 � 𝐴1 � 𝐴3 and for 𝜍 ∈ [2.605, 10] the ranking is 𝐴2 � 𝐴1 � 𝐴4 � 𝐴3
based on L𝑞-ROFHPWG operator. But it is interesting to mention here that the
optimal choice remains the same as 𝐴2 for each case.
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Figure 3: Score values of alternative for
𝜍 ∈ (0, 10] based on L𝑞-ROFHPWA op-
erator (𝑞 = 3)

Figure 4: Score values of alternative for
𝜍 ∈ (0, 10] based on L𝑞-ROFHPWG op-
erator (𝑞 = 3)

Moreover, an optimistic or pessimistic view of DMs can be reflected through
the achieved outcomes. Because when the parameter 𝜍 becomes larger, the
fused results based on L𝑞-ROFHPWA operator become smaller, while using
L𝑞-ROFHPWG operator, the fused results become larger. Hence DMs can select
appropriate Hamacher parameter values according to their needs while making
decisions.

7. Comparative analysis

Arora and Garg [50] investigatedMCGDM problems under LIF environment.
They solved the problem presented in Section 6 using LIF prioritized WA op-
erator, and a similar ranking result is found in the present paper. This shows
the validity of the proposed method in dealing with MCGDM problems. How-
ever, the present method is more general and flexible than that of Arora and
Garg [50]. Since the proposed MCGDM method is based on L𝑞-ROF environ-
ment, it can capture more fuzzy assessment information provided by the DMs.
Also, Hamacher operations are considered in the present method that can easily
replace the traditional algebraic operations by taking exact parameter values. So,
the method proposed by Arora and Garg [50], which is basically developed on the
basis of algebraic operations, becomes a particular case of the proposed method.
To prove the effectiveness of the developed operators more significantly, an-

other comparative analysis by applying some existing operators, viz., LIFWA and
LIFWG [31], LIFEWA and LIFEWG [51], LIFHWA and LIFHWG [52], LPFWA
and LPFWG [32], LPFEWA and LPFEWG [53], LPFHWA and LPFHWG [54],
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and L𝑞-ROFWA and L𝑞-ROFWG [37] operators on the same numerical example
considering the equal importance of the DMs and as well as for the criteria. The
overall score values and the ranking of the alternatives by means of those existing
operators are collected in Table 10.

Table 10: Score values and ranking results compared with existing methods

Operators Score values Ranking

LIFWA [31] 𝑆(𝐴1) = 5.8554, 𝑆(𝐴2) = 6.3633,
𝑆(𝐴3) = 5.6240, 𝑆(𝐴4) = 5.7772

𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

LIFWG [31] 𝑆(𝐴1) = 5.3657, 𝑆(𝐴2) = 6.1800,
𝑆(𝐴3) = 5.2144, 𝑆(𝐴4) = 5.4596

𝐴2 � 𝐴4 � 𝐴1 � 𝐴3

LIFEWA [51] 𝑆(𝐴1) = 5.8012, 𝑆(𝐴2) = 6.3463,
𝑆(𝐴3) = 5.5745, 𝑆(𝐴4) = 5.7396

𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

LIFEWG [51] 𝑆(𝐴1) = 5.4446, 𝑆(𝐴2) = 6.2069,
𝑆(𝐴3) = 5.2784, 𝑆(𝐴4) = 5.5066

𝐴2 � 𝐴4 � 𝐴1 � 𝐴3

LIFHWA (𝜍 = 3) [52] 𝑆(𝐴1) = 5.7773, 𝑆(𝐴2) = 6.3394,
𝑆(𝐴3) = 5.5526, 𝑆(𝐴4) = 5.7237

𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

LIFHWG (𝜍 = 3) [52] 𝑆(𝐴1) = 5.4922, 𝑆(𝐴2) = 6.2248,
𝑆(𝐴3) = 5.3169, 𝑆(𝐴4) = 5.5362

𝐴2 � 𝐴4 � 𝐴1 � 𝐴3

LPFWA [32] 𝑆(𝐴1) = 6.8143, 𝑆(𝐴2) = 7.0517,
𝑆(𝐴3) = 6.6335, 𝑆(𝐴4) = 6.7371

𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

LPFWG [32] 𝑆(𝐴1) = 6.4446, 𝑆(𝐴2) = 6.9138,
𝑆(𝐴3) = 6.3316, 𝑆(𝐴4) = 6.5013

𝐴2 � 𝐴4 � 𝐴1 � 𝐴3

LPFEWA [53] 𝑆(𝐴1) = 6.7718, 𝑆(𝐴2) = 7.0345,
𝑆(𝐴3) = 6.5980, 𝑆(𝐴4) = 6.7062

𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

LPFEWG [53] 𝑆(𝐴1) = 6.4929, 𝑆(𝐴2) = 6.9336,
𝑆(𝐴3) = 6.3662, 𝑆(𝐴4) = 6.5289

𝐴2 � 𝐴4 � 𝐴1 � 𝐴3

LPFHWA (𝜍 = 3) [54] 𝑆(𝐴1) = 6.7498, 𝑆(𝐴2) = 7.0262,
𝑆(𝐴3) = 6.5789, 𝑆(𝐴4) = 6.6909

𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

LPFHWG (𝜍 = 3) [54] 𝑆(𝐴1) = 6.5203, 𝑆(𝐴2) = 6.9446,
𝑆(𝐴3) = 6.3852, 𝑆(𝐴4) = 6.5448

𝐴2 � 𝐴4 � 𝐴1 � 𝐴3

L𝑞-ROFWA (𝑞 = 3) [37] 𝑆(𝐴1) = 7.0435, 𝑆(𝐴2) = 7.1812,
𝑆(𝐴3) = 6.9049, 𝑆(𝐴4) = 6.9754

𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

L𝑞-ROFWG (𝑞 = 3) [37] 𝑆(𝐴1) = 6.7687, 𝑆(𝐴2) = 7.0681,
𝑆(𝐴3) = 6.6906, 𝑆(𝐴4) = 6.8007

𝐴2 � 𝐴4 � 𝐴1 � 𝐴3

L𝑞-ROFHPWA operator 𝑆(𝐴1) = 7.0107, 𝑆(𝐴2) = 7.1615,
𝑆(𝐴3) = 6.8951, 𝑆(𝐴4) = 6.9450

𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

L𝑞-ROFHPWG operator 𝑆(𝐴1) = 6.8368, 𝑆(𝐴2) = 7.0992,
𝑆(𝐴3) = 6.7596, 𝑆(𝐴4) = 6.8349

𝐴2 � 𝐴1 � 𝐴4 � 𝐴3

Abbreviations: LIF WA (LIFWA), LIF WG (LIFWG), LIF Einstein WA (LIFEWA), LIF Einstein WG
(LIFEWG), LIF Hamacher WA (LIFHWA), LIF Hamacher WG (LIFHWG), LPF WA (LPFWA), LPF WG
(LPFWG), LPFEinsteinWA (LPFEWA) and LPFEinsteinWG (LPFEWG), LPFHamacherWA (LPFHWA),
LPF Hamacher WG (LPFHWG), L𝑞-ROF WA (L𝑞-ROFWA), L𝑞-ROF WA (L𝑞-ROFWG).
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From the above analysis, it is seen that all the operators have the same optimal
alternatives. Nevertheless, ranking results differ using averaging and geometric
operators for the existingmethods. However, in the case of the present method, the
ranking is consistent for both the L𝑞-ROFHPWA and L𝑞-ROFHPWG operators.
The possible reason for this is the fact that method proposed operators can
consider the priority over criteria, but all the existing methods [31,32,37,51–54]]
fail to incorporate this important characteristic. Hence the proposed method is
more reasonable and effective in dealing with real-life MCGDM problems.

8. Conclusion

This paper investigates MCGDM under L𝑞-ROF environment. For this pur-
pose, two novel L𝑞-ROFHPWA and L𝑞-ROFHPWG operators are proposed in
this paper. The proposed L𝑞-ROF operators combine Hamacher operations with
prioritized aggregation functions. For this, the proposed operators can consider
the prioritized relationship between the input arguments as well as they have
the ability to make the aggregation process flexible and general by incorporat-
ing Hamacher parameter. Further, the newly developed operators are utilized to
develop an MCGDM approach with L𝑞-ROF context. Subsequently, a numerical
example is provided to verify the practicality and effectiveness of the developed
approach. Figures and tables have also been delivered to describe the influences
of rung parameter 𝑞 and Hamacher parameter 𝜍 on the decision results in detail.
In addition, a comparative analysis is also presented to analyze the superiority
of the proposed method. In the future research, it would be meaningful to apply
the proposed method to other decision-making fields, viz., fuzzy cluster anal-
ysis, image pattern recognition, supplier selection, pattern recognition and so
forth.
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A B S T R A C T

In the context of multicriteria decision making (MCDM), it is frequently observed that the representation
of cognitive information may not always be sufficient using hesitant Pythagorean fuzzy set (HPFS). From
this perspective, the interval-valued hesitant Pythagorean fuzzy (IVHPF) set is more flexible than HPFS to
capture the cognitive versatility of decision makers. Again, Archimedean 𝑡-conorm and 𝑡-norms (A𝑡-CN&𝑡-Ns)
possess the efficient capability to generate versatile and flexible operational rules for fuzzy numbers. Utilizing
the benefit of A𝑡-CN&𝑡-Ns some basic operations are introduced to aggregate IVHPF elements so that many
other kinds of 𝑡-conorm and 𝑡-norms (𝑡-CN&𝑡-Ns), such as algebraic, Einstein, Hamacher, Dombi, Frank and
other classes of 𝑡-CN&𝑡-Ns can be generated. Based on those concepts, several forms of aggregation operators,
viz., weighted averaging, weighted geometric, ordered weighted averaging and ordered weighted geometric
aggregation operators, are updated in the IVHPF environment. Conversion processes from A𝑡-CN&𝑡-Ns based
aggregation operators to other variants are also discussed. Using the proposed operators, a methodology for
solving MCDM problems with IVHPF cognitive information is proposed. To explore the applicability of the
proposed approach, two examples are considered and solved. Results obtained from this method are compared
with the existing approaches to establish the efficiency of the proposed method.

. Introduction

In this modern era of information technology, multicriteria decision making (MCDM) has appeared as an active area of research for its
pplicability in information processing and other allied fields. Through MCDM, a finite number of alternatives are ranked according to their attribute
alues. Due to complexities raised to evaluate attribute values of the alternatives, several kinds of uncertainties are frequently observed. Pythagorean
uzzy set (PFS) [1,2] has become an effective tool in recent times to tackle uncertainties associated with the attributes of the alternatives. PFS concept
s extended by deriving detailed mathematical expressions of Pythagorean fuzzy numbers (PFNs) by Zhang and Xu [3]. Based on Einstein 𝑡-conorm
𝑡-CN) and 𝑡-norm (𝑡-N) [4], Garg [5] proposed some Pythagorean fuzzy weighted geometric (WG) and ordered WG (OWG) aggregation operators
iz., Pythagorean fuzzy Einstein WG, and Pythagorean fuzzy Einstein OWG operators. Based on Hamacher 𝑡-CN and 𝑡-N, Wu and Wei [6] applied
eighted averaging (WA) and ordered WA (OWA) operator on PFS and introduced Pythagorean fuzzy Hamacher WA, Pythagorean fuzzy Hamacher
WA and Pythagorean fuzzy Hamacher hybrid averaging operators and also their corresponding geometric operators. Biswas and Sarkar [7,8]
efined point operator-based similarity measure of PFNs and extended TOPSIS to solve multicriteria group decision making problems under
ythagorean fuzzy environment. Jana et al. [9] utilized Dombi 𝑡-CN and 𝑡-N [10,11] to develop some Pythagorean fuzzy aggregation operators,
iz., Pythagorean fuzzy Dombi WA, Pythagorean fuzzy Dombi OWA, Pythagorean fuzzy Dombi hybrid WA, and corresponding geometric operators.
urthermore, Peng and Yang [12] introduced the idea of interval-valued Pythagorean fuzzy (IVPF) sets (IVPFSs), generalization of PFS and interval-
alued intuitionistic fuzzy set [13], where the membership and non-membership values of an element to a given set are represented by the
ubintervals of [0, 1]. Under the IVPF environment, Rahman et al. [14] introduced three IVPF geometric aggregation operators to aggregate IVPF
umbers (IVPFNs) such as IVPF WG, IVPF OWG, and IVPF hybrid geometric operators. Garg [15] introduced an accuracy function for ranking the
VPFNs by considering the hesitancy degree of IVFNs for solving MCDM problems. Again Garg [16] presented TOPSIS method on IVPF environment.
iswas and Sarkar [17] introduced point operator based similarity measures on IVPFSs and applied them to solve MCDM problems using
ODIM.
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Sometimes in practical situations, decision makers (DMs) face difficulty estimating the degree of membership by a single value; instead, they
are interested in assigning a set of possible values. To adopt such situations, Torra and Narukawa [18] and Torra [19] introduced hesitant fuzzy
set (HFS) by considering a set of possible membership values within 0 and 1. Later on, generalizing the concept of IFS, Zhu et al. [20] defined dual
hesitant fuzzy (DHF) set (DHFSs) by simultaneous consideration of HFS and IFS. Garg and Arora [21] introduced DHF soft WA and WG aggregation
operators. Biswas and Sarkar [22] proposed DHF prioritized WA and WG aggregation operators based on Einstein 𝑡-CN and 𝑡-N.

Afterwards, inspired by the idea of DHFS [20] and PFS [1,2], Liang and Xu [23] proposed the concept of the hesitant Pythagorean fuzzy (HPF)
set (HPFS) and defined distance measures of HPFS and applied them in MCDM by providing TOPSIS. Based on Hamacher operations, Lu et al. [24]
developed a series of aggregation operators, viz., HPF Hamacher (HPFH) WA, HPFH WG, HPFH OWA, HPFH OWG, HPFH hybrid average and
HPFH hybrid geometric operators. Garg [25] introduced HPF- WA, OWA, hybrid average and its geometric aggregation operators. To capture
the interrelationship arguments with HPF context, Garg [26] further developed HPF Maclaurin symmetric mean (MSM) operator for aggregating
HPF information. Yang et al. [27] proposed several HPF interaction aggregation operators based on Bonferroni mean (BM), viz., HPF interaction
BM, weighted BM, geometric BM and geometric weight BM operators. Recently Sarkar and Biswas [28] introduced some operational rules of
HPF elements based on Archimedean 𝑡-CN and 𝑡-N (A𝑡-CN&𝑡-N). They proposed some Archimedean operations-based MSM operators under HPF
environments using those defined operations.

However, in several real-life MCDM models, due to insufficiency in available information, DMs are unable to exert their opinion with a crisp
number but are comfortable putting the decision values by interval numbers within [0, 1]. To overcome such situations, Wang et al. [29] introduced
the concept of interval-valued HPFS (IVHPFS), which takes the hesitant membership and non-membership degrees in the form of IVPFNs. It should
be noted that when both the membership degree and non-membership degree of each element to a given set have a single interval value, the
IVHPFS reduces to the IVPFS [12] and when the upper and lower limits of interval values are identical, IVHPFS becomes HPFS [23]. Thus, it is
clear that IVHPFS is a more generalized form than other extensions of PFSs.

Different classes of 𝑡-CNs and 𝑡-Ns are derived from A𝑡-CN&𝑡-N [30,31], viz., Algebraic, Einstein, Hamacher and Frank classes of 𝑡-CNs and 𝑡-Ns.
Based on A𝑡-CN&𝑡-N, Xia et al. [32] introduced A𝑡-CN&𝑡-N based intuitionistic fuzzy WA and WG operators. Zhang and Wu [33] developed several
A𝑡-CN&𝑡-N-based interval-valued hesitant fuzzy WA and WG aggregation operators. On DHF environment, Yu [34] proposed DHF WA and WG
aggregation operators based on A𝑡-CN&𝑡-N operations. Recently, Sarkar and Biswas [35] introduced A𝑡-CN&𝑡-N operations on Pythagorean hesitant
fuzzy (PHF) sets and defined a class of A𝑡-CN&𝑡-N-based PHF WA and WG operators. Again Sarkar and Biswas [36] applied A𝑡-CN&𝑡-N on the
interval-valued DHF (IVDHF) information and introduced a class of aggregation operators.

Motivated by the work of Sarkar and Biswas [35,36], this paper proposes A𝑡-CN&𝑡-N based operational laws on IVHPFSs and investigates
their properties. Based on those operational laws on IVHPFSs, A𝑡-CN&𝑡-N based IVHPF WA (AIVHPFWA), WG (AIVHPFWG), OWA (AIVHPFOWA)
nd OWG (AIVHPFOWG) operators are developed. From the developed operators, different forms of other aggregation operators, viz., IVHPF WA
IVHPFWA), IVHPF Einstein WA (IVHPFEWA), IVHPF Hamacher WA (IVHPFHWA), IVHPF Dombi WA (IVHPFDWA), IVHPF Frank WA (IVHPFFWA)
perators, also ordered weighted aggregation analogous operators and their geometric operators can be derived.

This article is organized as follows. At first, some preliminary concepts on HPFS, IVHPFS and A𝑡-CN&𝑡-N are studied. Then A𝑡-CN&𝑡-N-based
operations on IVHPF elements (IVHPFEs) are defined. To aggregate the IVHPFEs, based on A𝑡-CN&𝑡-N, IVHPF WA and OWA aggregation operators
and their geometric form, viz., IVHPF WG and OWG operators are proposed. After that, the classification of the proposed operators is made for
different types of decreasing functions. Some valuable properties and exceptional cases of the developed operators are also studied. In the sequel,
an approach to MCDM under IVHPF environment is developed. Two numerical illustrations support the proposed method, and the sensitive nature
of the model is checked by varying the parameter. A comparative study with the existing methods is presented by solving several previously
considered invariants of fuzzy environments. Finally, conclusions and scope for future studies have been described.

2. Preliminaries

In this section, some elementary concepts relating to HPFS, IVHPFS and A𝑡-CN&𝑡-N are briefly explained to introduce the proposed method.

2.1. Hesitant Pythagorean fuzzy set

Liang and Xu [23] extended the notion of PFSs by taking the degrees of membership and non-membership of a PFN through some possible
degrees and termed as HPFSs. It is defined as follows:

Definition 1 ([23]). Let 𝑋 be a universe of discourse. Then an HPFS 𝐾 on 𝑋 is described as:

𝐾 =
(

(

𝑥, 𝜇𝐾 (𝑥) , 𝜈𝐾 (𝑥)
)

|

|

|

𝑥 ∈ 𝑋
)

where 𝜇𝐾 (𝑥) and 𝜈𝐾 (𝑥) represents two sets ⋃

𝛼∈𝜇𝐾 (𝑥) {𝛼} and ⋃

𝛽∈𝜈𝐾 (𝑥) {𝛽} in which 𝛼, 𝛽 belongs to the closed unit interval, indicating the probable
Pythagorean membership values and Pythagorean non-membership values, respectively, of the component 𝑥 ∈ 𝑋 to the set 𝐾 satisfying the
conditions:

0 ≤ 𝛼, 𝛽 ≤ 1 and 0 ≤
(

max
𝛼∈𝜇𝐾 (𝑥)

{𝛼}
)2

+
(

max
𝛽∈𝜈𝐾 (𝑥)

{𝛽}
)2

≤ 1 for all 𝑥 ∈ 𝑋.

For convenience, Liang and Xu [23] called the pair 𝐾 =
(

𝜇𝐾 (𝑥) , 𝜈𝐾 (𝑥)
)

as an HPF element (HPFE) symbolically written as 𝑘 = (𝜇, 𝜈).
Furthermore, Liang and Xu [23] defined score and accuracy functions for developing the comparison laws between HPFEs.

efinition 2 ([23]). Let 𝑘 = (𝜇, 𝜈) be an HPFE, then the score function 𝑆 (𝑘) and accuracy function 𝐴 (𝑘) of 𝑘 is defined as follows:

𝑆 (𝑘) = 1
2

(

1 + 1
|𝜇|

∑

𝛼2 − 1
|𝜈|

∑

𝛽2
)

,

𝛼∈𝜇 𝛽∈𝜈

2
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and

𝐴 (𝑘) = 1
|𝜇|

∑

𝛼∈𝜇
𝛼2 − 1

|𝜈|
∑

𝛽∈𝜈
𝛽2,

where |𝜇| and |𝜈| are the numbers of the elements in 𝜇 and 𝜈, respectively.

Definition 3 ([23]). Let 𝑘1 and 𝑘2 be any two HPFEs, then the ordering of those HPFEs is done by the following principles.

• If 𝑆
(

𝑘1
)

> 𝑆
(

𝑘2
)

, then 𝑘1 ≻ 𝑘2;
• If 𝑆

(

𝑘1
)

= 𝑆
(

𝑘2
)

, then

(1) If 𝐴
(

𝑘1
)

> 𝐴
(

𝑘2
)

, then 𝑘1 ≻ 𝑘2;
(2) If 𝐴

(

𝑘1
)

= 𝐴
(

𝑘2
)

, then 𝑘1 ≈ 𝑘2.

2.2. IVHPFS

Sometimes, it becomes inadequate to describe an uncertain situation by HPF information. To tackle that situation, Wang et al. [29] introduced
the concept of IVHPFS.

Definition 4. Let 𝑋 be a fixed set and the power set of [0, 1] is denoted by 𝐼 ([0, 1]). An IVHPFS �̃� on 𝑋 is presented as

�̃� =
{

⟨

𝑥, ℎ̃𝐷 (𝑥) , �̃�𝐷 (𝑥)
⟩

|

|

|

𝑥 ∈ 𝑋
}

(1)

where ℎ̃𝐷 (𝑥) =
⋃

[𝛾 𝑙 ,𝛾𝑢]∈ℎ̃𝐷(𝑥)
{[

𝛾 𝑙 , 𝛾𝑢
]}

and �̃�𝐷 (𝑥) =
⋃

[𝛿𝑙 ,𝛿𝑢]∈�̃�𝐷(𝑥)
{[

𝛿𝑙 , 𝛿𝑢
]}

represent two sets of some interval values belonging to 𝐼 ([0, 1]),
enoting the possible membership and non-membership interval-values, respectively, corresponding to the element 𝑥 ∈ 𝑋 satisfying the condition:
≤
(

(𝛾𝑢)+
)2 +

(

(𝛿𝑢)+
)2 ≤ 1, in which (𝛾𝑢)+ = max[𝛾 𝑙 ,𝛾𝑢]∈ℎ̃𝐷(𝑥) {𝛾

𝑢} and (𝛿𝑢)+ = max[𝛿𝑙 ,𝛿𝑢]∈�̃�𝐷(𝑥) {𝛿
𝑢}. For convenience, the pair

(

ℎ̃𝐷 (𝑥) , �̃�𝐷 (𝑥)
)

is called
n IVHPF element (IVHPFE) denoted by 𝑑 =

(

ℎ̃, �̃�
)

.
For example, if a DM provides possible membership degrees of 𝑥 ∈ 𝑋 to the set �̃� as [0.1, 0.3] , [0.4, 0.6] and [0.7, 0.8], and possible

on-membership degrees as [0.3, 0.4] and [0.4, 0.6] simultaneously, then the IVHPFE can be represented as
𝑑 = ({[0.1, 0.3] , [0.4, 0.6] , [0.7, 0.8]} , {[0.3, 0.4] , [0.4, 0.6]}) in which (𝛾𝑢)+ = 0.8, (𝛿𝑢)+ = 0.6 and 0 ≤ (0.8)2 + (0.6)2 ≤ 1.
To compare the IVHPFEs, Wang et al. [29] defined the score and accuracy functions as follows.

efinition 5. Let 𝑑 =
(

ℎ̃, �̃�
)

be an IVHPFE. Then the score function of 𝑑 is defined as

𝑆
(

𝑑
)

= 1
2

⎛

⎜

⎜

⎝

1 + 1
2 |
|

ℎ̃|
|

∑

[𝛾 𝑙 ,𝛾𝑢]∈ℎ̃

(

(

𝛾 𝑙
)2 + (𝛾𝑢)2

)

− 1
2 |�̃�|

∑

[𝛿𝑙 ,𝛿𝑢]∈�̃�

(

(

𝛿𝑙
)2 + (𝛿𝑢)2

)
⎞

⎟

⎟

⎠

(2)

and the accuracy function of 𝑑 is defined as

𝐴
(

𝑑
)

= 1
2 |
|

ℎ̃|
|

∑

[𝛾 𝑙 ,𝛾𝑢]∈ℎ̃

(

(

𝛾 𝑙
)2 + (𝛾𝑢)2

)

+ 1
2 |�̃�|

∑

[𝛿𝑙 ,𝛿𝑢]∈�̃�

(

(

𝛿𝑙
)2 + (𝛿𝑢)2

)

(3)

where |

|

ℎ̃|
|

and |�̃�| defined the number of intervals in ℎ̃ and �̃�, respectively.
Let 𝑑𝑖 (𝑖 = 1, 2) be any two IVHPFEs, then the ordering of IVHPFEs is done in the following manner:

(i) If 𝑆
(

𝑑1
)

> 𝑆
(

𝑑2
)

then 𝑑1 ≻ 𝑑2;
(ii) If 𝑆

(

𝑑1
)

= 𝑆
(

𝑑2
)

then
• if 𝐴

(

𝑑1
)

> 𝐴
(

𝑑2
)

then 𝑑1 ≻ 𝑑2; if 𝐴
(

𝑑1
)

= 𝐴
(

𝑑2
)

then 𝑑1 ≈ 𝑑2.

2.3. Archimedean 𝑡-norm and 𝑡-conorm

Definition 6 ([30,31]). A function V∶ [0, 1]× [0, 1] → [0, 1] is called a 𝑡-CN if it satisfied associativity, symmetricity, non-decreasing and V (𝑥, 0) = 𝑥
for all 𝑥. If a binary operation 𝛬∶ [0, 1] × [0, 1] → [0, 1] is satisfies associativity, symmetricity, non-decreasing and 𝛬 (𝑥, 1) = 𝑥 for all 𝑥 then 𝛬 is
known as a 𝑡-N.

Archimedean 𝑡-CN (A𝑡-CN) and Archimedean 𝑡-N (A𝑡-N) operations are expressed as follows:

Definition 7 ([37]). An A𝑡-CN V is formulated using increasing function g as

V (𝑎, 𝑏) = g−1 (g (𝑎) + g (𝑏)) (4)

Similarly, using decreasing function 𝑓 , an A𝑡-N 𝛬 is represented as

𝛬 (𝑎, 𝑏) = 𝑓−1 (𝑓 (𝑎) + 𝑓 (𝑏)) with g (𝑡) = 𝑓 (1 − 𝑡) for all 𝑎, 𝑏, 𝑡 ∈ [0, 1] . (5)

3. A𝒕-CN&𝒕-N-based operations on IVHPFEs
Considering the concept of A𝑡-CN&𝑡-N-based operational laws, some operations on IVHPFEs are proposed here.

3
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f
r

4

A
t

4

D

Definition 8. Let 𝑑 =
(

ℎ̃, �̃�
)

, 𝑑1 =
(

ℎ̃1, �̃�1
)

and 𝑑2 =
(

ℎ̃2, �̃�2
)

be any three IVHPFEs. The arithmetic operations on IVHPFEs based on A𝑡-CN&𝑡-N are
defined as:

(1)

𝑑1 ⊕𝐴 𝑑2 =

({[

√

V
(

(

𝛾 𝑙1
)2 ,

(

𝛾 𝑙2
)2
)

,
√

V
(

(

𝛾𝑢1
)2 ,

(

𝛾𝑢2
)2
)

]

|

|

|

[

𝛾 𝑙𝑖 , 𝛾
𝑢
𝑖
]

∈ ℎ̃𝑖

𝑖 = 1, 2

}

,

{[

√

𝛬
(

(

𝛿𝑙1
)2 ,

(

𝛿𝑙2
)2
)

,
√

𝛬
(

(

𝛿𝑢1
)2 ,

(

𝛿𝑢2
)2
)

]

|

|

|

[

𝛿𝑙𝑖 , 𝛿
𝑢
𝑖
]

∈ �̃�𝑖

𝑖 = 1, 2

})

=

({[

√

g−1
(

g
(

(

𝛾 𝑙1
)2
)

+ g
(

(

𝛾 𝑙2
)2
))

,
√

g−1
(

g
(

(

𝛾𝑢1
)2
)

+ g
(

(

𝛾𝑢2
)2
))

]

|

|

|

[

𝛾 𝑙𝑖 , 𝛾
𝑢
𝑖
]

∈ ℎ̃𝑖

𝑖 = 1, 2

}

,

{[

√

𝑓−1
(

𝑓
(

(

𝛿𝑙1
)2
)

+ 𝑓
(

(

𝛿𝑙2
)2
))

,
√

𝑓−1
(

𝑓
(

(

𝛿𝑢1
)2
)

+ 𝑓
(

(

𝛿𝑢2
)2
))

]

|

|

|

[

𝛿𝑙𝑖 , 𝛿
𝑢
𝑖
]

∈ �̃�𝑖

𝑖 = 1, 2

})

;

(2)

𝑑1 ⊗𝐴 𝑑2 =

({[

√

𝛬
(

(

𝛾 𝑙1
)2 ,

(

𝛾 𝑙2
)2
)

,
√

𝛬
(

(

𝛾𝑢1
)2 ,

(

𝛾𝑢2
)2
)

]

|

|

|

[

𝛾 𝑙𝑖 , 𝛾
𝑢
𝑖
]

∈ ℎ̃𝑖

𝑖 = 1, 2

}

,

{[

√

V
(

(

𝛿𝑙1
)2 ,

(

𝛿𝑙2
)2
)

,
√

V
(

(

𝛿𝑢1
)2 ,

(

𝛿𝑢2
)2
)

]

|

|

|

[

𝛿𝑙𝑖 , 𝛿
𝑢
𝑖
]

∈ �̃�𝑖

𝑖 = 1, 2

})

=

({[

√

𝑓−1
(

𝑓
(

(

𝛾 𝑙1
)2
)

+ 𝑓
(

(

𝛾 𝑙2
)2
))

,
√

𝑓−1
(

𝑓
(

(

𝛾𝑢1
)2
)

+ 𝑓
(

(

𝛾𝑢2
)2
))

]

|

|

|

[

𝛾 𝑙𝑖 , 𝛾
𝑢
𝑖
]

∈ ℎ̃𝑖

𝑖 = 1, 2

}

,

{[

√

g−1
(

g
(

(

𝛿𝑙1
)2
)

+ g
(

(

𝛿𝑙2
)2
))

,
√

g−1
(

g
(

(

𝛿𝑢1
)2
)

+ g
(

(

𝛿𝑢2
)2
))

]

|

|

|

[

𝛿𝑙𝑖 , 𝛿
𝑢
𝑖
]

∈ 𝑔𝑖

𝑖 = 1, 2

})

;

(3)

𝜆𝑑 =

({[

√

g−1
(

𝜆g
(

(

𝛾 𝑙
)2
))

,
√

g−1
(

𝜆g
(

(𝛾𝑢)2
))

]

|

|

|

[

𝛾 𝑙 , 𝛾𝑢
]

∈ ℎ̃

}

,

{[

√

𝑓−1
(

𝜆𝑓
(

(

𝛿𝑙
)2
))

,
√

𝑓−1
(

𝜆𝑓
(

(𝛿𝑢)2
))

]

|

|

|

[

𝛿𝑙 , 𝛿𝑢
]

∈ �̃�

})

𝜆 > 0,

(4)

𝑑𝜆 =

({[

√

𝑓−1
(

𝜆𝑓
(

(

𝛾 𝑙
)2
))

,
√

𝑓−1
(

𝜆𝑓
(

(𝛾𝑢)2
))

]

|

|

|

[

𝛾 𝑙 , 𝛾𝑢
]

∈ ℎ̃

}

,

{[

√

g−1
(

𝜆g
(

(

𝛿𝑙
)2
))

,
√

g−1
(

𝜆g
(

(𝛿𝑢)2
))

]

|

|

|

[

𝛿𝑙 , 𝛿𝑢
]

∈ �̃�

})

𝜆 > 0,

Several 𝑡-CNs and 𝑡-Ns are derived using different forms of increasing and decreasing functions [37] and using these functions in different
orms, viz., algebraic, Einstein, Hamacher, Dombi and Frank classes of 𝑡-CNs and 𝑡-Ns of IVHPFEs are derived and is presented in Tables 1 and 2,
espectively.

. IVHPF weighted aggregation operators and their properties

In this section, A𝑡-CN&𝑡-N-based WA and OWA aggregation and their geometric operators with IVHPEs, viz., AIVHPFWA, AIVHPFOWA,
IVHPFWG and AIVHPFOWG operators are proposed. Several forms of aggregation operators derived from those operators are presented, and

heir properties are also discussed.

.1. AIVHPFWA operator

By incorporating the importance of the experts and parameters during the decision analysis, AIVHPFWA operators are presented as follows:

efinition 9. Let
{

𝑑1, 𝑑2,… , 𝑑𝑛
}

be a set of IVHPFEs, 𝜔 =
(

𝜔1, 𝜔2,… , 𝜔𝑛
)𝑇 be the weight vector where ∑𝑛

𝑖=1 𝜔𝑖 = 1 and 𝜔𝑖 ∈ [0, 1]. Then AIVHPFWA
operator is a function

�̃�𝑛 → �̃�, given by 𝐴𝐼𝑉 𝐻𝑃𝐹𝑊 𝐴
(

𝑑1, 𝑑2,… , 𝑑𝑛
)

= ⊕𝐴
𝑛
𝑖=1

(

𝜔𝑖𝑑𝑖
)

where ⊕𝐴 represents the Archimedean sum.

Conforming with the operations of IVHPFEs shown in Definition 8, the following theorem is derived.

4
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Table 1
Forms of A𝑡-CN for IVHPFEs.

Name Forms of A𝑡-CN Functions

Algebraic 𝑡-CN
⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

[
√

𝛾 𝑙21 + 𝛾 𝑙22 −
(

𝛾 𝑙1𝛾
𝑙
2

)2 ,
√

𝛾𝑢21 + 𝛾𝑢21 −
(

𝛾𝑢1 𝛾
𝑢
2

)2
]

|

|

|

[

𝛾 𝑙𝑖 , 𝛾
𝑢
𝑖

]

∈ ℎ̃𝑖

𝑖 = 1, 2

⎫

⎪

⎬

⎪

⎭

,

⎧

⎪

⎨

⎪

⎩

[

𝛿𝑙1𝛿
𝑙
2 , 𝛿

𝑢
1𝛿

𝑢
2

]

|

|

|

[

𝛿𝑙𝑖 , 𝛿
𝑢
𝑖

]

∈ �̃�𝑖

𝑖 = 1, 2

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟

⎟

⎠

𝑓 (𝑥) = − log 𝑥, 𝗀 (𝑥) = − log (1 − 𝑥)

Einstein 𝑡-CN
⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

[

√

(𝛾 𝑙1)
2+(𝛾 𝑙2)

2

1+(𝛾 𝑙1𝛾 𝑙2)
2 ,

√

(𝛾𝑢1 )
2+(𝛾𝑢2 )

2

1+(𝛾𝑢1 𝛾𝑢2 )
2

]

|

|

|

[

𝛾 𝑙𝑖 , 𝛾
𝑢
𝑖

]

∈ ℎ̃𝑖

𝑖 = 1, 2

⎫

⎪

⎬

⎪

⎭

,

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

𝛿𝑙1𝛿
𝑙
2

√

1+
(

1−(𝛿𝑙1)
2
)(

1−(𝛿𝑙2)
2
)

, 𝛿𝑢1𝛿
𝑢
2

√

1+
(

1−(𝛿𝑢1)
2
)(

1−(𝛿𝑢2)
2
)

⎤

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝑖 , 𝛿
𝑢
𝑖

]

∈ �̃�𝑖

𝑖 = 1, 2

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟

⎟

⎠

𝑓 (𝑥) = log
(

2−𝑥
𝑥

)

,

𝗀 (𝑥) = log
(

1+𝑥
1−𝑥

)

Hamacher 𝑡-CN
⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

[

√

𝛾 𝑙21 +𝛾 𝑙22 −(𝛾 𝑙1𝛾 𝑙2)
2−(1−𝜃)(𝛾 𝑙1𝛾 𝑙2)

2

1−(1−𝜃)(𝛾 𝑙1𝛾 𝑙2)
2 ,

√

𝛾𝑢21 +𝛾𝑢22 −(𝛾𝑢1 𝛾𝑢2 )
2−(1−𝜃)(𝛾𝑢1 𝛾𝑢2 )

2

1−(1−𝜃)(𝛾𝑢1 𝛾𝑢2 )
2

]

|

|

|

[

𝛾 𝑙𝑖 , 𝛾
𝑢
𝑖

]

∈ ℎ̃𝑖

𝑖 = 1, 2

⎫

⎪

⎬

⎪

⎭

,

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

𝛿𝑙1𝛿
𝑙
2

√

𝜃+(1−𝜃)
(

𝛿𝑙21 +𝛿𝑙22 −(𝛿𝑙1𝛿𝑙2)
2
)

, 𝛿𝑢1𝛿
𝑢
2

√

𝜃+(1−𝜃)
(

𝛿𝑢21 +𝛿𝑢22 −(𝛿𝑢1𝛿𝑢2)
2
)

⎤

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝑖 , 𝛿
𝑢
𝑖

]

∈ �̃�𝑖

𝑖 = 1, 2

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟

⎟

⎠

𝑓 (𝑥) = log
(

𝜃+(1−𝜃)𝑥
𝑥

)

,

𝗀 (𝑥) = log
(

𝜃+(1−𝜃)(1−𝑥)
(1−𝑥)

)

, 𝜃 > 0

Dombi 𝑡-CN
⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

√

√

√1 − 1∕

(

1 +
((

𝛾 𝑙21
1−𝛾 𝑙21

)𝜌

+
(

𝛾 𝑙22
1−𝛾 𝑙22

)𝜌) 1
𝜌
)

,

√

√

√

√1 − 1∕

(

1 +
((

𝛾𝑢21
1−𝛾𝑢21

)𝜌

+
(

𝛾𝑢22
1−𝛾𝑢22

)𝜌) 1
𝜌
)

⎤

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝑖 , 𝛾
𝑢
𝑖

]

∈ ℎ̃𝑖

𝑖 = 1, 2

⎫

⎪

⎬

⎪

⎭

,

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎢

⎣

1∕

√

√

√

√1 +
((

1−𝛿𝑙21
𝛿𝑙21

)𝜌

+
(

1−𝛿𝑙22
𝛿𝑙22

)𝜌) 1
𝜌

,

1∕

√

√

√

√1 +
((

1−𝛿𝑢21
𝛿𝑢21

)𝜌

+
(

1−𝛿𝑢22
𝛿𝑢22

)𝜌) 1
𝜌
⎤

⎥

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝑖 , 𝛿
𝑢
𝑖

]

∈ �̃�𝑖

𝑖 = 1, 2

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟

⎟

⎠

𝑓 (𝑥) =
(

1
𝑥
− 1

)𝜌
,

𝗀 (𝑥) =
(

𝑥
1−𝑥

)𝜌
, 𝜌 > 0

Frank 𝑡-CN
⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎢

⎣

√

√

√

√

√1 − log𝜓
⎛

⎜

⎜

⎝

1 +

(

𝜓1−𝛾𝑙21 −1
)(

𝜓1−𝛾𝑙22 −1
)

𝜓−1

⎞

⎟

⎟

⎠

,
√

1 − log𝜓 (1+

(

𝜓1−𝛾𝑢21 −1
)(

𝜓1−𝛾𝑢22 −1
)

𝜓−1

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝑖 , 𝛾
𝑢
𝑖

]

∈ ℎ̃𝑖

𝑖 = 1, 2

⎫

⎪

⎬

⎪

⎭

,

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎢

⎣

√

√

√

√

√log𝜓
⎛

⎜

⎜

⎝

1 +

(

𝜓𝛿
𝑙2
1 −1

)(

𝜓𝛿
𝑙2
2 −1

)

𝜓−1

⎞

⎟

⎟

⎠

,

√

√

√

√

√log𝜓
⎛

⎜

⎜

⎝

1 +

(

𝜓𝛿
𝑢2
1 −1

)(

𝜓𝛿
𝑢2
2 −1

)

𝜓−1

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝑖 , 𝛿
𝑢
𝑖

]

∈ �̃�𝑖

𝑖 = 1, 2

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟

⎟

⎠

𝑓 (𝑥) = log
(

𝜓−1
𝜓𝑥−1

)

,

𝗀 (𝑥) = log
(

𝜓−1
𝜓1−𝑥−1

)

, 𝜓 > 1

Theorem 1. Let 𝑑𝑖 =
(

ℎ̃𝑖, �̃�𝑖
)

(𝑖 = 1, 2,… , 𝑛) be a set of IVHPFEs, then the aggregating value using AIVHPFWA operator is also an IVHPFE and

𝐴𝐼𝑉 𝐻𝑃𝐹𝑊 𝐴
(

𝑑1, 𝑑2,… , 𝑑𝑛
)

=

⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

√

√

√g−1
( 𝑛
∑

𝑖=1
𝜔𝑖g

(

(

𝛾 𝑙𝑖
)2
)

)

,

√

√

√

√g−1
( 𝑛
∑

𝑖=1
𝜔𝑖g

(

(

𝛾𝑢𝑖
)2
)

)

⎤

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝑖 , 𝛾
𝑢
𝑖
]

∈ ℎ̃𝑖

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎬

⎪

⎭

,

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

√

√

√𝑓−1

( 𝑛
∑

𝑖=1
𝜔𝑖𝑓

(

(

𝛿𝑙𝑖
)2
)

)

,

√

√

√

√𝑓−1

( 𝑛
∑

𝑖=1
𝜔𝑖𝑓

(

(

𝛿𝑢𝑖
)2
)

)

⎤

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝑖 , 𝛿
𝑢
𝑖
]

∈ �̃�𝑖

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟

⎟

⎠

(6)

Proof. For 𝑛 = 2,

𝜔1𝑑1 =

({[

√

g−1
(

𝜔1g
(

(

𝛾 𝑙1
)2
))

,
√

g−1
(

𝜔1g
(

(

𝛾𝑢1
)2
))

]

|

|

|

[

𝛾 𝑙1, 𝛾
𝑢
1
]

∈ ℎ̃1

}

,

{[

√

𝑓−1
(

𝜔1𝑓
(

(

𝛿𝑙1
)2
))

,
√

𝑓−1
(

𝜔1𝑓
(

(

𝛿𝑢1
)2
))

]

|

|

|

[

𝛿𝑙1, 𝛿
𝑢
1
]

∈ �̃�1

})
5
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n

Table 2
Forms of A𝑡-N for IVHPFEs.

Name Forms of A𝑡-Ns Functions

Algebraic 𝑡-N
⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

[

𝛾 𝑙1𝛾
𝑙
2 , 𝛾

𝑢
1 𝛾

𝑢
2

]

|

|

|

[

𝛾 𝑙𝑖 , 𝛾
𝑢
𝑖

]

∈ ℎ̃𝑖

𝑖 = 1, 2

⎫

⎪

⎬

⎪

⎭

,

⎧

⎪

⎨

⎪

⎩

[
√

𝛿𝑙21 + 𝛿𝑙21 −
(

𝛿𝑙1𝛿
𝑙
2

)2 ,
√

𝛿𝑢21 + 𝛿𝑢21 −
(

𝛿𝑢1𝛿
𝑢
2

)2
]

|

|

|

[

𝛿𝑙𝑖 , 𝛿
𝑢
𝑖

]

∈ �̃�𝑖

𝑖 = 1, 2

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟

⎟

⎠

𝑓 (𝑥) = − log 𝑥, 𝗀 (𝑥) = − log (1 − 𝑥)

Einstein 𝑡-N
⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

𝛾 𝑙1𝛾
𝑙
2

√

1+
(

1−(𝛾 𝑙1)
2
)(

1−(𝛾 𝑙2)
2
)

, 𝛾𝑢1 𝛾
𝑢
2

√

1+
(

1−(𝛾𝑢1 )
2
)(

1−(𝛾𝑢2 )
2
)

⎤

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝑖 , 𝛾
𝑢
𝑖

]

∈ ℎ̃𝑖

𝑖 = 1, 2

⎫

⎪

⎬

⎪

⎭

,

⎧

⎪

⎨

⎪

⎩

[

√

(𝛿𝑙1)
2+(𝛿𝑙2)

2

1+(𝛿𝑙1𝛿𝑙2)
2 ,

√

(𝛿𝑢1)
2+(𝛿𝑢2)

2

1+(𝛿𝑢1𝛿𝑢2)
2

]

|

|

|

[

𝛿𝑙𝑖 , 𝛿
𝑢
𝑖

]

∈ �̃�𝑖

𝑖 = 1, 2

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟

⎟

⎠

𝑓 (𝑥) = log
(

2−𝑥
𝑥

)

,

𝗀 (𝑥) = log
(

1+𝑥
1−𝑥

)

Hamacher 𝑡-N
⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

𝛾 𝑙1𝛾
𝑙
2

√

𝜃+(1−𝜃)
(

𝛾 𝑙21 +𝛾 𝑙22 −(𝛾 𝑙1𝛾 𝑙2)
2
)

, 𝛾𝑢1 𝛾
𝑢
2

√

𝜃+(1−𝜃)
(

𝛾𝑢21 +𝛾𝑢22 −(𝛾𝑢1 𝛾𝑢2 )
2
)

⎤

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝑖 , 𝛾
𝑢
𝑖

]

∈ ℎ̃𝑖

𝑖 = 1, 2

⎫

⎪

⎬

⎪

⎭

,

⎧

⎪

⎨

⎪

⎩

[

√

𝛿𝑙21 +𝛿𝑙22 −(𝛿𝑙1𝛿𝑙2)
2−(1−𝜃)(𝛿𝑙1𝛿𝑙2)

2

1−(1−𝜃)(𝛿𝑙1𝛿𝑙2)
2 ,

√

𝛿𝑙21 +𝛿𝑙22 −(𝛿𝑙1𝛿𝑙2)
2−(1−𝜃)(𝛿𝑙1𝛿𝑙2)

2

1−(1−𝜃)(𝛿𝑙1𝛿𝑙2)
2

]

|

|

|

[

𝛿𝑙𝑖 , 𝛿
𝑢
𝑖

]

∈ �̃�𝑖

𝑖 = 1, 2

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟

⎟

⎠

𝑓 (𝑥) = log
(

𝜃+(1−𝜃)𝑥
𝑥

)

,

𝗀 (𝑥) = log
(

𝜃+(1−𝜃)(1−𝑥)
(1−𝑥)

)

, 𝜃 > 0

Dombi 𝑡-N
⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎢

⎣

1∕

√

√

√

√1 +
((

1−𝛾 𝑙21
𝛾 𝑙21

)𝜌

+
(

1−𝛾 𝑙22
(𝛾 𝑙2)

2

)𝜌) 1
𝜌

,

1∕

√

√

√

√1 +
((

1−𝛾𝑢21
𝛾𝑢21

)𝜌

+
(

1−𝛾𝑢22
𝛾𝑢22

)𝜌) 1
𝜌
⎤

⎥

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝑖 , 𝛾
𝑢
𝑖

]

∈ ℎ̃𝑖

𝑖 = 1, 2

⎫

⎪

⎬

⎪

⎭

,

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

√

√

√1 − 1∕

(

1 +
((

𝛿𝑙21
1−𝛿𝑙21

)𝜌

+
(

𝛿𝑙22
1−𝛿𝑙22

)𝜌) 1
𝜌
)

,

√

√

√

√1 − 1∕

(

1 +
((

𝛿𝑢21
1−𝛿𝑢21

)𝜌

+
(

𝛿𝑢22
1−𝛿𝑢22

)𝜌) 1
𝜌
)

⎤

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝑖 , 𝛿
𝑢
𝑖

]

∈ �̃�𝑖

𝑖 = 1, 2

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟

⎟

⎠

𝑓 (𝑥) =
(

1
𝑥
− 1

)𝜌
,

𝗀 (𝑥) =
(

𝑥
1−𝑥

)𝜌
, 𝜌 > 0

Frank 𝑡-N
⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎢

⎣

√

√

√

√

√log𝜃
⎛

⎜

⎜

⎝

1 +

(

𝜓𝛾
𝑙2
1 −1

)(

𝜓𝛾
𝑙2
2 −1

)

𝜓−1

⎞

⎟

⎟

⎠

,

√

√

√

√

√log𝜃
⎛

⎜

⎜

⎝

1 +

(

𝜓𝛾
𝑢2
1 −1

)(

𝜓𝛾
𝑢2
2 −1

)

𝜓−1

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝑖 , 𝛾
𝑢
𝑖

]

∈ ℎ̃𝑖

𝑖 = 1, 2

⎫

⎪

⎬

⎪

⎭

,

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎢

⎣

√

√

√

√

√1 − log𝜃
⎛

⎜

⎜

⎝

1 +

(

𝜓1−(𝛿𝑙1)
2
−1

)(

𝜓1−(𝛿𝑙2)
2
−1

)

𝜓−1

⎞

⎟

⎟

⎠

,

√

√

√

√

√1 − log𝜃
⎛

⎜

⎜

⎝

1 +

(

𝜓1−(𝛿𝑢1)
2
−1

)(

𝜓1−(𝛿𝑢2)
2
−1

)

𝜓−1

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝑖 , 𝛿
𝑢
𝑖

]

∈ �̃�𝑖

𝑖 = 1, 2

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟

⎟

⎠

𝑓 (𝑥) = log
(

𝜓−1
𝜓𝑥−1

)

,

𝗀 (𝑥) = log
(

𝜓−1
𝜓1−𝑥−1

)

, 𝜓 > 1

and

𝜔2𝑑2 =

({[

√

g−1
(

𝜔2g
(

(

𝛾 𝑙2
)2
))

,
√

g−1
(

𝜔2g
(

(

𝛾𝑢2
)2
))

]

|

|

|

[

𝛾 𝑙2, 𝛾
𝑢
2
]

∈ ℎ̃2

}

,
{[

√

𝑓−1
(

𝜔2𝑓
(

(

𝛿𝑙2
)2
))

,
√

𝑓−1
(

𝜔2𝑓
(

(

𝛿𝑢2
)2
))

]

|

|

|

[

𝛿𝑙2, 𝛿
𝑢
2
]

∈ �̃�2

})

ow, 𝜔1𝑑1 ⊕𝐴 𝜔2𝑑2 =

⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

√

√

√g−1
( 2
∑

𝑖=1
𝜔𝑖g

(

(

𝛾 𝑙𝑖
)2
)

)

,

√

√

√

√g−1
( 2
∑

𝑖=1
𝜔𝑖g

(

(

𝛾𝑢𝑖
)2
)

)

⎤

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝑖 , 𝛾
𝑢
𝑖
]

∈ ℎ̃𝑖

𝑖 = 1, 2

⎫

⎪

⎬

⎪

⎭

,

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

√

√

√𝑓−1

( 2
∑

𝑖=1
𝜔𝑖𝑓

(

(

𝛿𝑙𝑖
)2
)

)

,

√

√

√

√𝑓−1

( 2
∑

𝑖=1
𝜔𝑖𝑓

(

(

𝛿𝑢𝑖
)2
)

)

⎤

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝑖 , 𝛿
𝑢
𝑖
]

∈ �̃�𝑖

𝑖 = 1, 2

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟

⎟

⎠

i.e., the theorem holds for 𝑛 = 2. Assume now that the theorem holds for 𝑛 = 𝑝, i.e.,

𝐴𝐼𝑉 𝐻𝑃𝐹𝑊 𝐴
(

𝑑1, 𝑑2,… , 𝑑𝑝
)

=

⎛

⎜

⎜

⎜

⎧

⎪

⎨

⎪

⎡

⎢

⎢

⎣

√

√

√

√g−1
( 𝑝
∑

𝑖=1
𝜔𝑖g

(

(

𝛾 𝑙𝑖
)2
)

)

,

√

√

√

√g−1
( 𝑝
∑

𝑖=1
𝜔𝑖g

(

(

𝛾𝑢𝑖
)2
)

)

⎤

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝑖 , 𝛾
𝑢
𝑖
]

∈ ℎ̃𝑖

𝑖 = 1, 2,… , 𝑝

⎫

⎪

⎬

⎪

,

⎝⎩ ⎭

6
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⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

√

√

√𝑓−1

( 𝑝
∑

𝑖=1
𝜔𝑖𝑓

(

(

𝛿𝑙𝑖
)2
)

)

,

√

√

√

√𝑓−1

( 𝑝
∑

𝑖=1
𝜔𝑖𝑓

(

(

𝛿𝑢𝑖
)2
)

)

⎤

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝑖 , 𝛿
𝑢
𝑖
]

∈ �̃�𝑖

𝑖 = 1, 2,… , 𝑝

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟

⎟

⎠

Then for 𝑛 = 𝑝 + 1,

𝐴𝐼𝑉 𝐻𝑃𝐹𝑊 𝐴
(

𝑑1, 𝑑2,… , 𝑑𝑝, 𝑑𝑝+1
)

= 𝐴𝐼𝑉 𝐻𝑃𝐹𝑊 𝐴
(

𝑑1, 𝑑2,… , 𝑑𝑝
)

⊕𝐴 𝜔𝑝+1𝑑𝑝+1

=

⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

√

√

√g−1
( 𝑝
∑

𝑖=1
𝜔𝑖g

(

(

𝛾 𝑙𝑖
)2
)

)

,

√

√

√

√g−1
( 𝑝
∑

𝑖=1
𝜔𝑖g

(

(

𝛾𝑢𝑖
)2
)

)

⎤

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝑖 , 𝛾
𝑢
𝑖
]

∈ ℎ̃𝑖

𝑖 = 1, 2,… , 𝑝

⎫

⎪

⎬

⎪

⎭

,

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

√

√

√𝑓−1

( 𝑝
∑

𝑖=1
𝜔𝑖𝑓

(

(

𝛿𝑙𝑖
)2
)

)

,

√

√

√

√𝑓−1

( 𝑝
∑

𝑖=1
𝜔𝑖𝑓

(

(

𝛿𝑢𝑖
)2
)

)

⎤

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝑖 , 𝛿
𝑢
𝑖
]

∈ �̃�𝑖, 𝑖 = 1, 2,… , 𝑝

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟

⎟

⎠

⊕𝐴

⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

g−1
(

𝜔𝑝+1g
(

(

𝛾 𝑙𝑝+1
)2

))

,

√

g−1
(

𝜔𝑝+1g
(

(

𝛾𝑢𝑝+1
)2

))

⎤

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝑝+1, 𝛾
𝑢
𝑝+1

]

∈ ℎ̃𝑝+1

⎫

⎪

⎬

⎪

⎭

,

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

𝑓−1
(

𝜔𝑝+1𝑓
(

(

𝛿𝑙𝑝+1
)2

))

,

√

𝑓−1
(

𝜔𝑝+1𝑓
(

(

𝛿𝑢𝑝+1
)2

))

⎤

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝑝+1, 𝛿
𝑢
𝑝+1

]

∈ �̃�𝑝+1

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

√

√

√g−1
( 𝑝
∑

𝑖=1
𝜔𝑖g

(

(

𝛾 𝑙𝑖
)2
)

+ 𝜔𝑝+1g
(

(

𝛾 𝑙𝑝+1
)2

)

)

,

√

√

√

√g−1
( 𝑝
∑

𝑖=1
𝜔𝑖g

(

(

𝛾𝑢𝑖
)2
)

+ 𝜔𝑝+1g
(

(

𝛾𝑢𝑝+1
)2

)

)

⎤

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝑖 , 𝛾
𝑢
𝑖
]

∈ ℎ̃𝑖

𝑖 = 1, 2,… , 𝑝, 𝑝 + 1

⎫

⎪

⎬

⎪

⎭

,

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

√

√

√𝑓−1

( 𝑝
∑

𝑖=1
𝜔𝑖𝑓

(

(

𝛿𝑙𝑖
)2
)

+ 𝜔𝑝+1𝑓
(

(

𝛿𝑙𝑝+1
)2

)

)

,

√

√

√

√𝑓−1

( 𝑝
∑

𝑖=1
𝜔𝑖𝑓

(

(

𝛿𝑢𝑖
)2
)

+ 𝜔𝑝+1𝑓
(

(

𝛿𝑢𝑝+1
)2

)

)

⎤

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝑖 , 𝛿
𝑢
𝑖
]

∈ �̃�𝑖, 𝑖 = 1, 2,… , 𝑝, 𝑝 + 1

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

√

√

√g−1
(𝑝+1
∑

𝑖=1
𝜔𝑖g

(

(

𝛾 𝑙𝑖
)2
)

)

,

√

√

√

√g−1
(𝑝+1
∑

𝑖=1
𝜔𝑖g

(

(

𝛾𝑢𝑖
)2
)

)

⎤

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝑖 , 𝛾
𝑢
𝑖
]

∈ ℎ̃𝑖

𝑖 = 1, 2,… , 𝑝, 𝑝 + 1

⎫

⎪

⎬

⎪

⎭

,

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

√

√

√𝑓−1

(𝑝+1
∑

𝑖=1
𝜔𝑖𝑓

(

(

𝛿𝑙𝑖
)2
)

)

,

√

√

√

√𝑓−1

(𝑝+1
∑

𝑖=1
𝜔𝑖𝑓

(

(

𝛿𝑢𝑖
)2
)

)

⎤

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝑖 , 𝛿
𝑢
𝑖
]

∈ �̃�𝑖, 𝑖 = 1,… , 𝑝 + 1

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟

⎟

⎠

Therefore, the theorem is true for 𝑛 = 𝑝 + 1 also; and hence is true for all 𝑛.
This completes the proof.

Now the developed aggregation operator is classified in various forms by choosing several decreasing generators, 𝑓 .

4.1.1. IVHPF WA aggregation operator
For taking 𝑓 (𝑥) = − log 𝑥, the AIVHPFWA operator reduces to IVHPFWA operator and is defined by

𝐼𝑉 𝐷𝐻𝑃𝐹𝑊 𝐴
(

𝑑1, 𝑑2,… , 𝑑𝑛
)

=

⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

√

√

√1 −
𝑛
∏

𝑖=1

(

1 −
(

𝛾 𝑙𝑖
)2
)𝜔𝑖

,

√

√

√

√1 −
𝑛
∏

𝑖=1

(

1 −
(

𝛾𝑢𝑖
)2
)𝜔𝑖

⎤

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝑖 , 𝛾
𝑢
𝑖
]

∈ ℎ̃𝑖

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎬

⎪

⎭

,

{[ 𝑛
∏

(

𝛿𝑙𝑖
)𝜔𝑖 ,

𝑛
∏

(

𝛿𝑢𝑖
)𝜔𝑖

]

|

|

|

[

𝛿𝑙𝑖 , 𝛿
𝑢
𝑖
]

∈ �̃�𝑖, 𝑖 = 1, 2,… , 𝑛

})
𝑖=1 𝑖=1

7
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a

4.1.2. IVHPF Einstein WA (IVHPFEWA) operator
If 𝑓 (𝑥) = log

(

2−𝑥
𝑥

)

, the AIVHPFWA operator converted to IVHPFEWA operator, which is presented as:

𝐼𝑉 𝐻𝑃𝐹𝐸𝑊𝐴
(

𝑑1, 𝑑2,… , 𝑑𝑛
)

=

⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎢

⎣

√

√

√

√

√

√

∏𝑛
𝑖=1

(

1 +
(

𝛾 𝑙𝑖
)2
)𝜔𝑖

−
∏𝑛

𝑖=1

(

1 −
(

𝛾 𝑙𝑖
)2
)𝜔𝑖

∏𝑛
𝑖=1

(

1 +
(

𝛾 𝑙𝑖
)2
)𝜔𝑖

+
∏𝑛

𝑖=1

(

1 −
(

𝛾 𝑙𝑖
)2
)𝜔𝑖

,

√

√

√

√

√

√

∏𝑛
𝑖=1

(

1 +
(

𝛾𝑢𝑖
)2
)𝜔𝑖

−
∏𝑛

𝑖=1

(

1 −
(

𝛾𝑢𝑖
)2
)𝜔𝑖

∏𝑛
𝑖=1

(

1 +
(

𝛾𝑢𝑖
)2
)𝜔𝑖

+
∏𝑛

𝑖=1

(

1 −
(

𝛾𝑢𝑖
)2
)𝜔𝑖

⎤

⎥

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝑖 , 𝛾
𝑢
𝑖
]

∈ ℎ̃𝑖

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎬

⎪

⎭

,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎣

√

2
∏𝑛

𝑖=1
(

𝛿𝑙𝑖
)𝜔𝑖

√

∏𝑛
𝑖=1

(

1 +
(

1 −
(

𝛿𝑙𝑖
)2
))𝜔𝑖

+
∏𝑛

𝑖=1

(

(

𝛿𝑙𝑖
)2
)𝜔𝑖

,

√

2
∏𝑛

𝑖=1
(

𝛿𝑢𝑖
)𝜔𝑖

√

∏𝑛
𝑖=1

(

1 +
(

1 −
(

𝛿𝑢𝑖
)2
))𝜔𝑖

+
∏𝑛

𝑖=1

(

(

𝛿𝑢𝑖
)2
)𝜔𝑖

⎤

⎥

⎥

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝑖 , 𝛿
𝑢
𝑖
]

∈ �̃�𝑖

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎪

⎬

⎪

⎪

⎭

⎞

⎟

⎟

⎟

⎟

⎟

⎠

4.1.3. IVHPF Hamacher WA (IVHPFHWA) operator
When the decreasing generator 𝑓 (𝑥) = log

(

𝜃+(1−𝜃)𝑥
𝑥

)

, 𝜃 > 0 is taken, AIVHPFWA operator is converted to IVHPFHWA operator which is given
s:

𝐼𝑉 𝐻𝑃𝐹𝐻𝑊𝐴
(

𝑑1, 𝑑2,… , 𝑑𝑛
)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎣

√

∏𝑛
𝑖=1

(

1 + (𝜃 − 1) 𝛾 𝑙2𝑖
)𝜔𝑖

−
∏𝑛

𝑖=1

(

1 − 𝛾 𝑙2𝑖
)𝜔𝑖

√

∏𝑛
𝑖=1

(

1 + (𝜃 − 1) 𝛾 𝑙2𝑖
)𝜔𝑖

+ (𝜃 − 1)
∏𝑛

𝑖=1

(

1 − 𝛾 𝑙2𝑖
)𝜔𝑖

,

√

∏𝑛
𝑖=1

(

1 + (𝜃 − 1) 𝛾𝑢2𝑖
)𝜔𝑖

−
∏𝑛

𝑖=1

(

1 − 𝛾𝑢2𝑖
)𝜔𝑖

√

∏𝑛
𝑖=1

(

1 + (𝜃 − 1) 𝛾𝑢2𝑖
)𝜔𝑖

+ (𝜃 − 1)
∏𝑛

𝑖=1

(

1 − 𝛾𝑢2𝑖
)𝜔𝑖

⎤

⎥

⎥

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝑖 , 𝛾
𝑢
𝑖
]

∈ ℎ̃𝑖

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎣

√

𝜃
∏𝑛

𝑖=1
(

𝛿𝑙𝑖
)𝜔𝑖

√

∏𝑛
𝑖=1

(

1 + (𝜃 − 1)
(

1 − 𝛿𝑙2𝑖
))𝜔𝑖

+ (𝜃 − 1)
∏𝑛

𝑖=1 𝛿
𝑙2𝜔𝑖
𝑖

,

√

𝜃
∏𝑛

𝑖=1
(

𝛿𝑢𝑖
)𝜔𝑖

√

∏𝑛
𝑖=1

(

1 + (𝜃 − 1)
(

1 − 𝛿𝑢2𝑖
))𝜔𝑖

+ (𝜃 − 1)
∏𝑛

𝑖=1 𝛿
𝑢2𝜔𝑖
𝑖

⎤

⎥

⎥

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝑖 , 𝛿
𝑢
𝑖
]

∈ �̃�𝑖

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎪

⎬

⎪

⎪

⎭

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(7)

Now, if the value of the parameter 𝜃 is considered as 1 and 2, then the IVHPFHWA operator reduces to IVHPFWA and IVHPFEWA operators,
respectively.

4.1.4. IVHPF Dombi WA (IVHPFDWA)
When 𝑓 (𝑥) =

(

1
𝑥 − 1

)𝜌
, 𝜌 > 0 is considered, the AIVHPFWA operator reduces to the IVHPFDWA operator as follows:

𝐼𝑉 𝐻𝑃𝐹𝐷𝑊𝐴
(

𝑑1, 𝑑2,… , 𝑑𝑛
)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

√

√

√

√

√

√

√

1 − 1

1 +
(

∑𝑛
𝑖=1 𝜔𝑖

(

1
1−𝛾 𝑙2𝑖

− 1
)𝜌) 1

𝜌

,

√

√

√

√

√

√

√

1 − 1

1 +
(

∑𝑛
𝑖=1 𝜔𝑖

(

1
1−𝛾𝑢2𝑖

− 1
)𝜌) 1

𝜌

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝑖 , 𝛾
𝑢
𝑖
]

∈ ℎ̃𝑖

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

√

√

√

√

√

√

√

1

1 +
(

∑𝑛
𝑖=1 𝜔𝑖

(

1
𝛿𝑙2𝑖

− 1
)𝜌) 1

𝜌

,

√

√

√

√

√

√

√

1

1 +
(

∑𝑛
𝑖=1 𝜔𝑖

(

1
𝛿𝑢2𝑖

− 1
)𝜌) 1

𝜌

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝑖 , 𝛿
𝑢
𝑖
]

∈ �̃�𝑖

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(8)

4.1.5. IVHPF Frank WA (IVHPFFWA) operator
When 𝑓 (𝑥) = log

(

𝜓−1
𝜓𝑥−1

)

, 𝜓 > 1, the AIVHPFWA operator converted to IVHPFFWA operator presented as:

𝐼𝑉 𝐻𝑃𝐹𝐹𝑊 𝐴
(

𝑑1, 𝑑2,… , 𝑑𝑛
)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎢

⎣

√

√

√

√

√

√

1 −
log

(

1 +
∏𝑛

𝑖=1

(

𝜓1−𝛾 𝑙2𝑖 − 1
)𝜔𝑖)

log𝜓
,

√

√

√

√

√

√

1 −
log

(

1 +
∏𝑛

𝑖=1

(

𝜓1−𝛾𝑢2𝑖 − 1
)𝜔𝑖)

log𝜓

⎤

⎥

⎥

⎥

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝑖 , 𝛾
𝑢
𝑖
]

∈ ℎ̃𝑖

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎢

⎣

√

√

√

√

√

√

log
(

1 +
∏𝑛

𝑖=1

(

𝜓𝛿
𝑙2
𝑖 − 1

)𝜔𝑖)

log𝜓
,

√

√

√

√

√

√

log
(

1 +
∏𝑛

𝑖=1

(

𝜓𝛿
𝑢2
𝑖 − 1

)𝜔𝑖)

log𝜓

⎤

⎥

⎥

⎥

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝑖 , 𝛿
𝑢
𝑖
]

∈ �̃�𝑖,

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎪

⎬

⎪

⎪

⎭

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(9)
8
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Theorem 2 (Idempotency). Suppose
{

𝑑1, 𝑑2,… , 𝑑𝑛
}

is a collection of IVHPFEs, if all 𝑑𝑖 are equal, i.e., 𝑑𝑖 = 𝑑 =
({[

𝛾 𝑙 , 𝛾𝑢
]}

,
{[

𝛿𝑙 , 𝛿𝑢
]})

for all 𝑖, then

𝐴𝐼𝑉 𝐻𝑃𝐹𝑊 𝐴
(

𝑑1, 𝑑2,… , 𝑑𝑛
)

=
({[

𝛾 𝑙 , 𝛾𝑢
]}

,
{[

𝛿𝑙 , 𝛿𝑢
]})

(10)

Proof.
𝐴𝐼𝑉 𝐻𝑃𝐹𝑊 𝐴

(

𝑑1, 𝑑2,… , 𝑑𝑛
)

=

⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

√

√

√g−1
( 𝑛
∑

𝑖=1
𝜔𝑖g

(

𝛾 𝑙2𝑖
)

)

,

√

√

√

√g−1
( 𝑛
∑

𝑖=1
𝜔𝑖g

(

𝛾𝑢2𝑖
)

)

⎤

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝑖 , 𝛾
𝑢
𝑖
]

∈ ℎ̃𝑖,

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎬

⎪

⎭

,

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

√

√

√𝑓−1

( 𝑛
∑

𝑖=1
𝜔𝑖𝑓

(

𝛿𝑙2𝑖
)

)

,

√

√

√

√𝑓−1

( 𝑛
∑

𝑖=1
𝜔𝑖𝑓

(

𝛿𝑢2𝑖
)

)

⎤

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝑖 , 𝛿
𝑢
𝑖
]

∈ �̃�𝑖

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟

⎟

⎠

now since 𝑑𝑖 =
({[

𝛾 𝑙 , 𝛾𝑢
]}

,
{[

𝛿𝑙 , 𝛿𝑢
]})

for all (𝑖 = 1, 2,… , 𝑛), then 𝛾 𝑙𝑖 = 𝛾 𝑙, 𝛾𝑢𝑖 = 𝛾𝑢, 𝛿𝑙𝑖 = 𝛿𝑙 and 𝛿𝑢𝑖 = 𝛿𝑢 for all (𝑖 = 1, 2,… , 𝑛).

Therefore, 𝐴𝐼𝑉 𝐻𝑃𝐹𝑊 𝐴
(

𝑑1, 𝑑2,… , 𝑑𝑛
)

=

⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

√

√

√g−1
(

g
(

𝛾 𝑙2
)

𝑛
∑

𝑖=1
𝜔𝑖

)

,

√

√

√

√g−1
(

g
(

𝛾𝑢2
)

𝑛
∑

𝑖=1
𝜔𝑖

)

⎤

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝑖 , 𝛾
𝑢
𝑖
]

∈ ℎ̃𝑖,

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎬

⎪

⎭

,

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

√

√

√𝑓−1

(

𝑓
(

𝛿𝑙2
)

𝑛
∑

𝑖=1
𝜔𝑖

)

,

√

√

√

√𝑓−1

(

𝑓
(

𝛿𝑢2
)

𝑛
∑

𝑖=1
𝜔𝑖

)

⎤

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝑖 , 𝛿
𝑢
𝑖
]

∈ �̃�𝑖

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟

⎟

⎠

=

({

[

𝛾 𝑙 , 𝛾𝑢
]

|

|

|

[

𝛾 𝑙𝑖 , 𝛾
𝑢
𝑖
]

∈ ℎ̃𝑖,

𝑖 = 1, 2,… , 𝑛

}

,

{

[

𝛿𝑙 , 𝛿𝑢
]

|

|

|

[

𝛿𝑙𝑖 , 𝛿
𝑢
𝑖
]

∈ �̃�𝑖

𝑖 = 1, 2,… , 𝑛

})

=
({[

𝛾 𝑙 , 𝛾𝑢
]}

,
{[

𝛿𝑙 , 𝛿𝑢
]})

Hence the Theorem.

Theorem 3 (Monotonicity). Let 𝑑𝜃𝑖 =
(

ℎ̃𝜃𝑖 , g̃𝜃𝑖
)

and 𝑑𝜙𝑖 =
(

ℎ̃𝜙𝑖 , �̃�𝜙𝑖
)

(𝑖 = 1,… , 𝑛) be two sets of IVHPFEs, if 𝑑𝜃𝑖 ≤ 𝑑𝜙𝑖 for all 𝑖; i.e., if
[

𝛾 𝑙𝜃𝑖 , 𝛾
𝑢
𝜃𝑖

]

∈ ℎ̃𝜃𝑖 ,
[

𝛾 𝑙𝜙𝑖 , 𝛾
𝑢
𝜙𝑖

]

∈ ℎ̃𝜙𝑖 ,
[

𝛿𝑙𝜃𝑖 , 𝛿
𝑢
𝜃𝑖

]

∈ g̃𝜃𝑖 and
[

𝛿𝑙𝜙𝑖 , 𝛿
𝑢
𝜙𝑖

]

∈ g̃𝜙𝑖 where 𝛾
𝑙
𝜃𝑖
≤ 𝛾 𝑙𝜙𝑖 , 𝛾

𝑢
𝜃𝑖
≤ 𝛾𝑢𝜙𝑖 , 𝛿

𝑙
𝜃𝑖
≥ 𝛿𝑙𝜙𝑖 and 𝛿

𝑢
𝜃𝑖
≥ 𝛿𝑢𝜙𝑖 then

𝐴𝐼𝑉 𝐻𝑃𝐹𝑊 𝐴
(

𝑑𝜃1 , 𝑑𝜃2 ,… , 𝑑𝜃𝑛
)

≤ 𝐴𝐼𝑉 𝐻𝑃𝐹𝑊 𝐴
(

𝑑𝜙1 , 𝑑𝜙2 ,… , 𝑑𝜙𝑛
)

.

Proof. From the given inequality 𝛾 𝑙𝜃𝑖 ≤ 𝛾 𝑙𝜙𝑖 and using the characteristic of g,

𝜔𝑖g
(

(

𝛾 𝑙𝑖
)2) ≤ 𝜔𝑖g

(

(

𝛾 𝑙𝜙𝑖

)2
)

for all 𝑖

then ∑𝑛
𝑖=1 𝜔𝑖g

(

(

𝛾 𝑙𝜃𝑖

)2
)

≤
∑𝑛
𝑖=1 𝜔𝑖g

(

(

𝛾 𝑙𝜙𝑖

)2
)

for all 𝑖;

being g is increasing function, g−1 is also an increasing function, and therefore
√

√

√

√g−1
( 𝑛
∑

𝑖=1
𝜔𝑖g

(

(

𝛾 𝑙𝜃𝑖

)2
)

)

≤

√

√

√

√g−1
( 𝑛
∑

𝑖=1
𝜔𝑖g

(

(

𝛾 𝑙𝜙𝑖

)2
)

)

for all 𝑖; (11)

Similarly, the following inequality holds
√

√

√

√g−1
( 𝑛
∑

𝑖=1
𝜔𝑖g

(

(

𝛾𝑢𝜃𝑖

)2
)

)

≤

√

√

√

√g−1
( 𝑛
∑

𝑖=1
𝜔𝑖g

(

(

𝛾𝑢𝜙𝑖

)2
)

)

for all 𝑖. (12)

Again from the assumption of 𝛿𝑙𝜃𝑖 ≥ 𝛿𝑙𝜙𝑖 for all 𝑖 and since 𝑓 is decreasing function

𝑓
(

𝛿𝑙𝜃𝑖

)2
≤ 𝑓

(

𝛿𝑙𝜙𝑖

)2
which implies that ∑𝑛

𝑖=1 𝜔𝑖𝑓
(

(

𝛿𝑙𝜃𝑖

)2
)

≤
∑𝑛
𝑖=1 𝜔𝑖𝑓

(

(

𝛿𝑙𝜙𝑖

)2
)

for all 𝑖;
therefore, since every inverse function of a decreasing function is also a decreasing function,
then it follows that

√

√

√

√𝑓−1

( 𝑛
∑

𝑖=1
𝜔𝑖𝑓

(

(

𝛿𝑙𝜃𝑖

)2
)

)

≥

√

√

√

√𝑓−1

( 𝑛
∑

𝑖=1
𝜔𝑖𝑓

(

(

𝛿𝑙𝜙𝑖

)2
)

)

for all 𝑖; (13)

and similarly, it also can be shown that
√

√

√

√𝑓−1

( 𝑛
∑

𝜔𝑖𝑓
(

(

𝛿𝑢𝜃𝑖

)2
)

)

≥

√

√

√

√𝑓−1

( 𝑛
∑

𝜔𝑖𝑓
(

(

𝛿𝑢𝜙𝑖

)2
)

)

for all 𝑖. (14)

𝑖=1 𝑖=1

9
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According to the formulas (11)–(14) and by comparison laws between two IVHPFEs, obtained

𝐴𝐼𝑉 𝐻𝑃𝐹𝑊 𝐴
(

𝑑𝜃1 , 𝑑𝜃2 ,… , 𝑑𝜃𝑛
)

≤ 𝐴𝐼𝑉 𝐻𝑃𝐹𝑊 𝐴
(

𝑑𝜙1 , 𝑑𝜙2 ,… , 𝑑𝜙𝑛
)

.

Hence the theorem is proved.

Theorem 4 (Boundary). Let 𝑑𝑖 =
(

ℎ̃𝑖, g̃𝑖
)

(𝑖 = 1, 2,… , 𝑛) be a collection of IVHPFEs. Also, let for all 𝑖 = 1, 2,… , 𝑛;

𝛾 𝑙𝑚𝑖𝑛 = 𝑚𝑖𝑛
{

𝛾 𝑙𝑖𝑚𝑖𝑛

}

where 𝛾 𝑙𝑖𝑚𝑖𝑛 = 𝑚𝑖𝑛[𝛾 𝑙𝑖 ,𝛾𝑢𝑖
]

∈ℎ̃𝑖

{

𝛾 𝑙𝑖
}

;

𝛾𝑢𝑚𝑖𝑛 = 𝑚𝑖𝑛
{

𝛾𝑢𝑖𝑚𝑖𝑛

}

where 𝛾𝑢𝑖𝑚𝑖𝑛 = 𝑚𝑖𝑛[𝛾 𝑙𝑖 ,𝛾𝑢𝑖
]

∈ℎ̃𝑖

{

𝛾𝑢𝑖
}

;

𝛾 𝑙𝑚𝑎𝑥 = 𝑚𝑎𝑥
{

𝛾 𝑙𝑖𝑚𝑎𝑥

}

where 𝛾 𝑙𝑖𝑚𝑎𝑥 = 𝑚𝑎𝑥[𝛾 𝑙𝑖 ,𝛾𝑢𝑖
]

∈ℎ̃𝑖

{

𝛾 𝑙𝑖
}

;

𝛾𝑢𝑚𝑎𝑥 = 𝑚𝑎𝑥
{

𝛾𝑢𝑖𝑚𝑎𝑥

}

where 𝛾𝑢𝑖𝑚𝑎𝑥 = 𝑚𝑎𝑥[𝛾 𝑙𝑖 ,𝛾𝑢𝑖
]

∈ℎ̃𝑖

{

𝛾𝑢𝑖
}

;

again, let 𝛿𝑙𝑚𝑖𝑛 = 𝑚𝑖𝑛
{

𝛿𝑙𝑖𝑚𝑖𝑛

}

where 𝛿𝑙𝑖𝑚𝑖𝑛 = 𝑚𝑖𝑛[𝛿𝑙𝑖 ,𝛿𝑢𝑖
]

∈ℎ̃𝑖

{

𝛿𝑙𝑖
}

;

𝛿𝑢𝑚𝑖𝑛 = 𝑚𝑖𝑛
{

𝛿𝑢𝑖𝑚𝑖𝑛

}

where 𝛿𝑢𝑖𝑚𝑖𝑛 = 𝑚𝑖𝑛[𝛿𝑙𝑖 ,𝛿𝑢𝑖
]

∈ℎ̃𝑖

{

𝛿𝑢𝑖
}

;

𝛿𝑙𝑚𝑎𝑥 = 𝑚𝑎𝑥
{

𝛿𝑙𝑖𝑚𝑎𝑥

}

where 𝛿𝑙𝑖𝑚𝑎𝑥 = 𝑚𝑎𝑥[𝛿𝑙𝑖 ,𝛿𝑢𝑖
]

∈ℎ̃𝑖

{

𝛿𝑙𝑖
}

;

𝛿𝑢𝑚𝑎𝑥 = 𝑚𝑎𝑥
{

𝛿𝑢𝑖𝑚𝑎𝑥

}

where 𝛿𝑢𝑖𝑚𝑎𝑥 = 𝑚𝑎𝑥[𝛿𝑙𝑖 ,𝛿𝑢𝑖
]

∈ℎ̃𝑖

{

𝛿𝑢𝑖
}

;

also, if𝑑− =
([

𝛾 𝑙𝑚𝑖𝑛, 𝛾
𝑢
𝑚𝑖𝑛

]

,
[

𝛿𝑙𝑚𝑎𝑥, 𝛿
𝑢
𝑚𝑎𝑥

])

and 𝑑+ =
([

𝛾 𝑙𝑚𝑎𝑥, 𝛾
𝑢
𝑚𝑎𝑥

]

,
[

𝛿𝑙𝑚𝑖𝑛, 𝛿
𝑢
𝑚𝑖𝑛

])

,

then 𝑑− ≤ 𝐴𝐼𝑉 𝐻𝑃𝐹𝑊 𝐴
(

𝑑1, 𝑑2,… , 𝑑𝑛
)

≤ 𝑑+. (15)

Proof. According to the theorem of idempotency as well as monotonicity, it can be achieved that

𝐴𝐼𝑉 𝐻𝑃𝐹𝑊 𝐴
(

𝑑−, 𝑑−,… , 𝑑−
)

≤ 𝐴𝐼𝑉 𝐻𝑃𝐹𝑊 𝐴
(

𝑑1, 𝑑2,… , 𝑑𝑛
)

,

and

and 𝐴𝐼𝑉 𝐻𝑃𝐹𝑊 𝐴
(

𝑑1, 𝑑2,… , 𝑑𝑛
)

≤ 𝐴𝐼𝑉 𝐻𝑃𝐹𝑊 𝐴
(

𝑑+, 𝑑+,… , 𝑑+
)

..

Subsequently, it is obtained that

𝑑− ≤ 𝐴𝐼𝑉 𝐻𝑃𝐹𝑊 𝐴
(

𝑑1, 𝑑2,… , 𝑑𝑛
)

≤ 𝑑+.

4.2. AIVHPFOWA aggregating operators

Definition 10. Let 𝑑𝑖 (𝑖 = 1, 2,… , 𝑛) be a collection of IVHPFEs, and then the AIVHPFOWA operator is defined as follows:

𝐴𝐼𝑉 𝐻𝑃𝐹𝑂𝑊𝐴
(

𝑑1, 𝑑2,… , 𝑑𝑛
)

= ⊕𝐴
𝑛
𝑖=1

(

𝜔𝑖𝑑𝜎(𝑖)
)

where (𝜎 (1) , 𝜎 (2) ,… , 𝜎 (𝑛)) represents a permutation of {1, 2,… , 𝑛}, such that 𝑑𝜎(𝑖−1) ≥ 𝑑𝜎(𝑖) for all 𝑖 = 2,… , 𝑛, and 𝜔 =
(

𝜔1, 𝜔2,… , 𝜔𝑛
)𝑇 is the

aggregation-associated weight vector such that 𝜔𝑖 ∈ [0, 1] and ∑𝑛
𝑖=1 𝜔𝑖 = 1.

Theorem 5. Let 𝑑𝑖 =
(

ℎ̃𝑖, �̃�𝑖
)

(𝑖 = 1, 2,… , 𝑛) be a set of IVHPFEs, then the aggregating value of IVHPFEs by using AIVHPFOWA operator is also an IVHPFE
and is given by

𝐴𝐼𝑉 𝐻𝑃𝐹𝑂𝑊𝐴
(

𝑑1, 𝑑2,… , 𝑑𝑛
)

= ⊕𝐴
𝑛
𝑖=1

(

𝜔𝑖𝑑𝜎(𝑖)
)

=

⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

√

√

√g−1
( 𝑛
∑

𝑖=1
𝜔𝑖g

(

(

𝛾 𝑙𝜎(𝑖)
)2

)

)

,

√

√

√

√g−1
( 𝑛
∑

𝑖=1
𝜔𝑖g

(

(

𝛾𝑢𝜎(𝑖)
)2

)

)

⎤

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝜎(𝑖), 𝛾
𝑢
𝜎(𝑖)

]

∈ ℎ̃𝑖

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎬

⎪

⎭

,

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

√

√

√𝑓−1

( 𝑛
∑

𝑖=1
𝜔𝑖𝑓

(

(

𝛿𝑙𝜎(𝑖)
)2

)

)

,

√

√

√

√𝑓−1

( 𝑛
∑

𝑖=1
𝜔𝑖𝑓

(

(

𝛿𝑢𝜎(𝑖)
)2

)

)

⎤

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝜎(𝑖), 𝛿
𝑢
𝜎(𝑖)

]

∈ �̃�𝑖

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟

⎟

⎠

(16)

Proof. Similar to the proof of Theorem 1.
It can be easily proved, similar to Theorem 1, 2 and 3, respectively, that the AIVHPFOWA operator possesses the following idempotency,

monotonicity and boundedness properties.

Theorem 6 (Idempotency). If all 𝑑𝑖 (𝑖 = 1, 2,… , 𝑛) are equal i.e., 𝑑𝑖 = 𝑑 =
({[

𝛾 𝑙 , 𝛾𝑢
]}

,
{[

𝛿𝑙 , 𝛿𝑢
]})

for all 𝑖, then
( ̃ ̃ ̃ ) ̃
𝐴𝐼𝑉 𝐻𝑃𝐹𝑂𝑊𝐴 𝑑1, 𝑑2,… , 𝑑𝑛 = 𝑑.

10
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Theorem 7 (Monotonicity). Let 𝑑𝜃𝑖 =
(

ℎ̃𝜃𝑖 , �̃�𝜃𝑖
)

and 𝑑𝜙𝑖 =
(

ℎ̃𝜙𝑖 , �̃�𝜙𝑖
)

(𝑖 = 1,… , 𝑛) be two sets of IVHPFEs, if 𝑑𝜃𝑖 ≤ 𝑑𝜙𝑖 for all 𝑖; then

𝐴𝐼𝑉 𝐻𝑃𝐹𝑂𝑊𝐴
(

𝑑𝜃1 , 𝑑𝜃2 ,… , 𝑑𝜃𝑛
)

≤ 𝐴𝐼𝑉 𝐻𝑃𝐹𝑂𝑊𝐴
(

𝑑𝜙1 , 𝑑𝜙2 ,… , 𝑑𝜙𝑛
)

.

Theorem 8 (Boundedness). Let 𝑑𝑖 =
(

ℎ̃𝑖, �̃�𝑖
)

(𝑖 = 1, 2,… , 𝑛) be a collections of IVHPFEs, let

𝑑− =
([

𝛾 𝑙𝑚𝑖𝑛, 𝛾
𝑢
𝑚𝑖𝑛

]

,
[

𝛿𝑙𝑚𝑎𝑥, 𝛿
𝑢
𝑚𝑎𝑥

])

and 𝑑+ =
([

𝛾 𝑙𝑚𝑎𝑥, 𝛾
𝑢
𝑚𝑎𝑥

]

,
[

𝛿𝑙𝑚𝑖𝑛, 𝛿
𝑢
𝑚𝑖𝑛

])

, then
𝑑− ≤ 𝐴𝐼𝑉 𝐻𝑃𝐹𝑊 𝐴

(

𝑑1, 𝑑2,… , 𝑑𝑛
)

≤ 𝑑+,

where the notations 𝑑− and 𝑑+ are already shown above in Theorem 3.
Next, some particular cases of the AIVHPFOWA operator are presented with respect to the decreasing generator 𝑓 .

4.2.1. Algebraic 𝑡-CN&𝑡-N-based OWA aggregation operator
When using the decreasing generator as 𝑓 (𝑥) = − log 𝑥, IVHPF OWA (IVHPFOWA) operator is found from reduced AIVHPFOWA operator which

is presented as follows:

𝐼𝑉 𝐻𝑃𝐹𝑂𝑊𝐴
(

𝑑1, 𝑑2,… , 𝑑𝑛
)

=

⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

√

√

√1 −
𝑛
∏

𝑖=1

(

1 −
(

𝛾 𝑙𝜎(𝑖)
)2

)𝜔𝑖
,

√

√

√

√1 −
𝑛
∏

𝑖=1

(

1 −
(

𝛾𝑢𝜎(𝑖)
)2

)𝜔𝑖⎤
⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝜎(𝑖), 𝛾
𝑢
𝜎(𝑖)

]

∈ ℎ̃𝜎(𝑖)

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎬

⎪

⎭

,

{[ 𝑛
∏

𝑖=1

(

𝛿𝑙𝜎(𝑖)
)𝜔𝑗

,
𝑛
∏

𝑖=1

(

𝛿𝑙𝜎(𝑖)
)𝜔𝑗

]

|

|

|

[

𝛿𝑙𝜎(𝑖), 𝛿
𝑢
𝜎(𝑖)

]

∈ �̃�𝜎(𝑖), 𝑖 = 1, 2,… , 𝑛

})

4.2.2. Einstein 𝑡-CN&𝑡-N-based OWA aggregation operator
If 𝑓 (𝑥) = log

(

2−𝑥
𝑥

)

, the AIVHPFOWA operator converted to IVHPF Einstein OWA (IVHPFEOWA) operator, which is presented as:

𝐼𝑉 𝐻𝑃𝐹𝐸𝑂𝑊𝐴
(

𝑑1, 𝑑2,… , 𝑑𝑛
)

=

⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎢

⎣

√

√

√

√

√

√

∏𝑛
𝑖=1

(

1 + 𝛾 𝑙2𝜎(𝑖)
)𝜔𝑖

−
∏𝑛

𝑖=1

(

1 − 𝛾 𝑙2𝜎(𝑖)
)𝜔𝑖

∏𝑛
𝑖=1

(

1 + 𝛾 𝑙2𝜎(𝑖)
)𝜔𝑖

+
∏𝑛

𝑖=1

(

1 − 𝛾 𝑙2𝜎(𝑖)
)𝜔𝑖

,

√

√

√

√

√

√

∏𝑛
𝑖=1

(

1 + 𝛾𝑢2𝜎(𝑖)
)𝜔𝑖

−
∏𝑛

𝑖=1

(

1 − 𝛾𝑢2𝜎(𝑖)
)𝜔𝑖

∏𝑛
𝑖=1

(

1 + 𝛾𝑢2𝜎(𝑖)
)𝜔𝑖

+
∏𝑛

𝑖=1

(

1 − 𝛾𝑢2𝜎(𝑖)
)𝜔𝑖

⎤

⎥

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝜎(𝑖), 𝛾
𝑢
𝜎(𝑖)

]

∈ ℎ̃𝜎(𝑖)

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎬

⎪

⎭

,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎣

√

2
∏𝑛

𝑖=1 𝛿
𝑙𝜔𝑖
𝜎(𝑖)

√

∏𝑛
𝑖=1

(

1 +
(

1 − 𝛿𝑙2𝜎(𝑖)
))𝜔𝑖

+
∏𝑛

𝑖=1 𝛿
𝑙2𝜔𝑖
𝜎(𝑖)

,

√

2
∏𝑛

𝑖=1 𝛿
𝑢𝜔𝑖
𝜎(𝑖)

√

∏𝑛
𝑖=1

(

1 +
(

1 − 𝛿𝑢2𝜎(𝑖)
))𝜔𝑖

+
∏𝑛

𝑖=1 𝛿
𝑢2𝜔𝑖
𝜎(𝑖)

⎤

⎥

⎥

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝜎(𝑖), 𝛿
𝑢
𝜎(𝑖)

]

∈ �̃�𝜎(𝑖)

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎪

⎬

⎪

⎪

⎭

⎞

⎟

⎟

⎟

⎟

⎟

⎠

4.2.3. OWA aggregation operators based on Hamacher 𝑡-CN&𝑡-N
When taking the decreasing generator 𝑓 (𝑥) = log

(

𝜃+(1−𝜃)𝑥
𝑥

)

, 𝜃 > 0, the AIVHPFOWA operator transformed to IVHPF Hamacher OWA
(IVHPFHOWA) operator which is given as follows:

𝐼𝑉 𝐻𝑃𝐹𝐻𝑂𝑊𝐴
(

𝑑1, 𝑑2,… , 𝑑𝑛
)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎣

√

∏𝑛
𝑖=1

(

1 + (𝜃 − 1) 𝛾 𝑙2𝜎(𝑖)
)𝜔𝑖

−
∏𝑛

𝑖=1

(

1 − 𝛾 𝑙2𝜎(𝑖)
)𝜔𝑖

√

∏𝑛
𝑖=1

(

1 + (𝜃 − 1) 𝛾 𝑙2𝜎(𝑖)
)𝜔𝑖

+ (𝜃 − 1)
∏𝑛

𝑖=1

(

1 − 𝛾 𝑙2𝜎(𝑖)
)𝜔𝑖

,

√

∏𝑛
𝑖=1

(

1 + (𝜃 − 1)
(

𝛾𝑢𝜎(𝑖)
)2

)𝜔𝑖
−
∏𝑛

𝑖=1

(

1 −
(

𝛾𝑢𝜎(𝑖)
)2

)𝜔𝑖

√

∏𝑛
𝑖=1

(

1 + (𝜃 − 1)
(

𝛾𝑢𝜎(𝑖)
)2

)𝜔𝑖
+ (𝜃 − 1)

∏𝑛
𝑖=1

(

1 −
(

𝛾𝑢𝜎(𝑖)
)2

)𝜔𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝜎(𝑖), 𝛾
𝑢
𝜎(𝑖)

]

∈ ℎ̃𝜎(𝑖)

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎢

⎣

√

𝜃
∏𝑛

𝑖=1

(

𝛿𝑙𝜎(𝑖)
)𝜔𝑖

√

∏𝑛
𝑖=1

(

1 + (𝜃 − 1)
(

1 −
(

𝛿𝑙𝜎(𝑖)
)2

))𝜔𝑖
+ (𝜃 − 1)

∏𝑛
𝑖=1

(

(

𝛿𝑙𝜎(𝑖)
)2

)𝜔𝑖
,

√

𝜃
∏𝑛

𝑖=1

(

𝛿𝑢𝜎(𝑖)
)𝜔𝑖

√

∏𝑛
𝑖=1

(

1 + (𝜃 − 1)
(

1 −
(

𝛿𝑢𝜎(𝑖)
)2

))𝜔𝑖
+ (𝜃 − 1)

∏𝑛
𝑖=1

(

(

𝛿𝑢𝜎(𝑖)
)2

)𝜔𝑖

⎤

⎥

⎥

⎥

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝜎(𝑖), 𝛿
𝑢
𝜎(𝑖)

]

∈ �̃�𝜎(𝑖)

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎪

⎬

⎪

⎪

⎭

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(17)

As like previous discussions, it is to be noted here that several operators can be derived from Hamacher operations, viz., IVHPFOWA and
IVHPFEOWA operators, which can be framed by considering 𝜃 = 1 and 2, respectively.
11
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4.2.4. OWA aggregation operators based on Dombi 𝑡-CN&𝑡-N
When 𝑓 (𝑥) =

(

1
𝑥 − 1

)𝜌
, 𝜌 > 0, then the AIVHPFOWA operator reduces to the IVHPF Dombi OWA (IVHPFDOWA) operator as follows:

𝐼𝑉 𝐻𝑃𝐹𝐷𝑂𝑊𝐴
(

𝑑1, 𝑑2,… , 𝑑𝑛
)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

√

√

√

√

√

√

√

√

1 − 1

1 +

(

∑𝑛
𝑖=1 𝜔𝑖

(

𝛾 𝑙2𝜎(𝑖)
1−𝛾 𝑙2𝜎(𝑖)

)𝜌) 1
𝜌

,

√

√

√

√

√

√

√

√

1 − 1

1 +

(

∑𝑛
𝑖=1 𝜔𝑖

(

𝛾 𝑙2𝜎(𝑖)
1−𝛾 𝑙2𝜎(𝑖)

)𝜌) 1
𝜌

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝜎(𝑖), 𝛾
𝑢
𝜎(𝑖)

]

∈ ℎ̃𝜎(𝑖)

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

√

√

√

√

√

√

√

√

1

1 +

(

∑𝑛
𝑖=1 𝜔𝑗

(

1−𝛿𝑙2𝜎(𝑖)
𝛿𝑙2𝜎(𝑖)

)𝜌) 1
𝜌

,

√

√

√

√

√

√

√

√

1

1 +

(

∑𝑛
𝑖=1 𝜔𝑖

(

1−𝛿𝑙2𝜎(𝑖)
𝛿𝑙2𝜎(𝑖)

)𝜌) 1
𝜌

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝜎(𝑖), 𝛿
𝑢
𝜎(𝑖)

]

∈ �̃�𝜎(𝑖)

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(18)

4.2.5. OWA aggregation operator based on Frank 𝑡-CN&𝑡-N
When 𝑓 (𝑥) = log

(

𝜓−1
𝜓𝑥−1

)

, 𝜓 > 1, the AIVHPFOWA operator converted to IVHPF Frank OWA (IVHPFFOWA) operator presented as:

𝐼𝑉 𝐻𝑃𝐹𝐹𝑂𝑊𝐴
(

𝑑1, 𝑑2,… , 𝑑𝑛
)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎢

⎣

√

√

√

√

√

√

1 −
log

(

1 +
∏𝑛

𝑖=1

(

𝜓1−𝛾 𝑙2𝜎(𝑖) − 1
)𝜔𝑖)

log𝜓
,

√

√

√

√

√

√

1 −
log

(

1 +
∏𝑛

𝑖=1

(

𝜓1−𝛾 𝑙2𝜎(𝑖) − 1
)𝜔𝑖)

log𝜓

⎤

⎥

⎥

⎥

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝜎(𝑖), 𝛾
𝑢
𝜎(𝑖)

]

∈ ℎ̃𝜎(𝑖)

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎢

⎣

√

√

√

√

√

√

log
(

1 +
∏𝑛

𝑖=1

(

𝜓𝛿
𝑙2
𝜎(𝑖) − 1

)𝜔𝑖)

log𝜓
,

√

√

√

√

√

√

log
(

1 +
∏𝑛

𝑖=1

(

𝜓𝛿
𝑢2
𝜎(𝑖) − 1

)𝜔𝑖)

log𝜓

⎤

⎥

⎥

⎥

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝜎(𝑖), 𝛿
𝑢
𝜎(𝑖)

]

∈ �̃�𝜎(𝑖),

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎪

⎬

⎪

⎪

⎭

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(19)

Like averaging aggregation operators, the above processes may be analogously extended for geometric aggregation operators. However, a brief
discussion on geometric mean based aggregation operators is presented below.

4.3. AIVHPFWG aggregation operators

This part describes aggregation operator AIVHPFWG with some of their desirable properties having IVHPF information.

Definition 11. Let
(

𝑑1, 𝑑2,… , 𝑑𝑛
)

be a set of IVHPFEs and 𝜔 =
(

𝜔1, 𝜔2,… , 𝜔𝑛
)𝑇 denote the weight vector of IVHPFEs satisfying the conditions

𝜔𝑖 ∈ [0, 1] and ∑𝑛
𝑖=1 𝜔𝑖 = 1. Then, an AIVHPFWG operator is defined by a function

∶ �̃�𝑛 → �̃� and is given by
(

𝑑1, 𝑑2,… , 𝑑𝑛
)

= ⊗𝐴
𝑛
𝑖=1

(

𝑑𝜔𝑖𝑖
)

,

Theorem 9. Let 𝑑𝑖 =
(

ℎ̃𝑖, g̃𝑖
)

(𝑖 = 1, 2,… , 𝑛) be a collection of IVHPFEs, then the aggregating value utilizing AIVHPFWG operator is also an IVHPFE and
defined by

𝐴𝐼𝑉 𝐻𝑃𝐹𝑊𝐺
(

𝑑1, 𝑑2,… , 𝑑𝑛
)

=

⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

√

√

√𝑓−1

( 𝑛
∑

𝑖=1
𝜔𝑖𝑓

(

(

𝛾 𝑙𝑖
)2
)

)

,

√

√

√

√𝑓−1

( 𝑛
∑

𝑖=1
𝜔𝑖𝑓

(

(

𝛾𝑢𝑖
)2
)

)

⎤

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝑖 , 𝛾
𝑢
𝑖
]

∈ ℎ̃𝑖,

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎬

⎪

⎭

,

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

√

√

√g−1
( 𝑛
∑

𝑖=1
𝜔𝑖g

(

(

𝛿𝑙𝑖
)2
)

)

,

√

√

√

√g−1
( 𝑛
∑

𝑖=1
𝜔𝑖g

(

(

𝛿𝑢𝑖
)2
)

)

⎤

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝑖 , 𝛿
𝑢
𝑖
]

∈ �̃�𝑖

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟

⎟

⎠

(20)

Proof. Similar to Theorem 1.
Considering different forms of the decreasing function, 𝑓 , several particular types of AIVHPFWG operators can be achieved like averaging

operators.
12
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4.3.1. Algebraic operation-based aggregation operator
If 𝑓 (𝑥) = − log (𝑥), the AIVHPFWG operator reduces to IVHPF WG (IVHPFWG) operator defined as:

𝐼𝑉 𝐻𝑃𝐹𝑊𝐺
(

𝑑1, 𝑑2,… , 𝑑𝑛
)

=

⎛

⎜

⎜

⎜

⎝

{[ 𝑛
∏

𝑖=1

(

𝛾 𝑙𝑖
)𝜔𝑖 ,

𝑛
∏

𝑖=1

(

𝛾𝑢𝑖
)𝜔𝑖

]

|

|

|

[

𝛾 𝑙𝑖 , 𝛾
𝑢
𝑖
]

∈ ℎ̃𝑖

𝑖 = 1, 2,… , 𝑛

}

,

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

√

√

√1 −
𝑛
∏

𝑖=1

(

1 −
(

𝛿𝑙𝑖
)2
)𝜔𝑖

,

√

√

√

√1 −
𝑛
∏

𝑖=1

(

1 −
(

𝛿𝑢𝑖
)2
)𝜔𝑖

⎤

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝑖 , 𝛿
𝑢
𝑖
]

∈ �̃�𝑖, 𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟

⎟

⎠

4.3.2. Einstein operation-based aggregation operator
When 𝑓 (𝑥) = log

(

2−𝑥
𝑥

)

, the AIVHPFWG operator changes to IVHPF Einstein WG (IVHPFEWG) operator, which is defined as:

𝐼𝑉 𝐻𝑃𝐹𝐸𝑊𝐺
(

𝑑1, 𝑑2,… , 𝑑𝑛
)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎣

√

2
∏𝑛

𝑖=1
(

𝛾 𝑙𝑖
)𝜔𝑖

√

∏𝑛
𝑖=1

(

1 +
(

1 − 𝛾 𝑙2𝑖
))𝜔𝑖

+
∏𝑛

𝑖=1

(

𝛾 𝑙2𝑖
)𝜔𝑖

,

√

2
∏𝑛

𝑖=1
(

𝛾𝑢𝑖
)𝜔𝑖

√

∏𝑛
𝑖=1

(

1 +
(

1 − 𝛾𝑢2𝑖
))𝜔𝑖

+
∏𝑛

𝑖=1

(

𝛾𝑢2𝑖
)𝜔𝑖

⎤

⎥

⎥

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝑖 , 𝛾
𝑢
𝑖
]

∈ ℎ̃𝑖

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎢

⎣

√

√

√

√

√

√

∏𝑛
𝑖=1

(

1 +
(

𝛿𝑙𝑖
)2
)𝜔𝑖

−
∏𝑛

𝑖=1

(

1 −
(

𝛿𝑙𝑖
)2
)𝜔𝑖

∏𝑛
𝑖=1

(

1 +
(

𝛿𝑙𝑖
)2
)𝜔𝑖

+
∏𝑛

𝑖=1

(

1 −
(

𝛿𝑙𝑖
)2
)𝜔𝑖

,

√

√

√

√

√

√

∏𝑛
𝑖=1

(

1 +
(

𝛿𝑢𝑖
)2
)𝜔𝑖

−
∏𝑛

𝑖=1

(

1 −
(

𝛿𝑢𝑖
)2
)𝜔𝑖

∏𝑛
𝑖=1

(

1 +
(

𝛿𝑢𝑖
)2
)𝜔𝑖

+
∏𝑛

𝑖=1

(

1 −
(

𝛿𝑢𝑖
)2
)𝜔𝑖

⎤

⎥

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝑖 , 𝛿
𝑢
𝑖
]

∈ �̃�𝑖

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟

⎟

⎠

4.3.3. Aggregation operator based on Hamacher operation
When the decreasing generator 𝑓 (𝑥) = log

(

𝜃+(1−𝜌)𝜃
𝑥

)

, 𝜃 > 0 is taken, the AIVHPFWG operator converted to IVHPF Hamacher WG (IVHPFHWG)
operator which is given as follows:

𝐼𝑉 𝐻𝑃𝐹𝐻𝑊𝐺
(

𝑑1, 𝑑2,… , 𝑑𝑛
)

=

⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

𝜃
𝑛
∏

𝑖=1

(

𝛾 𝑙𝑖
)𝜔𝑖

/

√

√

√

√

𝑛
∏

𝑖=1

(

1 + (𝜃 − 1)
(

1 −
(

𝛾 𝑙𝑖
)2
))𝜔𝑖

+ (𝜃 − 1)
𝑛
∏

𝑖=1

(

(

𝛾 𝑙𝑖
)2
)𝜔𝑖

,

√

𝜃
𝑛
∏

𝑖=1

(

𝛾𝑢𝑖
)𝜔𝑖 ∕

√

√

√

√

𝑛
∏

𝑖=1

(

1 + (𝜃 − 1)
(

1 − 𝛾𝑢2𝑖
))𝜔𝑖

+ (𝜃 − 1)
𝑛
∏

𝑖=1

(

𝛾𝑢2𝑖
)𝜔𝑖

⎤

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝑖 , 𝛾
𝑢
𝑖
]

∈ ℎ̃𝑖

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎬

⎪

⎭

,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎣

√

∏𝑛
𝑖=1

(

1 + (𝜃 − 1)
(

𝛿𝑙𝑖
)2
)𝜔𝑖

−
∏𝑛

𝑖=1

(

1 −
(

𝛿𝑙𝑖
)2
)𝜔𝑖

√

∏𝑛
𝑖=1

(

1 + (𝜃 − 1)
(

𝛿𝑙𝑖
)2
)𝜔𝑖

+ (𝜃 − 1)
∏𝑛

𝑖=1

(

1 −
(

𝛿𝑙𝑖
)2
)𝜔𝑖

,

√

∏𝑛
𝑖=1

(

1 + (𝜃 − 1)
(

𝛿𝑢𝑖
)2
)𝜔𝑖

−
∏𝑛

𝑖=1

(

1 −
(

𝛿𝑢𝑖
)2
)𝜔𝑖

√

∏𝑛
𝑖=1

(

1 + (𝜃 − 1)
(

𝛿𝑢𝑖
)2
)𝜔𝑖

+ (𝜃 − 1)
∏𝑛

𝑖=1

(

1 −
(

𝛿𝑢𝑖
)2
)𝜔𝑖

⎤

⎥

⎥

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝑖 , 𝛿
𝑢
𝑖
]

∈ �̃�𝑖, 𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎪

⎬

⎪

⎪

⎭

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(21)

Putting the value 𝜃 = 1 and 2 in (21), the AIVHPFHWG operator reduces to IVHPFWG and IVHPFEWG operators, respectively.

4.3.4. Aggregation operators based on Dombi operation
When 𝑓 (𝑥) =

(

1
𝑥 − 1

)𝜌
, 𝜌 > 0, then the AIVHPFWG operator reduces to the IVHPF Dombi WG (IVHPFDWG) operator as follows:

𝐼𝑉 𝐻𝑃𝐹𝐷𝑊𝐺
(

𝑑1, 𝑑2,… , 𝑑𝑛
)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

√

√

√

√

√

√

√

1

1 +
(

∑𝑛
𝑖=1 𝜔𝑖

(

1
(

𝛾 𝑙𝑖
)2 − 1

)𝜌) 1
𝜌

,

√

√

√

√

√

√

√

1

1 +
(

∑𝑛
𝑖=1 𝜔𝑖

(

1
(

𝛾𝑢𝑖
)2 − 1

)𝜌) 1
𝜌

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝑖 , 𝛾
𝑢
𝑖
]

∈ ℎ̃𝑖

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

,

⎝⎩ ⎭

13
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⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

√

√

√

√

√

√

√

1 − 1

1 +
(

∑𝑛
𝑖=1 𝜔𝑖

(

1
1−

(

𝛿𝑙𝑖
)2 − 1

)𝜌) 1
𝜌

,

√

√

√

√

√

√

√

1 − 1

1 +
(

∑𝑛
𝑖=1 𝜔𝑖

(

1
1−

(

𝛿𝑢𝑖
)2 − 1

)𝜌) 1
𝜌

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝑖 , 𝛿
𝑢
𝑖
]

∈ �̃�𝑖

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(22)

4.3.5. Aggregation operator based on Frank operation
When 𝑓 (𝑥) = log

(

𝜓−1
𝜓𝑥−1

)

, 𝜓 > 1, the AIVHPFWG operator converted to IVHPF Frank WG (IVHPFFWG) operator presented as:

𝐼𝑉 𝐻𝑃𝐹𝐹𝑊𝐺
(

𝑑1, 𝑑2,… , 𝑑𝑛
)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎢

⎣

√

√

√

√

√

√

log
(

1 +
∏𝑛

𝑖=1

(

𝜓
(

𝛾 𝑙𝑖
)2

− 1
)𝜔𝑖)

log𝜓
,

√

√

√

√

√

√

log
(

1 +
∏𝑛

𝑖=1

(

𝜓
(

𝛾𝑢𝑖
)2

− 1
)𝜔𝑖)

log𝜓

⎤

⎥

⎥

⎥

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝑖 , 𝛾
𝑢
𝑖
]

∈ ℎ̃𝑖

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎢

⎣

√

√

√

√

√

√

1 −
log

(

1 +
∏𝑛

𝑖=1

(

𝜓1−
(

𝛿𝑙𝑖
)2

− 1
)𝜔𝑖)

log𝜓
,

√

√

√

√

√

√

1 −
log

(

1 +
∏𝑛

𝑖=1

(

𝜓1−
(

𝛿𝑢𝑖
)2

− 1
)𝜔𝑖)

log𝜓

⎤

⎥

⎥

⎥

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝑖 , 𝛿
𝑢
𝑖
]

∈ �̃�𝑖,

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎪

⎬

⎪

⎪

⎭

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(23)

4.4. AIVHPFOWG aggregation operators

Definition 12. Let 𝑑𝑖 (𝑖 = 1, 2,… , 𝑛) be a collection of IVHPFEs, then AIVHPFOWG operator is defined as follows:

𝐴𝐼𝑉 𝐻𝑃𝐹𝑂𝑊𝐺
(

𝑑1, 𝑑2,… , 𝑑𝑛
)

= ⊗𝐴
𝑛
𝑖=1

(

𝜔𝑖𝑑𝜎(𝑖)
)

where (𝜎 (1) , 𝜎 (2) ,… , 𝜎 (𝑛)) represents a permutation of (1, 2,… , 𝑛), such that 𝑑𝜎(𝑖−1) ≥ 𝑑𝜎(𝑖) for all 𝑖 = 2,… , 𝑛, and 𝜔 =
(

𝜔1, 𝜔2,… , 𝜔𝑛
)𝑇 is the

aggregation-associated weight vector such that 𝜔𝑖 ∈ [0, 1] and ∑𝑛
𝑖=1 𝜔𝑖 = 1.

Theorem 10. Let 𝑑𝑖 =
(

ℎ̃𝑖, g̃𝑖
)

(𝑖 = 1, 2,… , 𝑛) be a set of IVHPFEs, then the aggregating value using AIVHPFOWG operator is also an IVHPFE and is given
by

𝐴𝐼𝑉 𝐻𝑃𝐹𝑂𝑊𝐺
(

𝑑1, 𝑑2,… , 𝑑𝑛
)

= ⊗𝐴
𝑛
𝑖=1

(

𝜔𝑖𝑑𝜎(𝑖)
)

=

⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

√

√

√𝑓−1

( 𝑛
∑

𝑖=1
𝜔𝑖𝑓

(

(

𝛾 𝑙𝜎(𝑖)
)2

)

)

,

√

√

√

√𝑓−1

( 𝑛
∑

𝑖=1
𝜔𝑖𝑓

(

(

𝛾𝑢𝜎(𝑖)
)2

)

)

⎤

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝜎(𝑖), 𝛾
𝑢
𝜎(𝑖)

]

∈ ℎ̃𝑖

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎬

⎪

⎭

,

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

√

√

√g−1
( 𝑛
∑

𝑖=1
𝜔𝑖g

(

(

𝛿𝑙𝜎(𝑖)
)2

)

)

,

√

√

√

√g−1
( 𝑛
∑

𝑖=1
𝜔𝑖g

(

(

𝛿𝑢𝜎(𝑖)
)2

)

)

⎤

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝜎(𝑖), 𝛿
𝑢
𝜎(𝑖)

]

∈ �̃�𝑖

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟

⎟

⎠

(24)

Proof. The proof is similar to the first theorem.
Considering different forms of the decreasing function, 𝑓 , several particular types of AIVHPFOWG operators can be achieved like OWA operators.

4.4.1. Algebraic 𝑡-CN&𝑡-N-based OWG aggregation operator
When use 𝑓 (𝑥) = − log 𝑥, the IVHPF OWG (IVHPFOWG) operator is found from reduced AIVHPFOWG operator which is presented as follows:

𝐼𝑉 𝐻𝑃𝐹𝑂𝑊𝐺
(

𝑑1, 𝑑2,… , 𝑑𝑛
)

=

⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

[ 𝑛
∏

𝑖=1

(

𝛾 𝑙𝜎(𝑖)
)𝜔𝑗

,
𝑛
∏

𝑖=1

(

𝛾𝑢𝜎(𝑖)
)𝜔𝑖

]

|

|

|

[

𝛾 𝑙𝜎(𝑖), 𝛾
𝑢
𝜎(𝑖)

]

∈ ℎ̃𝜎(𝑖)

𝑖 = 1, 2,… , 𝑛

⎤

⎥

⎥

⎦

⎫

⎪

⎬

⎪

⎭

,

⎧

⎪

⎨

⎪

⎡

⎢

⎢

⎣

√

√

√

√1 −
𝑛
∏

𝑖=1

(

1 −
(

𝛿𝑙𝜎(𝑖)
)2

)𝜔𝑖
,

√

√

√

√1 −
𝑛
∏

𝑖=1

(

1 −
(

𝛿𝑢𝜎(𝑖)
)2

)𝜔𝑖⎤
⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝜎(𝑖), 𝛿
𝑢
𝜎(𝑖)

]

∈ �̃�𝜎(𝑖)

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎬

⎪

⎞

⎟

⎟

⎟

⎩ ⎭⎠

14
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4.4.2. Einstein 𝑡-CN&𝑡-N-based OWG aggregation operator
If 𝑓 (𝑥) = log

(

2−𝑥
𝑥

)

, the AIVHPFOWG operator converted to IVHPF Einstein OWG (IVHPFEOWG) operator, which is presented as:

𝐼𝑉 𝐻𝑃𝐹𝐸𝑂𝑊𝐺
(

𝑑1, 𝑑2,… , 𝑑𝑛
)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎣

√

2
∏𝑛

𝑖=1

(

𝛾 𝑙𝜎(𝑖)
)𝜔𝑗

√

∏𝑛
𝑖=1

(

1 +
(

1 − 𝛾 𝑙2𝜎(𝑖)
))𝜔𝑖

+
∏𝑛

𝑖=1 𝛾
𝑙2𝜔𝑖
𝜎(𝑖)

,

√

2
∏𝑛

𝑖=1

(

𝛾𝑢𝜎(𝑖)
)𝜔𝑖

√

∏𝑛
𝑖=1

(

1 +
(

1 − 𝛾𝑢2𝜎(𝑖)
))𝜔𝑖

+
∏𝑛

𝑖=1 𝛾
𝑢2𝜔𝑖
𝜎(𝑖)

⎤

⎥

⎥

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝜎(𝑖), 𝛾
𝑢
𝜎(𝑖)

]

∈ ℎ̃𝜎(𝑖)

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎢

⎣

√

√

√

√

√

√

∏𝑛
𝑖=1

(

1 + 𝛿𝑙2𝜎(𝑖)
)𝜔𝑖

−
∏𝑛

𝑖=1

(

1 − 𝛿𝑙2𝜎(𝑖)
)𝜔𝑖

∏𝑛
𝑖=1

(

1 + 𝛿𝑙2𝜎(𝑖)
)𝜔𝑖

+
∏𝑛

𝑖=1

(

1 − 𝛿𝑙2𝜎(𝑖)
)𝜔𝑖

,

√

√

√

√

√

√

∏𝑛
𝑖=1

(

1 + 𝛿𝑢2𝜎(𝑖)
)𝜔𝑖

−
∏𝑛

𝑖=1

(

1 − 𝛿𝑢2𝜎(𝑖)
)𝜔𝑖

∏𝑛
𝑖=1

(

1 + 𝛿𝑢2𝜎(𝑖)
)𝜔𝑖

+
∏𝑛

𝑖=1

(

1 − 𝛿𝑢2𝜎(𝑖)
)𝜔𝑖

⎤

⎥

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝜎(𝑖), 𝛿
𝑢
𝜎(𝑖)

]

∈ �̃�𝜎(𝑖)

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟

⎟

⎠

4.4.3. Hamacher 𝑡-CN&𝑡-N-based OWG aggregation operator
When taking the decreasing generator 𝑓 (𝑥) = log

(

𝜃+(1−𝜃)𝑥
𝑥

)

, 𝜃 > 0, the AIVHPFOWG operator converted to IVHPF Hamacher OWG
(IVHPFHOWG) operator which is given as follows:

𝐼𝑉 𝐻𝑃𝐹𝐻𝑂𝑊𝐺
(

𝑑1, 𝑑2,… , 𝑑𝑛
)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎣

√

𝜃
∏𝑛

𝑖=1

(

𝛾 𝑙𝜎(𝑖)
)𝜔𝑖

√

∏𝑛
𝑖=1

(

1 + (𝜃 − 1)
(

1 − 𝛾 𝑙2𝜎(𝑖)
))𝜔𝑖

+ (𝜃 − 1)
∏𝑛

𝑖=1

(

𝛾 𝑙2𝜎(𝑖)
)𝜔𝑖

,

√

𝜃
∏𝑛

𝑖=1

(

𝛾𝑢𝜎(𝑖)
)𝜔𝑖

√

∏𝑛
𝑖=1

(

1 + (𝜃 − 1)
(

1 − 𝛾𝑢2𝜎(𝑖)
))𝜔𝑖

+ (𝜃 − 1)
∏𝑛

𝑖=1

(

𝛾𝑢2𝜎(𝑖)
)𝜔𝑖

⎤

⎥

⎥

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝜎(𝑖), 𝛾
𝑢
𝜎(𝑖)

]

∈ ℎ̃𝜎(𝑖)

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎣

√

∏𝑛
𝑖=1

(

1 + (𝜃 − 1) 𝛿𝑙2𝜎(𝑖)
)𝜔𝑖

−
∏𝑛

𝑖=1

(

1 − 𝛿𝑙2𝜎(𝑖)
)𝜔𝑖

√

∏𝑛
𝑖=1

(

1 + (𝜃 − 1) 𝛿𝑙2𝜎(𝑖)
)𝜔𝑖

+ (𝜃 − 1)
∏𝑛

𝑖=1

(

1 − 𝛿𝑙2𝜎(𝑖)
)𝜔𝑖

,

√

∏𝑛
𝑖=1

(

1 + (𝜃 − 1) 𝛿𝑢2𝜎(𝑖)
)𝜔𝑖

−
∏𝑛

𝑖=1

(

1 − 𝛿𝑢2𝜎(𝑖)
)𝜔𝑖

√

∏𝑛
𝑖=1

(

1 + (𝜃 − 1) 𝛿𝑢2𝜎(𝑖)
)𝜔𝑖

+ (𝜃 − 1)
∏𝑛

𝑖=1

(

1 − 𝛿𝑢2𝜎(𝑖)
)𝜔𝑖

⎤

⎥

⎥

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝜎(𝑖), 𝛿
𝑢
𝜎(𝑖)

]

∈ �̃�𝜎(𝑖)

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎪

⎬

⎪

⎪

⎭

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(25)

As like OWA aggregation operators, the concept of algebraic and Einstein-based OWG aggregation operators can also be constructed from
Hamacher-based OWG aggregation operators for 𝜃 = 1 and 2, respectively.

4.4.4. OWG aggregation operators based on Dombi operation
When 𝑓 (𝑥) =

(

1
𝑥 − 1

)𝜌
, 𝜌 > 0, then the AIVHPFOWG operator reduces to the IVHPF Dombi OWG (IVHPFDOWG) operator as follows:

𝐼𝑉 𝐻𝑃𝐹𝐷𝑂𝑊𝐺
(

𝑑1, 𝑑2,… , 𝑑𝑛
)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

√

√

√

√

√

√

√

√

1

1 +

(

∑𝑛
𝑖=1 𝜔𝑖

(

1−𝛾 𝑙2𝜎(𝑖)
𝛾 𝑙2𝜎(𝑖)

)𝜌) 1
𝜌

,

√

√

√

√

√

√

√

√

1

1 +

(

∑𝑛
𝑖=1 𝜔𝑖

(

1−𝛾𝑢2𝜎(𝑖)
𝛾𝑢2𝜎(𝑖)

)𝜌) 1
𝜌

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝜎(𝑖), 𝛾
𝑢
𝜎(𝑖)

]

∈ ℎ̃𝜎(𝑖)

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

√

√

√

√

√

√

√

√

1 − 1

1 +

(

∑𝑛
𝑖=1 𝜔𝑖

(

𝛿𝑙2𝜎(𝑖)
1−𝛿𝑙2

)𝜌) 1
𝜌

,

√

√

√

√

√

√

√

√

1 − 1

1 +

(

∑𝑛
𝑖=1 𝜔𝑖

(

𝛿𝑢2𝜎(𝑖)
1−𝛿𝑢2

)𝜌) 1
𝜌

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

|

|

|

[

𝛿𝑙𝜎(𝑖), 𝛿
𝑢
𝜎(𝑖)

]

∈ �̃�𝜎(𝑖)

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

(26)
⎩⎣

𝜎(𝑖) 𝜎(𝑖)
⎦ ⎭⎠
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(

a

4.4.5. OWG aggregation operator based on Frank operation
When 𝑓 (𝑥) = log

(

𝜓−1
𝜓𝑥−1

)

, 𝜓 > 1, the AIVHPFOWG operator converted to IVHPF Frank OWG (IVHPFFOWG) operator presented as:

𝐼𝑉 𝐻𝑃𝐹𝐹𝑂𝑊𝐺
(

𝑑1, 𝑑2,… , 𝑑𝑛
)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

√

√

√

√

√

√

√

log

(

1 +
∏𝑛

𝑖=1

(

𝜓
(

𝛾 𝑙𝜎(𝑖)
)2

− 1

)𝜔𝑖)

log𝜓
,

√

√

√

√

√

√

√

log

(

1 +
∏𝑛

𝑖=1

(

𝜓
(

𝛾𝑢𝜎(𝑖)
)2

− 1

)𝜔𝑖)

log𝜓

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝜎(𝑖), 𝛾
𝑢
𝜎(𝑖)

]

∈ ℎ̃𝜎(𝑖)

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎢

⎣

√

√

√

√

√

√

1 −
log

(

1 +
∏𝑛

𝑖=1

(

𝜓1−𝛿𝑙2𝜎(𝑖) − 1
)𝜔𝑖)

log𝜓
,

√

√

√

√

√

√

1 −
log

(

1 +
∏𝑛

𝑖=1

(

𝜓1−𝛿𝑢2𝜎(𝑖) − 1
)𝜔𝑖)

log𝜓

⎤

⎥

⎥

⎥

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝜎(𝑖), 𝛿
𝑢
𝜎(𝑖)

]

∈ �̃�𝜎(𝑖),

𝑖 = 1, 2,… , 𝑛

⎫

⎪

⎪

⎬

⎪

⎪

⎭

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(27)

5. Approach to MCDM with A 𝒕-CN&𝒕-N-based IVHPF information

For an MCDM, let 𝑍 =
{

𝑍1, 𝑍2,… , 𝑍𝑚
}

be a collection of alternatives to be selected under IVHPF information. The proposed operators
AIVHPFWA and AIVHPFWG are applied to develop an approach to solve MCDM problems under IVHPF environment. Let 𝐶 =

{

𝐶1, 𝐶2,… , 𝐶𝑛
}

be a collection of criteria on which the alternatives are evaluated. Also, let 𝜔 =
(

𝜔1, 𝜔2,… , 𝜔𝑛
)

be the weight vector of 𝐶𝑗 (𝑗 = 1, 2,… , 𝑛) satisfying
𝜔𝑗 > 0 for 𝑗 = 1, 2,… , 𝑛, and ∑𝑛

𝑗=1 𝜔𝑗 = 1. To evaluate the performance of the alternatives, a DM provides decision values in the forms of IVHPFEs
as ℎ̃𝑖𝑗 and �̃�𝑖𝑗 which denote the degrees that the alternative 𝑍𝑖 satisfies the criterion 𝐶𝑗 and does not satisfy the criterion 𝐶𝑗 , respectively. After
providing all the decision values corresponding to each alternative with respect to their satisfying criteria, the IVHPF decision matrix (IVHPFDM)
is found �̃� =

[

𝑑𝑖𝑗
]

𝑚×𝑛 =
[

ℎ̃𝑖𝑗 , �̃�𝑖𝑗
]

𝑚×𝑛 as

�̃� =

⎛

⎜

⎜

⎜

⎜

⎝

𝑑11 𝑑12 ⋯ 𝑑1𝑛

⋮ ⋮ ⋱ ⋮

𝑑𝑚1 𝑑𝑚2 ⋯ 𝑑𝑚𝑛

⎞

⎟

⎟

⎟

⎟

⎠𝑚×𝑛

(28)

In MCDM, criteria are categorized into two types: one is benefit criteria, and the other one is cost criteria. If the IVHPFDM possesses cost type
criteria, the matrix �̃� =

[

𝑑𝑖𝑗
]

𝑚×𝑛 can be converted into the normalized IVHPFDM form as �̃� =
(

𝑟𝑖𝑗
)

𝑚×𝑛 in the following way,

𝑟𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

𝑑𝑖𝑗 𝑓𝑜𝑟 𝑏𝑒𝑛𝑒𝑓𝑖𝑡 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝐶𝑗

𝑑𝑐𝑖𝑗 𝑓𝑜𝑟 𝑐𝑜𝑠𝑡 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 𝐶𝑗
(29)

𝑖 = 1,… , 𝑚 & 𝑗 = 1,… , 𝑛) Where 𝑑𝑐𝑖𝑗 is the complement 𝑑𝑖𝑗 .
Suppose now that �̃� =

(

𝑟𝑖𝑗
)

𝑚×𝑛 be a normalized IVHPFDM. Then, the proposed AIVHPFWA (or AIVHPFWG) operators are utilized to improve
n approach for solving MCDM problems in IVHPF information. The proposed approach is explained through the following steps
Step 1. Transform the IVHPFDM �̃� =

(

𝑑𝑖𝑗
)

𝑚×𝑛 into the normalized IVHPFDM �̃� =
(

𝑟𝑖𝑗
)

𝑚×𝑛, if required, using Eq. (29).
Step 2. In this step, two cases may arise.
Case 1: If the DMs want to weigh only the IVHPF arguments.
Aggregate the IVHPFNs 𝑟𝑖𝑗 for each alternative 𝑍𝑖 using the AIVHPFWA (or AIVHPFWG) operator as follows:

𝑟𝐴𝑖 = 𝐴𝐼𝑉 𝐻𝑃𝐹𝑊 𝐴
(

𝑟𝑖1, 𝑟𝑖2,… , 𝑟𝑖𝑛
)

=

⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

√

√

√g−1
( 𝑛
∑

𝑗=1
𝜔𝑗g

(

(

𝛾 𝑙𝑖𝑗
)2

)

)

,

√

√

√

√g−1
( 𝑛
∑

𝑗=1
𝜔𝑗g

(

(

𝛾𝑢𝑖𝑗
)2

)

)

⎤

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝑖𝑗 , 𝛾
𝑢
𝑖𝑗

]

∈ ℎ̃𝑖𝑗 ,

𝑗 = 1, 2,… , 𝑛

⎫

⎪

⎬

⎪

⎭

,

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

√

√

√𝑓−1

( 𝑛
∑

𝑗=1
𝜔𝑗𝑓

(

(

𝛿𝑙𝑖𝑗
)2

)

)

,

√

√

√

√𝑓−1

( 𝑛
∑

𝑖=1
𝜔𝑗𝑓

(

(

𝛿𝑢𝑖𝑗
)2

)

)

⎤

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝑖𝑗 , 𝛿
𝑢
𝑖𝑗

]

∈ �̃�𝑖𝑗

𝑗 = 1, 2,… , 𝑛

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟

⎟

⎠

(30)

or,
𝑟𝐺𝑖 = 𝐴𝐼𝑉 𝐻𝑃𝐹𝑊𝐺

(

𝑟𝑖1, 𝑟𝑖2,… , 𝑟𝑖𝑛
)

=

⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

√

√

√𝑓−1

( 𝑛
∑

𝑗=1
𝜔𝑗𝑓

(

(

𝛾 𝑙𝑖𝑗
)2

)

)

,

√

√

√

√𝑓−1

( 𝑛
∑

𝑗=1
𝜔𝑗𝑓

(

(

𝛾𝑢𝑖𝑗
)2

)

)

⎤

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝑖𝑗 , 𝛾
𝑢
𝑖𝑗

]

∈ ℎ̃𝑖𝑗 ,

𝑗 = 1, 2,… , 𝑛

⎫

⎪

⎬

⎪

⎭

,

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

√

√

√g−1
( 𝑛
∑

𝑗=1
𝜔𝑗g

(

(

𝛿𝑙𝑖𝑗
)2

)

)

,

√

√

√

√g−1
( 𝑛
∑

𝑖=1
𝜔𝑗g

(

(

𝛿𝑢𝑖𝑗
)2

)

)

⎤

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝑖𝑗 , 𝛿
𝑢
𝑖𝑗

]

∈ �̃�𝑖𝑗

𝑗 = 1, 2,… , 𝑛

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟

⎟

⎠

(31)
(𝑖 = 1,… , 𝑚 & 𝑗 = 1,… , 𝑛)
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Table 3
IVHPFDM given by DM.

𝐶1 𝐶2 𝐶3 𝐶4

𝐴1

⎛

⎜

⎜

⎝

{[0.3, 0.4] , [0.4, 0.5]} ,

{[0.3, 0.4] , [0.2, 0.3]}

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

{[0.1, 0.4] , [0.4, 0.5]} ,

{[0.2, 0.3] , [0.2, 0.4]}

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

{[0.3, 0.5] , [0.2, 0.4]} ,

{[0.2, 0.4] , [0.3, 0.4]}

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

{[0.3, 0.4] , [0.4, 0.5]} ,

{[0.3, 0.5] , [0.1, 0.3]}

⎞

⎟

⎟

⎠

𝐴2

⎛

⎜

⎜

⎝

{[0.1, 0.4] , [0.3, 0.5]} ,

{[0.3, 0.4] , [0.1, 0.5]}

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

{[0.2, 0.4] , [0.3, 0.5]} ,

{[0.2, 0.4] , [0.3, 0.5]}

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

{[0.1, 0.3] , [0.2, 0.4]} ,

{[0.5, 0.7] , [0.4, 0.6]}

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

{[0.1, 0.4] , [0.2, 0.5]} ,

{[0.3, 0.5] , [0.2, 0.4]}

⎞

⎟

⎟

⎠

𝐴3

⎛

⎜

⎜

⎝

{[0.5, 0.6] , [0.4, 0.7]} ,

{[0.2, 0.3] , [0.3, 0.5]}

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

{[0.2, 0.5] , [0.3, 0.6]} ,

{[0.3, 0.5] , [0.2, 0.5]}

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

{[0.2, 0.3] , [0.1, 0.3]} ,

{[0.2, 0.4] , [0.3, 0.5]}

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

{[0.2, 0.5] , [0.3, 0.5]} ,

{[0.3, 0.5] , [0.2, 0.5]}

⎞

⎟

⎟

⎠

𝐴4

⎛

⎜

⎜

⎝

{[0.3, 0.5] , [0.1, 0.4]} ,

{[0.3, 0.5] , [0.4, 0.6]}

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

{[0.4, 0.6] , [0.3, 0.5]} ,

{[0.3, 0.4] , [0.2, 0.4]}

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

{[0.1, 0.3] , [0.2, 0.4]} ,

{[0.3, 0.5] , [0.2, 0.5]}

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

{[0.2, 0.4] , [0.2, 0.3]} ,

{[0.4, 0.6] , [0.3, 0.5]}

⎞

⎟

⎟

⎠

Case 2: If the DMs want to weigh the ordered position of the IVHPF arguments.
Aggregate the IVHPFNs 𝑟𝑖𝑗 for each alternative 𝑍𝑖 using the AIVHPFOWA (or AIVHPFOWG) operator as follows:

𝑟𝐴𝑖 = 𝐴𝐼𝑉 𝐻𝑃𝐹𝑂𝑊𝐴
(

𝑟𝑖1, 𝑟𝑖2,… , 𝑟𝑖𝑛
)

=

⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

√

√

√g−1
( 𝑛
∑

𝑗=1
𝜔𝑗g

(

(

𝛾 𝑙𝑖𝜎(𝑗)
)2

)

)

,

√

√

√

√g−1
( 𝑛
∑

𝑗=1
𝜔𝑗g

(

(

𝛾𝑢𝑖𝜎(𝑗)
)2

)

)

⎤

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝑖𝑗 , 𝛾
𝑢
𝑖𝑗

]

∈ ℎ̃𝑖𝑗 ,

𝑗 = 1, 2,… , 𝑛

⎫

⎪

⎬

⎪

⎭

,

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

√

√

√𝑓−1

( 𝑛
∑

𝑗=1
𝜔𝑗𝑓

(

(

𝛿𝑙𝑖𝜎(𝑗)
)2

)

)

,

√

√

√

√𝑓−1

( 𝑛
∑

𝑗=1
𝜔𝑗𝑓

(

(

𝛿𝑢𝑖𝜎(𝑗)
)2

)

)

⎤

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝑖𝑗 , 𝛿
𝑢
𝑖𝑗

]

∈ �̃�𝑖𝑗

𝑗 = 1, 2,… , 𝑛

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟

⎟

⎠

(32)

or,

𝑟𝐺𝑖 = 𝐴𝐼𝑉 𝐻𝑃𝐹𝑂𝑊𝐺
(

𝑟𝑖1, 𝑟𝑖2,… , 𝑟𝑖𝑛
)

=

⎛

⎜

⎜

⎜

⎝

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

√

√

√𝑓−1

( 𝑛
∑

𝑗=1
𝜔𝑗𝑓

(

(

𝛾 𝑙𝑖𝜎(𝑗)
)2

)

)

,

√

√

√

√𝑓−1

( 𝑛
∑

𝑗=1
𝜔𝑗𝑓

(

(

𝛾𝑢𝑖𝜎(𝑗)
)2

)

)

⎤

⎥

⎥

⎦

|

|

|

[

𝛾 𝑙𝑖𝑗 , 𝛾
𝑢
𝑖𝑗

]

∈ ℎ̃𝑖𝑗 ,

𝑗 = 1, 2,… , 𝑛

⎫

⎪

⎬

⎪

⎭

,

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

√

√

√

√g−1
( 𝑛
∑

𝑗=1
𝜔𝑗g

(

(

𝛿𝑙𝑖𝜎(𝑗)
)2

)

)

,

√

√

√

√g−1
( 𝑛
∑

𝑗=1
𝜔𝑗g

(

(

𝛿𝑢𝑖𝜎(𝑗)
)2

)

)

⎤

⎥

⎥

⎦

|

|

|

[

𝛿𝑙𝑖𝑗 , 𝛿
𝑢
𝑖𝑗

]

∈ �̃�𝑖𝑗

𝑗 = 1, 2,… , 𝑛

⎫

⎪

⎬

⎪

⎭

⎞

⎟

⎟

⎟

⎠

(33)

where (𝜎 (1) , 𝜎 (2) ,… , 𝜎 (𝑛)) represents a permutation of {1, 2,… , 𝑛}, such that 𝑟𝑖𝜎(𝑗−1) ≥ 𝑟𝑖𝜎(𝑗) for all 𝑖 = 1,… , 𝑚&𝑗 = 2, 3,… , 𝑛.
Step 3. Utilizing the score function as mentioned in Definition 5.
Step 4. The ordering of alternatives is evaluated according to Definition 5.

6. Illustrative examples

In this section, two examples, studied previously [23,29], are considered and solved to explore the applicability of the proposed method.

Example 1. In this section, an MCDM problem related to rail transit projects is adapted from an article previously studied by Wang et al. [29]
to illustrate the application of the proposed MCDM method. The problem consists of selecting the most suitable private partner for a rail transit
project. The attributes that are considered for the selection process are 𝐶1: economy; 𝐶2: experience; 𝐶3: technology; and 𝐶4: reputation. Accordingly,
the weight vector of the criteria is given as 𝑊 = (0.35, 0.3, 0.1, 0.25)𝑇 . Here it is assumed that four eligible partners applied for the project, viz.,
𝐴 =

{

𝐴1, 𝐴2, 𝐴3, 𝐴4
}

. Under the IVHPF environment, experts need to evaluate these alternatives with IVHPFEs. The IVHPF decision matrix is shown
in Table 3.

Step 1. Considering all the criteria 𝐶𝑗 (𝑗 = 1, 2, 3, 4) are the benefit criteria, the performance values of the alternatives 𝐴𝑖 (𝑖 = 1, 2, 3, 4, ) do not
eed normalization.
Step 2. The DMs want to weigh only the IVHPF arguments i.e, have to follow case 1. So for aggregating all the preference values 𝑟𝑖𝑗 for each

lternative 𝐴𝑖, IVHPFHWA aggregation operator as described in Eq. (7) is utilized to get 𝑟𝐴𝑖 (i = 1, 2, 3, 4). Without loss of generality, take 𝜃 = 5.

𝑟𝐴1 = ({[0.2539, 0.4107] , [0.2836, 0.4366] , [0.2439, 0.4000] , [0.2744, 0.4263] , [0.3320,

0.4417] , [0.3572, 0.4665] , [0.3237, 0.4315] , [0.3493, 0.4567] , [0.2949, 0.4467] , [0.3220,

0.4714] , [0.2860, 0.4366] , [0.3136, 0.4616] , [0.3670, 0.4762] , [0.3907, 0.5000] , [0.3592,

0.4665] , [0.3833, 0.4906]} , {[0.2556, 0.3899] , [0.1948, 0.3422] , [0.2661, 0.3899] , [0.2030,

0.3422] , [0.2556, 0.4237] , [0.1948, 0.3729] , [0.2661, 0.4237] , [0.2030, 0.3729] , [0.2217,

0.3531] , [0.1685, 0.3090] , [0.2309, 0.3531] , [0.1756, 0.3090] , [0.2217, 0.3845] , [0.1685,
0.3373] , [0.2309, 0.3845] , [0.1756, 0.3373]}) ,

17
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Fig. 1. Score values by IVHPFHWA operator.

𝑟𝐴2 = ({[0.1369, 0.3907] , [0.1619, 0.4174] , [0.1474, 0.4000] , [0.1710, 0.4263] , [0.1801,

0.4226] , [0.2004, 0.4481] , [0.1885, 0.4315] , [0.2081, 0.4567] , [0.2138, 0.4278] , [0.2317,

0.4531] , [0.2211, 0.4366] [0.2385, 0.4616] , [0.2456, 0.4581] , [0.2619, 0.4824] , [0.2522,

0.4665] , [0.2681, 0.4906]} {[0.2812, 0.4511] , [0.2543, 0.4264] , [0.2742, 0.4423] , [0.2479,

0.4180] , [0.3167, 0.4818] , [0.2869, 0.4561] , [0.3090, 0.4727] , [0.2798, 0.4473] , [0.1926,

0.4871] , [0.1736, 0.4612] , [0.1877, 0.4779] , [0.1691, 0.4523] , [0.2179, 0.5191] , [0.1966,

0.4924] , [0.2124, 0.5097] , [0.1916, 0.4831]}) ,

𝑟𝐴3 = ({[0.3259, 0.5199] , [0.3462, 0.5199] , [0.3204, 0.5199] , [0.3410, 0.5199] , [0.3502,

0.5506] , [0.3697, 0.5506] , [0.3450, 0.5506] , [0.3647, 0.5506] , [0.2812, 0.5616] , [0.3035,

0.5616] , [0.2751, 0.5616] [0.2977, 0.5616] , [0.3078, 0.5906] , [0.3289, 0.5906] , [0.3021,

0.5906] , [0.3234, 0.5906]} , {[0.2505, 0.4123] , [0.2263, 0.4123] , [0.2608, 0.4218] , [0.2357,

0.4218] , [0.2217, 0.4123] , [0.2000, 0.4123] , [0.2309, 0.4218] , [0.2084, 0.4218] , [0.2883,

0.4894] , [0.2608, 0.4894] , [0.3000, 0.5000] , [0.2715, 0.5000] , [0.2556, 0.4894] , [0.2309,

0.4894] , [0.2661, 0.5000] , [0.2405, 0.5000]}) ,

𝑟𝐴4 = ({[0.2966, 0.4914] , [0.2966, 0.4708] , [0.3024, 0.4994] , [0.3024, 0.4791] , [0.2619,

0.4581] , [0.2619, 0.4366] , [0.2681, 0.4665] , [0.2681, 0.4453] , [0.2417, 0.4575] , [0.2417,

0.4360] , [0.2484, 0.4659] , [0.2484, 0.4447] , [0.2004, 0.4226] , [0.2004, 0.4000] , [0.2081,

0.4315] , [0.2081, 0.4091]} , {[0.3229, 0.4921] , [0.3000, 0.4686] , [0.3105, 0.4921] , [0.2883,

0.4686] , [0.2868, 0.4921] , [0.2661, 0.4686] , [0.2756, 0.4921] , [0.2556, 0.4686] , [0.3573,

0.5261] , [0.3324, 0.5017] , [0.3438, 0.5261] , [0.3197, 0.5017] , [0.3181, 0.5261] , [0.2955,

0.5017] , [0.3058, 0.5261] , [0.2839, 0.5017]}) .

Step 3. By Definition 5, calculate the score values of 𝑟𝐴𝑖 (𝑖 = 1, 2, 3, 4) for each partner and are found as 𝑆
(

𝑟𝐴1
)

= 0.06419, 𝑆
(

𝑟𝐴2
)

= −0.01845,
(

𝑟𝐴3
)

= 0.07206, 𝑆
(

𝑟𝐴4
)

= −0.03559.
Step 4. Find out the ranking of the alternatives as 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴4.

.1. The influence of the hamacher parameter 𝜃, Dombi parameter 𝜌 and Frank parameter 𝜓 on the ranking results

Evidently, the parameter plays a significant role in the ranking orders. According to the score functions and the comparison formula with score
unctions, the ranking results differ with the changes in the parameter value between 0 and 50. The changes are observed as follows:

• For different values of the Hamacher parameter 𝜃, ranging from 0 to 50, the score values obtained by the IVHPFHWA operator are depicted
n Fig. 1. It is worthy to note here that the score values decrease with the increase in the value of 𝜃 by keeping the ordering of alternatives as to
he same as 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴4.

• On the other hand, if the IVHPFHWG operator is utilized, the score value of each alternative 𝐴𝑖, (𝑖 = 1, 2, 3, 4) is presented in Fig. 2. It is worth
entioning here that the score values increase with the increase of 𝜃. However, some changes in the ordering of the alternatives are observed.
hen 𝜃 ∈ (0, 6.5080), the ranking of the four alternatives is 𝐴1 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴4 and the best choice is 𝐴1. Whereas, when 𝜃 ∈ (6.5080, ∞), the

anking of the alternatives become 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴4, and the best choice is 𝐴3. Thus for 𝜃 = 6.5080 an alternative ranking of alternatives is found

s 𝐴3 ≈ 𝐴1 ≻ 𝐴2 ≻ 𝐴4.
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Fig. 2. Score values by IVHPFHWG operator.

Fig. 3. Score values by IVHPFDWA operator.

• Again, when the alternatives are aggregated using Dombi operation, i.e., the IVHPFDWA and IVHPFDWG aggregation operators, the ranking
esults are changed with the parameter 𝜌. However, it differs from the Hamacher aggregation operators in that if the IVHPFDWA operator is

utilized, the score values of the alternatives increase. In contrast, the score values of the alternatives decrease with the increase of the parameter
𝜌 if IVHPFDWG operator is used. Further ordering of the alternatives is changed from 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴4 to 𝐴3 ≻ 𝐴1 ≻ 𝐴4 ≻ 𝐴2 at 𝜌 = 1.7220.
In the case of the IVHPFDWG operator, the ranking of alternatives changes as 𝐴1 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴4 for 𝜌 ∈ (0, 3.5770) and 𝐴1 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴2 for
∈ (3.5770,∞). These facts are described through Fig. 3 and Fig. 4 by varying the parameters in [0, 50].
• If the aggregation operator IVHPFFWA is utilized, the ordering of alternatives is found as 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴4.
• Whenever IVHPFFWG operator is utilized, the ranking results are obtained as 𝐴1 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴4 for 𝜓 ∈ (1, 13.92) and 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴4 for
∈ (13.92,∞).
These variations of score values using IVHPFFWA and IVHPFFWG operators are shown, in Fig. 5 and Fig. 6, respectively.
The score values and the ranking of alternatives for all the aggregation operators mentioned earlier are summarized in Table 4.

xample 2. An MCDM problem of energy development strategy In this section, an MCDM problem related to energy projects, adapted from
n example previously studied by Liang and Xu [23], illustrates the application of the proposed method and demonstrates its feasibility and
ffectiveness in a realistic scenario. One energy development company wants to select the best energy project among five alternatives, 𝐴 =
𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5

}

, by considering four attributes: 𝐶1: economic; 𝐶2: technological; 𝐶3: environmental; and 𝐶4: socio-political. Accordingly, the
eight vector of the attributes is provided as 𝑊 = (0.15, 0.3, 0.2, 0.35)𝑇 . Experts evaluate the alternatives on the basis of the attributes under the

VHPF environment, and the IVHPF decision matrix is constructed as given in Table 5.
To obtain the ranking results among the alternative(s), the developed AIVHPFWA and AIVHPFWG operators are used, and the proposed method’s

tep-by-step execution is described below. In this context, it is to be noted here that three types of A𝑡-CN&𝑡-N, viz., Hamacher, Dombi and Frank
lasses are considered. Algebraic and Einstein classes can be derived as particular cases of Hamacher class of 𝑡-CN&𝑡-Ns.

Step 1. Considering all the attributes 𝐶𝑗 (𝑗 = 1, 2, 3, 4) as the benefit criteria, the performance values of the alternatives 𝐴𝑖 (𝑖 = 1, 2, 3, 4, 5) do

ot need normalization.
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Fig. 4. Score values by IVHPFDWG operator.

Fig. 5. Score values by IVHPFFWA operator.

Fig. 6. Score values by IVHPFFWG operator.

Step 2. Case 1 is considered here. Without loss of generality, the value of the Hamacher parameter 𝜃 is considered as 5, and the aggregation
𝐴
operator IVHPFHWA as described in Eq. (7) is utilized to aggregate all the preference values 𝑟𝑖𝑗 for each alternative 𝐴𝑖 and 𝑟𝑖 (𝑖 = 1, 2,… , 5) are
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Table 4
Ranking results of different parameters based on the proposed operators.

Operations Aggregation operator Parameter 𝑆(𝐴1) 𝑆(𝐴2) 𝑆(𝐴3) 𝑆(𝐴4) Ranking results

Algebraic IVHPFWA 𝜃 = 1 0.06723 −0.01516 0.0823 −0.02855 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴4
Einstein IVHPFEWA 𝜃 = 2 0.06608 −0.01661 0.07823 −0.03146 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴4
Hamacher IVHPFHWA 𝜃 = 5 0.06419 −0.01845 0.07206 −0.03559 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴4

𝜃 = 10 0.0625 −0.01985 0.06743 −0.03871 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴4
𝜃 = 50 0.05864 −0.02276 0.05978 −0.04432 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴4

Algebraic IVHPFWG 𝜃 = 1 0.04732 −0.04009 0.04279 −0.06025 𝐴1 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴4
Einstein IVHPFEWG 𝜃 = 2 0.04846 −0.03773 0.04623 −0.05772 𝐴1 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴4
Hamacher IVHPFHWG 𝜃 = 5 0.05004 −0.03438 0.04969 −0.05455 𝐴1 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴4

𝜃 = 6.5080 0.05051 −0.03344 0.05051 −0.05371 𝐴3 ≈ 𝐴1 ≻ 𝐴2 ≻ 𝐴4
𝜃 = 10 0.05129 −0.03199 0.0517 −0.05244 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴4
𝜃 = 50 0.05373 −0.02784 0.05452 −0.04929 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴4

Dombi IVHPFDWA 𝜌 = 1 0.07479 −0.005229 0.09515 −0.01555 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴4
𝜌 = 1.7220 0.08467 0.004941 0.1178 0.004941 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≈ 𝐴4
𝜌 = 5 0.1081 0.02915 0.1691 0.0568 𝐴3 ≻ 𝐴1 ≻ 𝐴4 ≻ 𝐴2
𝜌 = 10 0.1209 0.04201 0.1930 0.08164 𝐴3 ≻ 𝐴1 ≻ 𝐴4 ≻ 𝐴2

IVHPFDWG 𝜌 = 1 0.03603 −0.0513 0.0130 −0.07721 𝐴1 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴4
𝜌 = 3.5770 0.0060 −0.1215 −0.05855 −0.1215 𝐴1 ≻ 𝐴3 ≻ 𝐴2 ≈ 𝐴4
𝜌 = 5 0.1081 −0.1480 −0.07402 −0.1338 𝐴1 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴2
𝜌 = 50 −0.03855 −0.2348 −0.1076 −0.1707 𝐴1 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴2

Frank IVHPFFWA 𝜓 = 1.1 0.06716 −0.01526 0.08204 −0.02874 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴4
𝜓 = 5 0.06617 −0.01674 0.07871 −0.03134 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴4
𝜓 = 10 0.06581 −0.01733 0.07757 −0.03228 𝐴3 ≻ 𝐴1 ≻ 𝐴2 ≻ 𝐴4

IVHPFFWG 𝜓 = 1.1 0.0474 −0.03994 0.04306 −0.06007 𝐴1 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴4
𝜓 = 5 0.04853 −0.03797 0.04692 −0.05759 𝐴1 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴4
𝜓 = 10 0.04896 −0.03732 0.04846 −0.05664 𝐴1 ≻ 𝐴3 ≻ 𝐴2 ≻ 𝐴4
𝜓 = 13.92 0.04916 −0.03705 0.04916 −0.05623 𝐴3 ≈ 𝐴1 ≻ 𝐴2 ≻ 𝐴4

Table 5
IVHPFDM.
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obtained as follows.
𝑟𝐴1 = ({[0.0546, 0.1676] , [0.1362, 0.3918] , [0.1872, 0.4327] , [0.2843, 0.6460] , [0.0639,

0.1807] , [0.1470, 0.4064] , [0.1987, 0.4471] , [0.2966, 0.6578]} , {[0.0326, 0.1703] , [0.0435,

0.2059] , [0.0529, 0.2368] , [0.0702, 0.2826]}) ;

𝑟𝐴2 = ({[0.0505, 0.2322] , [0.0950, 0.3610] , [0.1079, 0.3568] , [0.1574, 0.4870]} ,

{[0.1834, 0.3073] , [0.2145, 0.3904] , [0.2351, 0.3900] , [0.2727, 0.4840]}) ;

𝑟𝐴3 = ({[0.2309, 0.6144] , [0.2656, 0.6546]} ,

{[0.0873, 0.1842] , [0.1270, 0.2472] , [0.1105, 0.2163] , [0.1593, 0.2873]}) ;

𝑟𝐴4 = ({[0.1072, 0.3873] , [0.2003, 0.5162] , [0.1707, 0.4882] , [0.2707, 0.6089] , [0.1441,

0.4382] , [0.2415, 0.5637] , [0.2108, 0.5368] , [0.3139, 0.6514]} , {[0.0603, 0.1801] , [0.0959,

0.2762] , [0.0646, 0.1912] , [0.1025, 0.2916]}) ;

𝑟𝐴5 = ({[0.1687, 0.4717] , [0.3093, 0.6080] , [0.2263, 0.5565] , [0.3718, 0.6806] , [0.1950,

0.5140] , [0.3382, 0.6448] , [0.2540, 0.5958] , [0.4008, 0.7128] , [0.2428, 0.5558] , [0.3892,

0.6800] , [0.3038, 0.6339] , [0.4515, 0.7432]} , {[0.0335, 0.0938] , [0.0519, 0.1231] , [0.0504,

0.1185] [0.0775, 0.1546]}) .

Step 3. Using Definition 5, calculate the score values of 𝑟𝐴𝑖 (𝑖 = 1, 2, 3, 4, 5) for each alternative.
𝑆
(

𝑟𝐴
)

= 0.09645, 𝑆
(

𝑟𝐴
)

= −0.07871, 𝑆
(

𝑟𝐴
)

= 0.2640, 𝑆
(

𝑟𝐴
)

= 0.2078, 𝑆
(

𝑟𝐴
)

= 0.3724.
1 2 3 4 5
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Fig. 7. Score values by IVHPFHWA operator.

Fig. 8. Score values by IVHPFHWG operator.

Step 4. Find out the ranking of the alternatives as 𝐴5 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2.
Alternatively, if IVHPFHWG operator is utilized whose expression is given in Eq. (21), the aggregated value of each alternative 𝐴𝑖, (𝑖 = 1, 2,… , 5)

an be achieved as like IVHPFHWA operator.

.2. Sensitivity analysis

.2.1. For Hamacher parameter 𝜃
The above example is solved by considering 𝜃 = 5 as the value of Hamacher parameter. When 𝜃 is varied, the effect of changes is described as

ollows.
For different values of the parameter 𝜃, ranging between 0 and 50, the change of score values obtained by the IVHPFHWA operator is shown

in Fig. 7. It is to be mentioned here that the score values decrease with the increase of 𝜃. Further, the changes in the ranking of alternatives are
observed as follows.

(1) When 𝜃 ∈ (0, 0.0874), the ranking of the alternatives is 𝐴5 ≻ 𝐴4 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴2 and the best choice is 𝐴5.
(2) When 𝜃 ∈ (0.0874, 50], the ranking of the alternatives is 𝐴5 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2, and the best choice is 𝐴5.
(3) For 𝜃 = 0.0874, alternative orderings are found as 𝐴5 ≻ 𝐴3 ≈ 𝐴4 ≻ 𝐴1 ≻ 𝐴2.
Similarly, using IVDHPFHWG operator, the score values obtained depending on the parameter 𝜃, ranging between 0 and 50 is depicted in Fig. 8.

It is worthy to mention here that the score values increase with the increase of 𝜃, but no change in the ranking of alternatives is observed in (0, 50],
and the ranking is found as 𝐴5 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2.

6.2.2. For Dombi parameter 𝜌
On the other hand, when the ranking of alternatives is evaluated using Dombi operation, the ranking results are changed depending on the

parameter 𝜌. If the aggregating operator IVHPFDWA is utilized, the orderings of the alternatives are found, which are presented in Fig. 9. The
22
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Fig. 9. Score values by IVHPFDWA operator.

Fig. 10. Score values by IVHPFDWG operator.

anking is changed by about 𝜌 = 0.8124. In this case, the score values of alternatives are increased when the value of 𝜌 is increased, unlike
amacher operations.

Further, the ordering of alternatives is appeared as 𝐴5 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2 when IVHPFDWG operator is used and the value of Dombi
parameter 𝜌 ∈ (0, 2.3948). Again for 𝜌 ∈ (2.3948, 5.6139) the ranking order is changed and is found as 𝐴5 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴2 ≻ 𝐴1. But for the remaining
span, i.e., for 𝜌 ∈ (5.6139,∞) the ordering is appeared as 𝐴3 ≻ 𝐴5 ≻ 𝐴4 ≻ 𝐴2 ≻ 𝐴1. All the cases depending on the parameter 𝜌 are summarized in
Fig. 10.

6.2.3. For Frank classes of operations parameter 𝜓
Again when the aggregating operators IVHPFFWA and IVHPFFWG are utilized, the ranking of alternatives remains the same and is found as

𝐴5 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2 which are shown in Fig. 11 and Fig. 12, respectively.
The overall score values and the ranking order of the alternatives using IVHPFHWA, IVHPFHWG, IVHPFDWA, IVHPFDWG, and IVHPFFWA

IVHPFFWG operators, are summarized in Table 6.
• Comparison with existing methods
In this subsection, the proposed method is compared with the existing methods proposed by Wang et al. [29] and Liang and Xu [23]. Based on

the proposed method, it is noted that the ranking of alternatives remains the same as using the method developed by Wang et al. [29]. However,
the proposed method is superior in the sense that when the differences of the score values of the consecutive alternatives are calculated. The
differences are much higher than the existing method [29] in each case, as presented in Fig. 13. On the other hand, the ranked alternatives are
identified more easily than the existing method [23] as presented in Fig. 14, though the ranking remains the same. Additionally, in Ref. [23], Liang
and Xu proposed the MCDM method under HPF environment. But the proposed approach extends the existing approach [23] to IVHPF environment
by introducing interval numbers to HPF environment. So, the scope for describing uncertain information is also increased in the present study.

Further, it is found that the above aggregation operators are all based on different 𝑡-conorms and 𝑡-norms, which are more general and more
ersatile for aggregating fuzzy information. Also, it is observed from the sensitivity analysis, the proposed aggregation operators with parameters
23
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Fig. 11. Score values by IVHPFFWA operator.

Fig. 12. Score values by IVHPFFWG operator.

Fig. 13. Comparison with Wang et al. [29] method.

can provide the DMs with more choices and thus the proposed method is more flexible than the existing ones [23,29] because different values of

the parameter can be selected according to the different situations, which is an interesting topic and is worthy to be further studied in the future.
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Table 6
Ranking results of different parameters 𝜽,𝝆,𝝍 based on the proposed operators.

Operations Operator Parameter 𝑆(𝐴1) 𝑆(𝐴2) 𝑆(𝐴3) 𝑆(𝐴4) 𝑆(𝐴5) Ranking results

Hamacher IVHPFHWA 𝜃 = 0.0874 0.1897 −0.0081 0.3112 0.3112 0.4310 𝐴5 ≻ 𝐴3 ≈ 𝐴4 ≻ 𝐴1 ≻ 𝐴2
𝜃 = 1 0.1372 −0.04902 0.2814 0.2523 0.3978 𝐴5 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2
𝜃 = 2 0.1183 −0.06238 0.2729 0.2322 0.3864 𝐴5 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2
𝜃 = 5 0.09645 −0.07871 0.2640 0.2078 0.3724 𝐴5 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2
𝜃 = 10 0.08349 −0.08913 0.2592 0.1924 0.3639 𝐴5 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2

IVHPFHWG 𝜃 = 1 −0.05209 −0.1620 0.2078 0.06183 0.2824 𝐴5 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2
𝜃 = 5 0.005817 −0.1355 0.2305 0.1075 0.3137 𝐴5 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2
𝜃 = 10 0.02464 −0.1272 0.2383 0.1233 0.3236 𝐴5 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2

Dombi IVHPFDWA 𝜌 = 0.8124 0.1863 −0.01119 0.3119 0.3119 0.4318 𝐴5 ≻ 𝐴3 ≈ 𝐴4 ≻ 𝐴1 ≻ 𝐴2
𝜌 = 5 0.3121 0.1623 0.4356 0.4797 0.5649 𝐴5 ≻ 𝐴4 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴2
𝜌 = 10 0.3310 0.1995 0.4629 0.5099 0.5899 𝐴5 ≻ 𝐴4 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴2
𝜌 = 20 0.3408 0.2192 0.4766 0.5256 0.6026 𝐴5 ≻ 𝐴4 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴2
𝜌 = 30 0.3441 0.2257 0.4811 0.5308 0.6068 𝐴5 ≻ 𝐴4 ≻ 𝐴3 ≻ 𝐴1 ≻ 𝐴2

IVHPFDWG 𝜌 = 2.3948 −0.2972 −0.2972 0.1002 −0.1235 0.1158 𝐴5 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≈ 𝐴2
𝜌 = 5 −0.3936 −0.3558 0.03895 −0.1856 0.04091 𝐴5 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴2 ≻ 𝐴1
𝜌 = 5.6139 −0.4040 −0.3636 0.03136 −0.1933 0.03136 𝐴5 ≈ 𝐴3 ≻ 𝐴4 ≻ 𝐴2 ≻ 𝐴1
𝜌 = 10 −0.4421 −0.3942 0.0027 −0.2235 −0.0056 𝐴3 ≻ 𝐴5 ≻ 𝐴4 ≻ 𝐴2 ≻ 𝐴1
𝜌 = 20 −0.4668 −0.4148 −0.01619 −0.2444 −0.03065 𝐴3 ≻ 𝐴5 ≻ 𝐴4 ≻ 𝐴2 ≻ 𝐴1
𝜌 = 30 −0.4750 −0.4216 −0.02248 −0.2514 −0.03914 𝐴3 ≻ 𝐴5 ≻ 𝐴4 ≻ 𝐴2 ≻ 𝐴1

Frank IVHPFFWA 𝜓 = 1.1 0.1359 −0.04994 0.2808 0.2509 0.3971 𝐴5 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2
𝜓 = 5 0.1164 −0.0629 0.2719 0.2309 0.3859 𝐴5 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2
𝜓 = 10 0.1086 −0.06769 0.2684 0.2231 0.3816 𝐴5 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2

IVHPFFWG 𝜓 = 1.1 −0.05038 −0.1611 0.2085 0.06324 0.2834 𝐴5 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2
𝜓 = 5 −0.02691 −0.1486 0.2177 0.08379 0.2978 𝐴5 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2
𝜓 = 10 −0.01846 −0.1438 0.2209 0.09188 0.3032 𝐴5 ≻ 𝐴3 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴2

Fig. 14. Comparison between the proposed and Liang and Xu [23] methods.

7. Conclusions

The developed A𝑡-CN&𝑡-N based aggregation operators in the IVHPF environment can capture different kinds of existing classes of aggregation
operators, viz., algebraic, Einstein, Hamacher, Dombi, Frank classes, and the like. Thus various kinds of aggregation operators, viz., IVHPFWA,
IVHPFEWA, IVHPFHWA, IVHPFDWA, IVHPFFWA, IVHPFOWA, IVHPFEOWA, IVHPFHOWA, IVHPFDOWA, IVHPFFOWA and their corresponding
geometric operators are derived. In the context of solving MCDM problems, it has been observed that the differences in score values of the ranked
alternatives are much higher than the existing methods. As a consequence, the alternatives are ranked more prominently than other methods. Also,
sensitivity analysis is performed to observe the ranking change with the change of various parameters associated with the aggregation operators.
In future, some other types of IVHPF operators based on A𝑡-N&𝑡-CN, such as IVHPF power aggregation operators, IVHPF prioritized operators, and
nduced generalized IVHPF, IVHPF hybrid aggregation operators can be developed by following the proposed method. Also, the proposed approach
an be applied to multi-objective location analytics problems [38].
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Abstract
In comparison to intuitionistic and Pythagorean fuzzy sets, the q-rung orthopair fuzzy set is
a more capable tool for dealing with uncertainties associated with the data. The objective
of this research is to introduce a novel process to deal with multicriteria group decision
making (MCGDM) issues in which the evaluation values take the form of q-rung orthopair
trapezoidal fuzzy numbers (q-ROTrFNs) using the class ofHamacher t-norms and t-conorms.
In doing so some fundamental operational laws of q-ROTrFNs are defined based onHamacher
operations. In view of these operations, different new aggregation operators, viz., q-ROTrF
Hamacher weighted averaging, and q-ROTrF Hamacher weighted geometric operators, have
been developed. In addition, certain key aspects of the proposed operators are investigated.
Finally, the MCGDM method with q-ROTrF information is developed based on defined
aggregation operators. To illustrate the proposed method, two real-life problems concerning
hiring service selection and supplier selection are considered and solved. The effects of the
Hamacher and rung parameters on decision results of those problems are also thoroughly
examined to demonstrate the applicability and superiority of the developed method.
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1 Introduction

Multicriteria group decision making (MCGDM) is a technique for determining the most
desired alternative from a collection of finite number of available options based on collective
assessment values, provided by a group of decision makers (DMs), individually. Due to the
complexity of human cognitive process, the MCGDMmethods are involved with ambiguous
information for the presence of evaluation values of multiple DMs. To cope with such issues,
Atanassov (1986) proposed intuitionistic fuzzy set (IFS), which might be regarded as an
attractive method for dealing with data having fuzziness and inaccuracy. The IFS is defined
bymembership and non-membership degreeswith sumof degrees up to one.Apart frommany
benefits of IFS, some circumstances arise when the sum ofmembership and non-membership
degrees exceeds 1. To overcome such situations, Yager (2013, 2014) developed Pythagorean
fuzzy set (PFS), which satisfies the condition that the squared sum of its membership and
non-membership degrees is less than or equal to 1. As a result, PFSs have a wider space to
simulate real-life situations than IFSs. Since the inception of PFS, it has been extensively
researched and used by scholars (Biswas and Deb 2021; Gayen and Biswas 2021; Sarkar and
Biswas 2019, 2021b) in many domains.

However, real-life applications involve situations where the square sum of membership
and non-membership degrees is higher than unity. In these cases, IFS and PFS are not suitable
for describing DMs’ evaluation information. To adopt this issue, Yager (2017) redefined the
notion of q-rung orthopair fuzzy (q-ROF) set (q-ROFS), as a useful extension of IFS and
PFS, in which sum of qth power of membership and non-membership degrees is less than
or equals to 1. It is worth noting that if the rung parameter q increases, then the space of
acceptable orthopairs is also increases. Thus q-ROFSs are more appropriate for tackling
uncertain environments. Liu and Wang (2018) proposed q-ROF weighted averaging (WA)
and q-ROF weighted geometric (WG) aggregation operators. Further, Liu and Wang (2020)
introducedweighted generalizedMaclaurin symmetricmean (MSM) and its geometric forms.
Recently, Sarkar andBiswas (2021a) developedBonferronimean operator under dual hesitant
q-ROF context and used it to solve MCGDM problems. Ever since q-ROFSs’ appearance,
many studies (Liu and Liu 2019a, 2019b; Wei et al. 2018, 2019; Yager et al. 2018; Jana et al.
2019; Shahzadi et al. 2021) have been conducted on decision making methods under q-ROF
environments.

The uses of trapezoidal fuzzy numbers (TrFNs) are emerging as an important tool with the
development of fuzzy sets. The trapezoidal fuzzy membership functions are firstly increased
and then maintain the same membership value for a period of time before being decreased. If
it keeps maximum membership level for a long duration, the system represents more stable
realistic scenarios. If the alternative’s uncertainty follows this pattern, the TrFN is the best
choice for representing it. Motivated by the ideas of q-ROFS (Yager 2017) and TrFNs (De
and Das 2014), Gupta et al. (2021) introduced the concept of q-rung orthopair TrFNs (q-
ROTrFNs). Wan and Huang (2021) developed a new ranking method and Hamming distance
measure for q-ROTrFNs. They also proposed a novel TODIMgroup decisionmakingmethod
with q-ROTrFNs.

The operational rules play significant roles in aggregating decision information. Hamacher
operations (Hamacher 1978), a generalized form of algebraic and Einstein operations (Garg
2016), have significant importance in the aggregation process by means of a flexible param-
eter. The aggregation operator defined by Hamacher operations acts a major role in decision
making. For example, in decision science, a DM may have optimistic or pessimistic nature,
which makes a major impact on the results. The Hamacher parameter can consider all the
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risk levels of the DMs by varying it’s parameter. Also, the aggregation operators are most
commonly used to combine each individual preference with the overall preference data and
provide a collective preference value for each alternative. In the literature, no such studies
have been performed on aggregation processes for a collection of q-ROTrF data where the
aggregation operator can consider the risk levels of the DMs. It is also to be noted here
that the acceptability zone of q-ROTrFNs provides more flexibility in information evaluation
due to the combination of the benefits of q-ROFNs and TrFNs. Therefore, it is important
to investigate aggregation operators and their applications based on Hamacher operations in
q-ROTrF environment.

On the basis of the above discussions, this article proposes a novel MCGDM technique
using newly developed Hamacher operation-based aggregation operators in a q-ROTrF con-
text. To demonstrate the usefulness and practicality of the presented approach, two decision
making problems, viz., supplier selection and company job selection are considered.

The key contributions of this work are highlighted as follows:

1. From the viewpoint of capturing uncertainties in a better way, q-ROTrFNs are used.
The q-ROTrFNs possess increasing acceptability with the increase of q , providing more
freedom to the DMs in data capturing.

2. Based on Hamacher t-norms and t-conorms, basic operational laws (sum, product, scalar
multiplication, and exponential) are introduced on q-ROTrFNs.

3. Based on those operational laws, q-ROTrFHamacherWA (q-ROTrFHWA) and q-ROTrF
Hamacher WG (q-ROTrFHWG) operators are proposed.

4. Particular situations of q-ROTrFHWA and q-ROTrFHWG operators by varying the asso-
ciated parameter are presented, to reduce the limitations of the existing operators.

5. A novelMCGDMmethod has been proposed and applied to two real-life decisionmaking
situations. The validity of the proposed method is demonstrated by a comparative study
with other existing methodologies.

The remainder of the paper is organized as: Sect. 2 briefly recalls fundamental concepts
related to q-ROFS, q-ROTrFN, score and accuracy functions of q-ROTrFN and Hamacher
t-norms and t-conorms. In Sect. 3, Hamacher operations-based basic operational laws for q-
ROTrFNs are proposed. Further, using those laws, aggregation operators, viz., q-ROTrFHWA
and q-ROTrFHWG, are also introduced to aggregate the q-ROTrFNs. Consequently, some
characteristics of these developed operators are also exhibited here. Section 4 illustrates an
MCGDM approach utilizing the proposed aggregation operators. Two numerical examples
are solved by applying the developed operators and exhibiting the developed method’s feasi-
bility, and effectiveness is discussed in Sect. 5. Moreover, a comparative analysis with some
existing methods and operators is presented in Sect. 6. Finally, an overall summarization of
the present paper has been depicted in Sect. 7.

2 Preliminaries

In this section, several basic concepts are briefly studied which are required throughout the
paper.

2.1 q-ROFS

Definition 1 (Yager 2017) A q-ROFS, P on a universal set X is presented by:
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P � {(x , μP (x), νP (x))|x ∈ X},

in which μP , νP ∈ [0, 1] represent the degree of membership and degree of non-
membership, respectively, satisfying the condition that

(
(μP (x))q + (νP (x))q

) ∈ [0, 1],

where q ≥ 1.
For computational convenience, Yager (2017) called (μP (x), νP (x)) as a q-ROFN and

denoted it by ℘̃ � (μ, ν).

2.2 q-ROTrFN

Definition 2 (Gupta et al. 2021) Let X be a universe of discourse. A q-ROFN ℘̃, is said to
be q-ROTrFN defined on X , denoted by R̃ � 〈([a, b, c, d]; γR̃

)
,
(
[a1, b, c, d1]; δR̃

)〉 if:

γR̃(x) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(x−a)
(b−a)

μR̃ , whenever a ≤ x ≤ b

μR̃ , when b ≤ x ≤ c
(d−x)
(d−c) μR̃ ,

0
for c ≤ x ≤ d
Otherwise

,

δR̃(x) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(b−x)+(x−a1)
(b−a1)

νR̃ , when a1 ≤ x ≤ b

νR̃ , for b ≤ x ≤ c
(x−c)+(d1−x)

(d1−c) νR̃

1
,
whenever c ≤ x ≤ d1
Otherwise

,

where γR̃(x) ∈ [0, 1] represents the degree of membership and δR̃(x) ∈ [0, 1] represents
the degree of non-membership with the condition that 0 ≤ (γR̃(x))q + (δ R̃(x))q ≤ 1 where
x ∈ X , and q ≥ 1.

For simplicity, take a � a1, d � d1, and so a q-ROTrFN is denoted by r̃ � 〈[a, b, c, d];μ,
ν〉. Diagrammatically, a q-ROTrFN is presented in Fig. 1.

Fig. 1 Graphical representation of
q-ROTrFN r̃�〈[a, b, c, d];μ, ν〉
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2.3 Score, accuracy functions and rankingmethod

Definition 3 (Wan and Huang 2021) Let r̃ � 〈[a, b, c, d];μ, ν〉 be a q-ROTrFN, then the
score function, S(̃r) and the accuracy function, A(̃r) are defined as follows:

S(̃r) � a + b + c + d

4

(
μq − νq

)
; (1)

A(̃r) � a + b + c + d

4

(
μq + νq

)
. (2)

Definition 4 (Wan and Huang 2021) Let r̃1 � 〈[a1, b1, c1, d1];μ1, ν1〉 and r̃2 �
〈[a2, b2, c2, d2];μ2, ν2〉 are any two q-ROTrFNs and S(̃r1), S(̃r2) are the score functions
of r̃1 and r̃2 and A(̃r1), A(̃r2) are the accuracy functions of r̃1 and r̃2, respectively. Then the
ordering of r̃1 and r̃2 is

(i) r̃1 ≺ r̃2when S(̃r1) < S(̃r2);
(ii) For S(̃r1) � S(̃r2), then
• If A(̃r1) < A(̃r2), then r̃1 ≺ r̃2;
• If A(̃r1) � A(̃r2), then r̃1 ≈ r̃2.

2.4 Hamacher t-norms and t-conorms

In 1978, Hamacher (1978) introduced generalized t-norms and t-conorms, which are known
as Hamacher t-norms and t-conorms, as follows (� > 0):

• Hamacher t-norms: T H
� (§, †) � §†

�+(1−�)(§+†−§†) ,

• Hamacher t-conorms: SH
� (§, †) � §+†−§†−(1−�)§†

1−(1−�)§† ∀§, † ∈ [0, 1].

3 Hamacher operations-based q-ROTrF aggregation operators

In this section, some basic operational laws of q-ROTrFNs are defined based on Hamacher
operations and using those defined laws, two aggregation operators, viz., q-ROTrFHWA and
q-ROTrFHWG operators are introduced successively along with their properties.

Definition 5 Let r̃1 � 〈[a1, b1, c1, d1];μ1, ν1〉, r̃2 � 〈[a2, b2, c2, d2];μ2, ν2〉 and r̃ �
〈[a, b, c, d];μ, ν〉 be any three q-ROTrFNs, and λ > 0 be a scalar, then

(i) r̃1 ⊕H r̃2 �
〈

[a1 + a2, b1 + b2, c1 + c2, d1 + d2];

(
μ
q
1 + μ

q
2 − μ

q
1μ

q
2 − (1 − �)μ

q
1μ

q
2

1 − (1 − �)μ
q
1μ

q
2

) 1
q

,

(
ν
q
1 ν

q
2

� + (1 − �)
(
ν
q
1 + ν

q
2 − ν

q
1 ν

q
2

)

) 1
q
〉

;

(ii) r̃1 ⊗H r̃2 �
〈

[a1a2, b1b2, c1c2, d1d2];

(
μ
q
1μ

q
2

� + (1 − �)
(
μ
q
1 + μ

q
2 − μ

q
1μ

q
2

)

) 1
q

,

(
ν
q
1 + ν

q
2 − ν

q
1 ν

q
2 − (1 − �)ν

q
1 ν

q
2

1 − (1 − �)ν
q
1 ν

q
2

) 1
q
〉

;
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(iii) λH r̃ �
〈

[λa, λb, λc, λd];

(
(1 + (� − 1)μq)λ − (1 − μq)λ

(1 + (� − 1)μq)λ + (� − 1)(1 − μq)λ

) 1
q

,

(
�νqλ

(1 + (� − 1)(1 − νq))λ + (� − 1)νqλ

) 1
q
〉

;

(iv) r̃λ �
〈
[
aλ, bλ, cλ, dλ

]
;

(
�μqλ

(1 + (� − 1)(1 − μq))λ + (� − 1)μqλ

) 1
q

,

(
(1 + (� − 1)νq)λ − (1 − νq)λ

(1 + (� − 1)νq)λ + (� − 1)(1 − νq)λ

) 1
q
〉

.

3.1 q-ROTrFHWA operator

Definition 6 Let r̃ j � 〈[a j , b j , c j , d j
]
;μ j , ν j 〉 ( j � 1, 2, . . . , n) be a collection of q-

ROTrFNs. The q-ROTrFHWA operator is defined based on q-ROTrFNs (Gupta et al. 2021)
and Hamacher t-norms and t-conorms (Hamacher 1978) as follows:

q-ROTrFHWA(̃r1, r̃2, . . . , r̃n) � ⊕H
n
j�1

(
ω jH r̃ j

)
, (3)

where ω � (ω1, ω2, . . . , ωn)T is a weight vector of q-ROTrFNs r̃ j ( j � 1, 2, ..., n) with
ω j ∈ [0, 1] and

∑n
j�1ω j � 1.

Theorem 1 Let r̃ j � 〈[a j , b j , c j , d j
]
;μ j , ν j 〉 ( j � 1, 2, . . . , n) be a collection of q-

ROTrFNs and ω � (ω1, ω2, . . . , ωn)T be a weight vector of r̃ j where ω j ∈ [0, 1],∑n
j�1ω j � 1. Then their aggregated value by theq-ROTrFHWAoperator is also aq-ROTrFN

and:

q − ROTrFHWA(r̃1, r̃2, . . . , r̃n) �
〈⎡

⎣
n∑

j�1

ω j a j ,
n∑

j�1

ω j b j ,
n∑

j�1

ω j c j ,
n∑

j�1

ω j d j

⎤

⎦;

⎛

⎜
⎝

∏n
j�1

(
1 + (� − 1)μq

j

)ω j −∏n
j�1

(
1 − μ

q
j

)ω j

∏n
j�1

(
1 + (� − 1)μq

j

)ω j
+ (� − 1)

∏n
j�1

(
1 − μ

q
j

)ω j

⎞

⎟
⎠

1
q

,

⎛

⎜
⎝

�
∏n

j�1 ν
qω j
j

∏n
j�1

(
1 + (� − 1)

(
1 − ν

q
j

))ω j
+ (� − 1)

∏n
j�1 ν

qω j
j

⎞

⎟
⎠

〉 1
q

. (4)

Proof Based on Definition 5,

ω j H r̃ j �
〈
[
ω j a j , ω j b j , ω j c j , ω j d j

]
;

⎛

⎜
⎝

(
1 + (� − 1)μq

j

)ω j −
(
1 − μ

q
j

)ω j

(
1 + (� − 1)μq

j

)ω j
+ (� − 1)

(
1 − μ

q
j

)ω j

⎞

⎟
⎠

1
q

,

⎛

⎜
⎝

�ν
qω j
j(

1 + (� − 1)
(
1 − ν

q
j

))ω j
+ (� − 1)ν

qω j
j

⎞

⎟
⎠

1
q 〉

.

Now,
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ω1r̃1 ⊕H ω2r̃2 �
〈

[ω1a1 + ω2a2, ω1b1 + ω2b2, ω1c1 + ω2c2, ω1d1 + ω2d2];

⎛

⎜
⎝

∏2
j�1

(
1 + (� − 1)μq

j

)ω j −∏2
j�1

(
1 − μ

q
j

)ω j

∏2
j�1

(
1 + (� − 1)μq

j

)ω j
+ (� − 1)

∏2
j�1

(
1 − μ

q
j

)ω j

⎞

⎟
⎠

1
q

,

⎛

⎜
⎝

�
∏2

j�1 ν
qω j
j

∏2
j�1

(
1 + (� − 1)

(
1 − ν

q
j

))ω j
+ (� − 1)

∏2
j�1 ν

qω j
j

⎞

⎟
⎠

1
q 〉

.

i.e., the theorem holds for n � 2. Assume now that the theorem holds for n � k.
Hence,

q-ROTrFHWA(̃r1, r̃2, . . . , r̃k) �
〈⎡

⎣
k∑

j�1

ω j a j ,
k∑

j�1

ω j b j ,
k∑

j�1

ω j c j ,
k∑

j�1

ω j d j

⎤

⎦;

( ∏k
j�1

(
1 + (� − 1)μ j

q
)ω j −∏k

j�1

(
1 − μ j

q
)ω j

∏k
j�1

(
1 + (� − 1)μ j

q
)ω j + (� − 1)

∏k
j�1

(
1 − μ j

q
)ω j

) 1
q

,

(
�
∏k

j�1ν j
qω j

∏k
j�1

(
1 + (� − 1)

(
1 − ν j

q
))ω j + (� − 1)

∏k
j�1ν j

qω j

) 1
q
〉

.

Then for n � k + 1,

q-ROTrFHWA(̃r1, r̃2, . . . , r̃k , r̃k+1) � q-ROTrFHWA(̃r1, r̃2, . . . , r̃k)⊕H (ωk+1̃rk+1)

〈⎡

⎣
k∑

j�1

ω j a j ,
k∑

j�1

ω j b j ,
k∑

j�1

ω j c j ,
k∑

j�1

ω j d j

⎤

⎦;

( ∏k
j�1

(
1 + (� − 1)μ j

q
)ω j −∏k

j�1

(
1 − μ j

q
)ω j

∏k
j�1

(
1 + (� − 1)μ j

q
)ω j + (� − 1)

∏k
j�1

(
1 − μ j

q
)ω j

) 1
q

,

(
�
∏k

j�1ν j
qω j

∏k
j�1

(
1 + (� − 1)

(
1 − ν j

q
))ω j + (� − 1)

∏k
j�1ν j

qω j

) 1
q
〉

⊕H

〈

[ωk+1ak+1, ωk+1bk+1, ωk+1ck+1, ωk+1dk+1];

(
(1 + (� − 1)μk+1

q)ωk+1 − (1 − μk+1
q)ω j

(1 + (� − 1)μk+1
q)ω j + (� − 1)(1 − μk+1

q)ω j

) 1
q

,

(
�νk+1

qωk+1

(1 + (� − 1)(1 − νk+1q))
ωk+1 + (� − 1)νk+1qωk+1

) 1
q
〉

.

�
〈⎡

⎣
k+1∑

j�1

ω j a j ,
k+1∑

j�1

ω j b j ,
k+1∑

j�1

ω j c j ,
k+1∑

j�1

ω j d j

⎤

⎦;
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( ∏k+1
j�1

(
1 + (� − 1)μ j

q
)ω j −∏k+1

j�1

(
1 − μ j

q
)ω j

∏k+1
j�1

(
1 + (� − 1)μ j

q
)ω j + (� − 1)

∏k+1
j�1

(
1 − μ j

q
)ω j

) 1
q

,

(
�
∏k+1

j�1ν j
qω j

∏k+1
j�1

(
1 + (� − 1)

(
1 − ν j

q
))ω j + (� − 1)

∏k+1
j�1ν j

qω j

) 1
q
〉

.

Therefore, the theorem is true for n � k + 1 also; and hence is true for all n.
This completes the proof.

• Some special cases

Some specific variations of the developed q-ROTrFHWA operator can be established
depending on the value of the Hamacher parameter �.

If � � 1, then q-ROTrFHWA operator is converted to q-ROTrF WA (q-ROTrFWA)
operator as follows:

q-ROTrFWA(̃r1, r̃2, . . . , r̃n)

�
〈⎡

⎣
n∑

j�1

ω j a j ,
n∑

j�1

ω j b j ,
n∑

j�1

ω j c j ,
n∑

j�1

ω j d j

⎤

⎦;
(
1 −
∏n

i�1

(
1 − μ j

q)ω j
) 1

q
,
∏n

j�1
ν j

ω j

〉

.

If � � 2, the q-ROTrFHWA operator is converted to q-ROTrF Einstein WA (q-
ROTrFEWA) operator as follows:

q-ROTrFEWA(̃r1, r̃2, . . . , r̃n) �
〈⎡

⎣
n∑

j�1

ω j a j ,
n∑

j�1

ω j b j ,
n∑

j�1

ω j c j ,
n∑

j�1

ω j d j

⎤

⎦;

(∏n
j�1

(
1 + μ j

q
)ω j −∏n

j�1

(
1 − μ j

q
)ω j

∏n
j�1

(
1 + μ j

q
)ω j +
∏n

j�1

(
1 − μ j

q
)ω j

) 1
q

,

(
2
∏n

j�1 ν j
qω j

∏n
j�1

(
2 − ν j

q
)ωi +
∏n

j�1 ν j
qω j

) 1
q
〉

.

Now, some fundamental properties of the proposed q-ROTrFHWA operator are stated in
follow up.

Theorem 2 (Idempotency) Let
{
r̃ j � 〈[a j , b j , c j , d j

]
;μ j , ν j 〉| j � 1, 2, . . . n

}
represents

a collection of q-ROTrFNs. If r̃ j � r̃ � 〈[a, b, c, d];μ, ν〉 ∀ j � 1, 2, . . . n, then:

q-ROTrFHWA(̃r1, r̃2, . . . , r̃n) � r̃ .

Proof

q-ROTrFHWA(̃r1, r̃2, . . . , r̃n) �
〈⎡

⎣
n∑

j�1

ω j a j ,
n∑

j�1

ω j b j ,
n∑

j�1

ω j c j ,
n∑

j�1

ω j d j

⎤

⎦;

( ∏n
j�1

(
1 + (� − 1)μ j

q
)ω j −∏n

j�1

(
1 − μ j

q
)ω j

∏n
j�1

(
1 + (� − 1)μ j

q
)ω j + (� − 1)

∏n
j�1

(
1 − μ j

q
)ω j

) 1
q

,

(
�
∏n

j�1ν j
qω j

∏n
j�1

(
1 + (� − 1)

(
1 − ν j

q
))ω j + (� − 1)

∏n
j�1ν j

qω j

) 1
q
〉

.
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Since r̃ j � r̃ ∀ j � 1, 2, . . . n, then

q-ROTrFHWA(̃r1, r̃2, . . . , r̃n) � q-ROTrFHWA(̃r , r̃ , . . . , r̃)

�
〈⎡

⎣

⎛

⎝
n∑

j�1

ω j

⎞

⎠a,

⎛

⎝
n∑

j�1

ω j

⎞

⎠b,

⎛

⎝
n∑

j�1

ω j

⎞

⎠c,

⎛

⎝
n∑

j�1

ω j

⎞

⎠d

⎤

⎦;

(
(1 + (� − 1)μq)

∑n
jω j − (1 − μq)

∑n
jω j

(1 + (� − 1)μq)
∑n

jω j + (� − 1)(1 − μq)
∑n

jω j

) 1
q

,

(
�ν

q
∑n

jω j

(1 + (� − 1)(1 − νq))
∑n

jω j + (� − 1)νq
∑n

jω j

) 1
q
〉

� 〈[a, b, c, d];μ, ν〉
� r̃ .

Theorem 3 (Monotonicity) Let r̃ j � 〈[a j , b j , c j , d j
]
;μ j , ν j 〉 and r̃ ′

j � 〈[a′
j , b

′
j , c

′
j ,

d ′
j ];μ

′
j , ν′

j 〉 ( j � 1, 2, . . . , n) be two collections of q-ROTrFNs. If a j ≤ a′
j , b j ≤ b′

j ,
c j ≤ c′

j , d j ≤ d ′
j , μ j ≤ μ′

j and ν j ≥ ν′
j for all j , then,

q-ROTrFHWA(̃r1, r̃2, . . . , r̃n) � q-ROTrFHWA
(
r̃ ′
1, r̃

′
2, . . . , r̃ ′

n

)
. (5)

Proof Let g(t) � 1+(�−1)t
1−t , t ∈ [0, 1), then g′(t) � �

(1−t)2
> 0, thus g is an increasing

function. Since for every r̃ j and r̃ ′
j , μi ≤ μ′

j , (i � 1, 2, . . . , n)

(1 + (� − 1)μi
q)

(1 − μi
q)

≤
(
1 + (� − 1)μ′

i
q)

(
1 − μ′

i
q)

thus,

(
(1 + (� − 1)μi

q)

(1 − μi
q)

)ωi

≤
((

1 + (� − 1)μ′
i
q)

(
1 − μ′

i
q)

)ωi

So,

n∏

i�1

((
1 + (� − 1)μi

q)

(1 − μi
q )

)ωi

≤
n∏

i�1

((
1 + (� − 1)μ′

i
q)

(
1 − μ′

i
q)

)ωi

⇐⇒
n∏

i�1

((
1 + (� − 1)μi

q)

(1 − μi
q )

)ωi

+ (� − 1) ≤
n∏

i�1

((
1 + (� − 1)μ′

i
q)

(
1 − μ′

i
q)

)ωi

+ (� − 1)

⇐⇒ 1
n∏

i�1

(
(1+(�−1)μi

q )
(1−μi

q )

)ωi
+ (� − 1)

≥ 1
∏n

i�1

((
1+(�−1)μ′

i
q )

(
1−μ′

i
q )
)ωi

+ (� − 1)

⇐⇒
∏n

i�1
(
1 − μi

q)ωi

∏n
i�1(1 + (� − 1)μi

q )ωi + (� − 1)
∏n

i�1(1 − μi
q )ωi

≥
∏n

i�1
(
1 − μ′

i
q)ωi

∏n
i�1
(
1 + (� − 1)μ′

i
q)ωi + (� − 1)

∏n
i�1
(
1 − μ′

i
q)ωi
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⇐⇒ �
∏n

i�1
(
1 − μi

q)ωi

∏n
i�1(1 + (� − 1)μi

q )ωi + (� − 1)
∏n

i�1(1 − μi
q )ωi

≥ �
∏n

i�1
(
1 − μ′

i
q)ωi

∏n
i�1
(
1 + (� − 1)μ′

i
q)ωi + (� − 1)

∏n
i�1
(
1 − μ′

i
q)ωi

⇐⇒ 1 − �
∏n

i�1
(
1 − μi

q)ωi

∏n
i�1(1 + (� − 1)μi

q )ωi + (� − 1)
∏n

i�1(1 − μi
q )ωi

≤ 1 − �
∏n

i�1
(
1 − μ′

i
q)ωi

∏n
i�1
(
1 + (� − 1)μ′

i
q)ωi + (� − 1)

∏n
i�1
(
1 − μ′

i
q)ωi

⇐⇒
∏n

i�1
(
1 + (� − 1)μi

q)ωi + (� − 1)
∏n

i�1
(
1 − μi

q)ωi − �
∏n

i�1
(
1 − μi

q)ωi

∏n
i�1(1 + (� − 1)μi

q )ωi + (� − 1)
∏n

i�1(1 − μi
q )ωi

≤
∏n

i�1
(
1 + (� − 1)μ′

i
q)ωi + (� − 1)

∏n
i�1
(
1 − μ′

i
q)ωi − �

∏n
i�1
(
1 − μ′

i
q)ωi

∏n
i�1
(
1 + (� − 1)μ′

i
q)ωi + (� − 1)

∏n
i�1
(
1 − μ′

i
q)ωi

⇐⇒
∏n

i�1
(
1 + (� − 1)μi

q)ωi −∏n
i�1
(
1 − μi

q)ωi

∏n
i�1(1 + (� − 1)μi

q )ωi + (� − 1)
∏n

i�1(1 − μi
q )ωi

≤
∏n

i�1
(
1 + (� − 1)μ′

i
q)ωi −∏n

i�1
(
1 − μ′

i
q)ωi

∏n
i�1
(
1 + (� − 1)μ′

i
q)ωi + (� − 1)

∏n
i�1
(
1 − μ′

i
q)ωi

⇐⇒
( ∏n

i�1
(
1 + (� − 1)μi

q)ωi −∏n
i�1
(
1 − μi

q)ωi

∏n
i�1(1 + (� − 1)μi

q )ωi + (� − 1)
∏n

i�1(1 − μi
q )ωi

) 1
q

≤
( ∏n

i�1
(
1 + (� − 1)μ′

i
q)ωi −∏n

i�1
(
1 − μ′

i
q)ωi

∏n
i�1
(
1 + (� − 1)μ′

i
q)ωi + (� − 1)

∏n
i�1
(
1 − μ′

i
q)ωi

) 1
q

. (6)

Again let f (u) � (1+(�−1)(1−u))
u , u ∈ (0, 1], � > 0, then f ′(u) � − �

u2
< 0, thus f (u) is

a decreasing function.
Since for all i , νi q ≥ ν′

i
q , then

1 + (� − 1)(1 − νi
q)

νi q
≤ 1 + (� − 1)

(
1 − ν′

i
q)

ν′
i
q ,

thus,

(
1 + (� − 1)(1 − νi

q)

νi q

)ωi

≤
(
1 + (� − 1)

(
1 − ν′

i
q)

ν′
i
q

)ωi

So,

n∏

i�1

(
1 + (� − 1)(1 − νi

q )

νi q

)ωi

≤
n∏

i�1

(
1 + (� − 1)

(
1 − ν′

i
q)

ν′
i
q

)ωi

⇐⇒
n∏

i�1

(
1 + (� − 1)(1 − νi

q )

νi q

)ωi

+ (� − 1) ≤
n∏

i�1

(
1 + (� − 1)

(
1 − ν′

i
q)

ν′
i
q

)ωi

+ (� − 1)

⇐⇒ 1
∏n

i�1

(
1+(�−1)(1−νi

q )
νi

q

)ωi
+ (� − 1)

≥ 1
∏n

i�1

(
1+(�−1)(1−ν′

i
q)

ν′
i
q

)ωi
+ (� − 1)
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⇐⇒
∏n

i�1νi
qωi

∏n
i�1(1 + (� − 1)(1 − νi q ))

ωi + (� − 1)
∏n

i�1νi
qωi

≥
∏n

i�1ν
′
i
qωi

∏n
i�1

(
1 + (� − 1)

(
1 − ν′

i
q))ωi + (� − 1)

∏n
i�1ν

′
i
qωi

⇐⇒ �
∏n

i�1νi
qωi

∏n
i�1(1 + (� − 1)(1 − νi q ))

ωi + (� − 1)
∏n

i�1νi
qωi

≥ �
∏n

i�1ν
′
i
qωi

∏n
i�1

(
1 + (� − 1)

(
1 − ν′

i
q))ωi + (� − 1)

∏n
i�1ν

′
i
qωi

⇐⇒
(

�
∏n

i�1νi
qωi

∏n
i�1(1 + (� − 1)(1 − νi q ))

ωi + (� − 1)
∏n

i�1νi
qωi

) 1
q

≥
(

�
∏n

i�1ν
′
i
qωi

∏n
i�1

(
1 + (� − 1)

(
1 − ν′

i
q))ωi + (� − 1)

∏n
i�1ν

′
i
qωi

) 1
q

. (7)

From (6) and (7) and using the relations
∑n

j�1 ω j a j ≤ ∑n
j�1 ω j a′

j ,
∑n

j�1 ω j b j ≤
∑n

j�1 ω j b′
j ,
∑n

j�1 ω j c j ≤∑n
j�1 ω j c′

j and
∑n

j�1 ω j d j ≤∑n
j�1 ω j d ′

j , it is clear that:

S(q-ROTrFHWA(̃r1, r̃2, . . . , r̃n)) ≤ S
(
q-ROTrFHWA

(
r̃ ′
1, r̃

′
2, . . . , r̃ ′

n

))
.

Therefore,

q-ROTrFHWA(̃r1, r̃2, . . . , r̃n) � q-ROTrFHWA
(
r̃ ′
1, r̃

′
2, . . . , r̃ ′

n

)
.

Hence Eq. (5) follows.

Theorem4 (Boundedness) Let r̃ j � 〈[a j , b j , c j , d j
]
;μ j , ν j 〉 ( j � 1, 2, . . . , n) represents

a collection of q-ROTrFNs, then,

r̃− ≤ q-ROTrFHWA(̃r1, r̃2, . . . , r̃n) ≤ r̃+,

where r̃− � 〈[min
{
a j
}
, min
{
b j
}
, min
{
c j
}
, min
{
d j
}]
; min
{
μ j
}
, max
{
ν j
}〉, and r̃+ �

〈[max
{
a j
}
, max
{
b j
}
, max
{
c j
}
, max
{
d j
}]
; max
{
μ j
}
, min
{
ν j
}〉.

Proof Since min
{
a j
} ≤ a j ≤ max

{
a j
}
, min
{
b j
} ≤ b j ≤ max

{
b j
}
,

min
{
c j
} ≤ c j ≤ max

{
c j
}
, min
{
d j
} ≤ d j ≤ max

{
d j
}
, min
{
μ j
} ≤ μ j ≤ max

{
μ j
}
and

min
{
ν j
} ≤ ν j ≤ max

{
ν j
} ∀ j � 1, 2, . . . , n, then r̃− ≤ r̃ j ≤ r̃+, ∀ j .

Now, applying the property of monotonicity:

q-ROTrFHWA
(
r̃−, r̃−, . . . , r̃−) ≤ q-ROTrFHWA(̃r1, r̃2, . . . , r̃n).

Therefore using the idempotency theorem, the above inequality takes the form as:

r̃− ≤ q-ROTrFHWA(̃r1, r̃2, . . . , r̃n). (8)

Similarly, it can be revealed that:

q-ROTrFHWA(̃r1, r̃2, . . . , r̃n) ≤ r̃+. (9)

So, merging (8) and (9) it follows that:

r̃− ≤ q-ROTrFHWA(̃r1, r̃2, . . . , r̃n) ≤ r̃+.
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3.2 q-ROTrFHWG operator

In this subsection, q-ROTrFHWG operator is developed based on Hamacher operational
rules.

Definition 7 Let r̃ j � 〈[a j , b j , c j , d j
]
;μ j , ν j 〉 ( j � 1, 2, . . . , n) be a collection of q-

ROTrFNs. The q-ROTrFHWG operator based on q-ROTrFNs (Gupta et al. 2021) and
Hamacher t-norms and t-conorms (Hamacher 1978) is defined as follows:

q-ROTrFHWG(̃r1, r̃2, . . . , r̃n) � r̃ω1
1 ⊗H r̃

ω2
2 ⊗H . . . ⊗H r̃

ωn
n , (10)

where ω � (ω1, ω2, . . . , ωn)T is a vector of q-ROTrFNs r̃ j ( j � 1, 2, . . . , n) ω j ∈ [0, 1]
and
∑n

j�1ω j � 1.

Theorem 5 Let r̃ j � 〈[a j , b j , c j , d j
]
;μ j , ν j 〉 ( j � 1, 2, . . . , n) be a collection of q-

ROTrFNs and ω � (ω1, ω2, . . . , ωn)T be a weight vector of r̃ j where ω j ∈ [0, 1],∑n
j�1ω j � 1. Then their aggregated value by the q-ROTrFHWG operator is also a q-

ROTrFN and:

q − ROTrFHWG(̃r1, r̃2, . . . , r̃n) �
〈⎡

⎣
n∏

j�1

a j
ω j ,

n∏

j�1

b j
ω j ,

n∏

j�1

c j
ω j ,

n∏

j�1

d j
ω j

⎤

⎦;

(
�
∏n

j�1μ j
qω j

∏n
j�1

(
1 + (� − 1)

(
1 − μ j

q
))ω j + (� − 1)

∏n
j�1μ j

qω j

) 1
q

,

( ∏n
j�1

(
1 + (� − 1)ν j

q
)ω j −∏n

j�1

(
1 − ν j

q
)ω j

∏n
j�1

(
1 + (� − 1)ν j

q
)ω j + (� − 1)

∏n
j�1

(
1 − ν j

q
)ω j

) 1
q
〉

(11)

Proof The proof is similar to Theorem 1.

• Some particular cases

As like q-ROTrFHWA operator, some particular cases of q-ROTrFHWG operator are
discussed based on parameter �.

If � � 1, then q-ROTrFHWG operator is converted to q-ROTrF WG (q-ROTrFWG)
operator as follows:

q-ROTrFWG(̃r1, r̃2, . . . , r̃k)

�
〈⎡

⎣
n∏

j�1

a j
ω j ,

n∏

j�1

b j
ω j ,

n∏

j�1

c j
ω j ,

n∏

j�1

d j
ω j

⎤

⎦;
n∏

j�1

μ j
ω j ,

⎛

⎝1 −
n∏

j�1

(
1 − ν j

q)ω j

⎞

⎠

1
q 〉

.

If � � 2, the q-ROTrFHWG operator is converted to q-ROTrF Einstein WG (q-
ROTrFEWG) operator as follows:

q-ROTrFEWG(̃r1, r̃2, . . . , r̃k) �
〈⎡

⎣
n∏

j�1

a j
ω j ,

n∏

j�1

b j
ω j ,

n∏

j�1

c j
ω j ,

n∏

j�1

d j
ω j

⎤

⎦;

(
2
∏n

j�1μ j
qω j

∏n
j�1

(
2 − μ j

q
)ωi +
∏n

j�1μ j
qω j

) 1
q

,

(∏n
j�1

(
1 + ν j

q
)ω j −∏n

j�1

(
1 − ν j

q
)ω j

∏n
j�1

(
1 + ν j

q
)ω j +
∏n

j�1

(
1 − ν j

q
)ω j

) 1
q
〉

.

Next, some desirable properties of q-ROTrFEWG operator are also investigated.
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Theorem 6 (Idempotency) Let r̃ j � 〈[a j , b j , c j , d j
]
;μ j , ν j 〉 ( j � 1, 2, . . . , n) be a col-

lection of n q-ROTrFNs. If r̃i � r̃ � 〈[a, b, c, d];μ, ν〉 for all j � 1, 2, . . . , n, then.

q-ROTrFHWG(̃r1, r̃2, . . . , r̃n) � r̃ .

Proof The proof is similar to Theorem 2.

Theorem 7 (Monotonicity) Let r̃ j � 〈[a j , b j , c j , d j
]
;μ j , ν j 〉 and r̃

′
j � 〈[a′

j , b
′
j , c

′
j ,

d
′
j ];μ

′
j , ν

′
j 〉 ( j � 1, 2, . . . , n) be two collections of q-ROTrFNs. If a j ≤ a

′
j , b j ≤ b

′
j ,

c j ≤ c
′
j , d j ≤ d

′
j , μ j ≤ μ

′
j and ν j ≥ ν

′
j ∀ j , then:

q − ROTrFHWG(̃r1, r̃2, . . . , r̃n) ≤ q − ROTrFHWG
(
r̃

′
1, r̃

′
2, . . . , r̃

′
n

)
. (12)

Proof The proof is similar to Theorem 3.

Theorem 8 (Boundedness) Let r̃ j � 〈[a j , b j , c j , d j
]
;μ j , ν j 〉 ( j � 1, 2, . . . , n) be a col-

lection of q-ROTrFNs, and let:

r̃−
j �
〈[

min
j

{
a j
}
, min

j

{
b j
}
, min

j

{
c j
}
, min

j

{
d j
}]

;min
j

{
μ j
}
, max

j

{
ν j
}
〉

and r̃+j � 〈[max
j

{
a j
}
, max

j

{
b j
}
, max

j

{
c j
}
, max

j

{
d j
}
];max

j

{
μ j
}
, min

j

{
ν j
}〉, then

r̃−
j ≤ q − ROTrFHWG(̃r1, r̃2, . . . , r̃n) ≤ r̃+j . (13)

Proof The proof is similar to Theorem 4.

4 A novel MCGDMmethod based on q-ROTrF environments

In this section, a novel MCGDM approach has been propounded in which evaluation data is
presented in the form of q-ROTrFNs.

For a group decision making problem, let E � {e(1), e(2), . . . , e(k)
}
be the set of the

DMs with their associated weight vector 	 � (	1, 	2, . . . , 	k)
T satisfying

∑k
i�1	i � 1,

where 	i ∈ [0, 1]. Suppose A � {A1, A2, . . . , Am} be the collection of m alternatives and
C � {C1, C2, . . . , Cn} represents the collection ofn criteria alongwith theirweight vectorω �
(ω1, ω2, . . . , ωn)

T , satisfying
∑n

i�1ωi � 1, where ωi ∈ [0, 1]. The DMs used q-ROTrFNs
to express their judgement values and created the q-ROTrF decision matrices (q-ROTrFDM)

as D(l) �
[
r̃ (l)
i j

]

m×n
�
[
〈
[
a(l)
i j , b

(l)
i j , c

(l)
i j , d

(l)
i j

]
;μ(l)

i j , ν
(l)
i j 〉
]

m×n
(l � 1, 2, . . . , k), where

r̃ (l)
i j � 〈

[
a(l)
i j , b

(l)
i j , c

(l)
i j , d

(l)
i j

]
;μ(l)

i j , ν
(l)
i j 〉 denotes a q-ROTrFN assigned by the DM e(l) for the

alternative Ai under the criteria C j .
The main goal is to choose the best alternative(s) based on the developed method. The

computational process is summarized step-by-step as follows.
Step1.Makedecisionmatrices by identifying anddetermining the criteria and alternatives,

D(l) �
[
r̃ (l)
i j

]

m×n
, where r̃ (l)

i j � 〈
[
a(l)
i j , b

(l)
i j , c

(l)
i j , d

(l)
i j

]
;μ(l)

i j , ν
(l)
i j 〉 (l � 1, 2, . . . , k).
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Step 2. Normalize D(l), if required, and obtain N (l) �
[
℘̃

(l)
i j

]

m×n
using the following

rule:

℘̃
(l)
i j �

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

〈
[
a(l)
i j , b

(l)
i j , c

(l)
i j , d

(l)
i j

]
;μ(l)

i j , ν
(l)
i j

〉

when C j is benefit criteria

〈
[
a(l)
i j , b

(l)
i j , c

(l)
i j , d

(l)
i j

]
; ν(l)

i j , μ
(l)
i j

〉

when C j is cost criteria

,

i � 1, 2, . . . , m, j � 1, 2, . . . , n.

Step 3.The individual q-ROTrFDMs,N (l) �
[
℘̃

(l)
i j

]

m×n
(l � 1, 2, . . . , k) are aggregated

to generate a single q-ROTrFDM,N � [℘̃i j
]
m×n (i � 1, 2, . . . , m; j � 1, 2, . . . , n) using

q-ROTrFHWA (or q-ROTrFHWG) operator, on the basis of Eq. (3) (or Eq. (10)), as

℘̃i j �
〈[

k∑

l�1

	(l)a(l)
i j ,

k∑

l�1

	(l)b(l)
i j ,

k∑

l�1

	(l)c(l)
i j ,

k∑

l�1

	(l)d(l)
i j

]

;

⎛

⎜
⎝

∏k
l�1

(
1 + (� − 1)

(
μ

(l)
i j

)q)	 j −∏k
l�1

(
1 −
(
μ

(l)
i j

)q)	 j

∏k
l�1

(
1 + (� − 1)

(
μ

(l)
i j

)q)	 j
+ (� − 1)

∏k
l�1

(
1 −
(
μ

(l)
i j

)q)	 j

⎞

⎟
⎠

1
q

,

⎛

⎜
⎝

�
∏k

l�1

(
ν

(l)
i j

)q	 j

∏k
l�1

(
1 + (� − 1)

(
1 −
(
ν

(l)
i j

)q))	 j
+ (� − 1)

∏k
l�1

(
ν

(l)
i j

)q	 j

⎞

⎟
⎠

1
q 〉

Or

℘̃
′
i j �
〈[

k∏

l�1

(
a(l)
i j

)	(l)

,
k∏

l�1

(
b(l)
i j

)	(l)

,
k∏

l�1

(
c(l)
i j

)	(l)

,
k∏

l�1

(
d(l)
i j

)	(l)
]

;

⎛

⎜
⎝

�
∏k

l�1

(
μ

(l)
i j

)q	 j

∏k
l�1

(
1 + (� − 1)

(
1 −
(
μ

(l)
i j

)q))	 j
+ (� − 1)

∏k
l�1

(
μ

(l)
i j

)q	 j

⎞

⎟
⎠

1
q

,

⎛

⎜
⎝

∏k
l�1

(
1 + (� − 1)

(
ν

(l)
i j

)q)	 j −∏k
l�1

(
1 −
(
ν

(l)
i j

)q)	 j

∏k
l�1

(
1 + (� − 1)

(
ν

(l)
i j

)q)	 j
+ (� − 1)

∏k
l�1

(
1 −
(
ν

(l)
i j

)q)	 j

⎞

⎟
⎠

1
q 〉

.

Step 4. Using the aggregation operator presented in Eq. (3) or (Eq. (10)), aggregate the
q-ROTrFN ℘̃i j (or ℘̃

′
i j ) for each alternative Ai (i � 1, 2, . . . , m) based on criteria as:

℘̃i � q-ROTrFHWA(℘̃i1, ℘̃i2, . . . , ℘̃in),

or℘̃
′
i � q − ROTr FHWG(℘̃i1, ℘̃i2, . . . , ℘̃in).

Step 5. Determine the score values S(℘̃i ) (or S
(
℘̃

′
i

)
) of the ℘̃i (or ℘̃

′
i ) by Eq. (1) for

obtaining ranking results of the alternatives.
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Fig. 2 Flowchart of the developed method

Step 6 Ranked the alternatives (from Definition 4) and select the best one with the highest
score value.

The whole method is summarized through the following flow chart which is displayed in
Fig. 2.

5 Illustrative examples

In this section, two real-life decision making examples, viz., job selection and supplier selec-
tion are investigated and solved to demonstrate the validity and benefits of the proposed
MCGDM method.
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5.1 Example 1

This example, previously studied by Aydin et al. (2020), is adopted in q-ROTrF environ-
ment to illustrate the application of the developed methodology. The human resources
department of a company plans to recruit a sales consultant. Three human resource
specialists

(
e(1), e(2), e(3)

)
evaluated the four candidates Ai (i � 1, 2, 3, 4) based on

four criteria: experiences (C1), competencies (C2), abilities in foreign language (C3) and
human relationship management (C4). The weight vector of the criteria is provided as
ω � (0.15, 0.25, 0.25, 0.35)T and weight vector of the experts is considered as 	 �
(0.45, 0.25, 0.30)T. It is to be noted that first three criteria are benefit type and the last
one is cost type. After evaluation of the candidates, the DMs provided their judgement values
in the form of q-ROTrFNs and constructed the decision matrices as presented in Table 1, 2
and 3.

To choose the best candidate, the q-ROTrFHWA or q-ROTrFHWG operators are used
through the following algorithm.

Step 1 The decision matrices are constructed as discussed above.
Step 2As experiences, competencies, and abilities in a foreign language are benefited type

criteria and human relationship management is cost type criteria, the normalization process
is needed. The normalization process is performed using the process as described in Step 2
of the developed methodology and are displayed in Tables 4, 5 and 6.

Step 3Three DMs give their opinion by three individual q-ROTrFDMs,N (l) �
[
℘̃

(l)
i j

]

4×4
(l � 1, 2, 3). Utilized the q-ROTrFHWAoperator based on Eq. (3) to aggregate all individual
q-ROTrFDMs N (l) (l � 1, 2, 3) into the collective q-ROTrFDM, N � [℘̃i j

]
4×4 where

℘̃i j �
〈[

3∑

l�1

	(l)a(l)
i j ,

3∑

l�1

	(l)b(l)
i j ,

3∑

l�1

	(l)c(l)
i j ,

3∑

l�1

	(l)d(l)
i j

]

;

⎛

⎜
⎝

∏3
l�1

(
1 + (� − 1)

(
μ

(l)
i j

)q)	 j −∏3
l�1

(
1 −
(
μ

(l)
i j

)q)	 j

∏3
l�1

(
1 + (� − 1)

(
μ

(l)
i j

)q)	 j
+ (� − 1)

∏3
l�1

(
1 −
(
μ

(l)
i j

)q)	 j

⎞

⎟
⎠

1
q

,

⎛

⎜
⎝

�
∏3

l�1

(
ν

(l)
i j

)q	 j

∏3
l�1

(
1 + (� − 1)

(
1 −
(
ν

(l)
i j

)q))	 j
+ (� − 1)

∏3
l�1

(
ν

(l)
i j

)q	 j

⎞

⎟
⎠

1
q 〉

(l � 1, 2, 3; i � 1, 2, 3, 4; j � 1, 2, 3, 4)

and is presented in Table 7. It is to be noted that the rung parameter q � 3 and Hamacher
parameter � � 3 is considered.

Step 4Utilizing q-ROTrFHWAoperator which is formulated based on Eq. (3) to aggregate
each candidate’s collective evaluation values ℘̃i j (i � 1, 2, 3, 4; j � 1, 2, 3, 4) w.r.t given
criteria to obtain the comprehensive evaluation values ℘̃i (i � 1, 2, 3, 4) is performed.

℘̃1 � 〈[0.4285, 0.5982, 0.7270, 0.8270]; 0.5951, 0.8402〉;

℘̃2 � 〈[0.3420, 0.5125, 0.6840, 0.8327]; 0.6500, 0.4150〉;

℘̃3 � 〈[0.3490, 0.4552, 0.6090, 0.7542]; 0.4870, 0.4116〉;
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℘̃4 � 〈[0.3020, 0.4570, 0.6302, 0.7810]; 0.5050, 0.5842〉.
Step 5 The score value of each candidate is calculated from each ℘̃i (i � 1, 2, 3, 4) using

Eq. (1) and is given as follows:

S(℘̃1) � 0.0766, S(℘̃2) � 0.1204, S(℘̃3) � 0.0248, S(℘̃4) � −0.0383.

Step 6 Based on the score values, the ranking of the candidates (using Definition 4) is
achieved as follows:

A2 � A1 � A3 � A4

From the above ranking, the most suitable candidate for the job is found as A2.
Further, if the problem is calculated by q-ROTrFHWG operator instead of q-ROTrFHWA

operator then the obtained results are discussed through step by step. Since Step 1 and Step
2 are same, so it is not presented here.

Step 3 Utilizing the q-ROTrFHWG operator which is formulated based on Eq. (10) to
aggregate all individual q-ROTrFDMs N (l) (l � 1, 2, 3) into the collective q-ROTrFDM,

N �
[
℘̃

′
i j

]

4×4
where

℘̃
′
i j � 〈
[

3∏

l�1

(
a(l)
i j

)	(l)

,
3∏

l�1

(
b(l)
i j

)	(l)

,
3∏

l�1

(
c(l)
i j

)	(l)

,
3∏

l�1

(
d(l)
i j

)	(l)
]

;

⎛

⎜
⎝

�
∏3

l�1

(
μ

(l)
i j

)q	 j

∏3
l�1

(
1 + (� − 1)

(
1 −
(
μ

(l)
i j

)q))	 j
+ (� − 1)

∏3
l�1

(
μ

(l)
i j

)q	 j

⎞

⎟
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1
q

,

⎛

⎜
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(
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(
ν
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)q)	 j −∏3
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(
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(
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(
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(
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⎠
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q

〉.

(l � 1, 2, 3; i � 1, 2, 3, 4; j � 1, 2, 3, 4) and is presented in Table 7. It is noted here
that the rung parameter q � 3 and Hamacher parameter � � 3 is considered.

Step 4 Utilize the q-ROTrFHWG operator which is formulated based on Eq. (10) to
aggregate each candidate’s collective evaluation values ℘̃

′
i j (i � 1, 2, 3, 4; j � 1, 2, 3, 4)

w.r.t given criteria to obtain the comprehensive evaluation values ℘̃
′
i (i � 1, 2, 3, 4).

Aggregate all the preference values ℘̃
′
i j (i � 1, 2, 3, 4; j � 1, 2, 3, 4).

℘̃
′
1 � 〈[0.4071, 0.5756, 0.7077, 0.8108]; 0.4258, 0.5093〉;

℘̃
′
2 � 〈[0.2991, 0.4922, 0.6775, 0.8258]; 0.5255, 0.4738〉;

℘̃
′
3 � 〈[0.3288, 0.4414, 0.5985, 0.7477]; 0.4212, 0.5941〉;

℘̃
′
4 � 〈[0.2753, 0.4374, 0.6152, 0.7674]; 0.3882, 0.6393〉.

Step 5 The score value of each candidate is calculated from each ℘̃
′
i (i � 1, 2, 3, 4) using

Eq. (1) and given as follows:

S
(
℘̃′
1

) � −0.0344, S
(
℘̃′
2

) � 0.0222, S
(
℘̃′
3

) � −0.0714, S
(
℘̃′
4

) � −0.1062.
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Step 6 According to the score value, the ranking of the candidates (using Definition 4) is
achieved as follows:

A2 � A1 � A3 � A4

Thus the most suitable candidate for the job is A2.
So, from the above results, it is observed that the ranking of the candidates remains

the same for both use of averaging and geometric operators and the ranking is found as
A2 � A1 � A3 � A4. So, it is very clear that the candidate A2 is the best choice over other
candidates.

The above results are obtained from a particular value of q and �. The rankingmay change
for various values of q and �. So, a sensitivity analysis is needed to examine the robustness
and stability of the ranking. In the next subsection, the impact of those parameters on decision
making results is discussed.

5.1.1 The impact of several parameters on decision making results

Now, the effect of Hamacher parameter, �, rung parameter, q on decision making results
achieved through q-ROTrFHWA and q-ROTrFHWG operators are examined. Those param-
eters are crucial in determining the ranking of the alternatives. By changing the values of
parameters, different score values are achieved for each candidate. Taking q � 3 and varying
the Hamachar parameter � the variation of the score values and ranking of the candidates are
found by using proposed operators are presented in Tables 9 and 10 and Figs. 3 and 4.

When the q-ROTrFHWA operator is applied, the score values of the candidates are
decreased when the parameter is increased from 0 to 20, as seen in Figs. 3 and 4. The
situation is reversed when q-ROTrFHWG operator is used. But in both the cases, the ranking
remains the same as A2 � A1 � A3 � A4.

Again, for fixed value of the Hamachar parameter � � 3 and varying the rung parameter
q ∈ [2, 10] in q-ROTrFHWA and q-ROTrFHWG operators, the following results are figured
out in Figs. 5 and 6, respectively. It is observed when q-ROTrFHWA operator is applied,
two different ranking results are occurred i.e., when q ∈ [2, 6.4123] the final ranking of the
candidates is achieved as A2 � A1 � A3 � A4 and for q ∈ [6.4123, 10] the final ranking
of the candidates is achieved as A2 � A1 � A4 � A3.

Further, when q-ROTrFHWGoperator is applied, two different ranking results is occurred
i.e., when q ∈ [2, 6.3671] the final ranking of the candidates is achieved as A2 � A1 �

Table 9 The effect of the parameter � (fixing q � 3) utilising q-ROTrFHWA

Value of � A1 A2 A3 A4 Ordering

� � 1 0.1112 0.1493 0.0320 −0.0180 A2 � A1 � A3 � A4
� � 2 0.0891 0.1313 0.0274 −0.0310 A2 � A1 � A3 � A4
� � 3 0.0766 0.1204 0.0248 −0.0383 A2 � A1 � A3 � A4
� � 4 0.0681 0.1128 0.0230 −0.0432 A2 � A1 � A3 � A4
� � 8 0.0498 0.0955 0.0187 −0.0537 A2 � A1 � A3 � A4
� � 12 0.0406 0.0865 0.0163 −0.0589 A2 � A1 � A3 � A4
� � 16 0.0348 0.0808 0.0146 −0.0620 A2 � A1 � A3 � A4
� � 20 0.0307 0.0768 0.0134 −0.0642 A2 � A1 � A3 � A4
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Table 10 The effect of the parameter � (fixing q � 3) utilising q-ROTrFHWG

Value of � A1 A2 A3 A4 Ordering

� � 1 −0.0445 0.0096 −0.0912 −0.1162 A2 � A1 � A3 � A4
� � 2 −0.0381 0.0178 −0.0792 −0.1100 A2 � A1 � A3 � A4
� � 3 −0.0344 0.0222 −0.0714 −0.1062 A2 � A1 � A3 � A4
� � 4 −0.0317 0.0252 −0.0658 −0.1036 A2 � A1 � A3 � A4
� � 8 −0.0254 0.0316 −0.0521 −0.0974 A2 � A1 � A3 � A4
� � 12 −0.0221 0.0349 −0.0444 −0.0940 A2 � A1 � A3 � A4
� � 16 −0.0199 0.0370 −0.0393 −0.0919 A2 � A1 � A3 � A4
� � 20 −0.0183 0.0385 −0.0356 −0.0903 A2 � A1 � A3 � A4

Fig. 3 Score value of the candidates utilizing q-ROTrFHWA operator (q � 3)

A3 � A4 and for q ∈ [6.3671, 10]. The final ranking of the candidates is achieved as
A2 � A1 � A4 � A3.

It is found that both the operators identify the best candidate as A2 for required vacancy.
So, it is clear that the Hamacher parameter and rung parameter plays an important role in

ranking of alternatives. All parameters confirm the stability of the best candidate. The above
analysis ensures that A2 is the best candidate among the other three.

5.2 Example 2

AnotherMCGDMproblempresented byZhao et al. (2017) is further adopted here inq-ROTrF
context. Theproblem is related tofindingbest green supplier for oneof the critical components
in the automobile manufacturing process. It is assumed that company establishes a panel with
threeDMsconsisting of production departmentmanager

(
e(1)
)
, quality inspection department

manager
(
e(2)
)
and purchasing department manager

(
e(3)
)
whose weight vector is 	 �
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Fig. 4 Score value of the candidates utilizing q-ROTrFHWG operator (q � 3)

Fig. 5 Score value of the candidates utilizing q-ROTrFHWA operator (� � 3)

(0.35, 0.4, 0.25)T. The company has to select the best supplier among five suppliers, Ai

(i � 1, 2, 3, 4, 5) for their company w.r.t. four criteria: product quality (C1), technology
capability (C2), pollution control (C3), environment management (C4), whose weight vector
is given by ω � (0.2, 0.1, 0.3, 0.4)T ). Based on their judgement values, the normalized

decision matrices, N (l) �
(
℘̃

(l)
i j

)

5×4
(l � 1, 2, 3) are given in Table 11, 12 and 13.

Table 14 shows thefinal score values of the various suppliers obtained through the proposed
method under consideration of the rung parameter q � 3 and Hamacher parameter � � 3.

123



Development of q-rung orthopair trapezoidal fuzzy Hamacher … Page 29 of 39   263 

Fig. 6 Score value of the candidates utilizing q-ROTrFHWG operator (� � 3)

5.2.1 Result and discussion

The achieved results are explained by adjusting the Hamacher parameter, �, and the rung
parameter, q , at the defined intervals using the q-ROTrFHWA and q-ROTrFHWG operators,
as shown in Figs. 7, 8, 9 and 10.

Figure 7 shows the graphical representation of the score values of the different suppliers
achieved by using q-ROTrFHWAoperator with constant values of � � 3 and varying the rung
parameter, q , between 1 and 10. It is noticed that several ranking outcomes of the suppliers
are achieved when q varies from 1 to 10.

When q ∈ [1, 2.377] the ordering of the suppliers is achieved as A2 > A5 > A3 >

A4 > A1. Again for q ∈ [2.377, 3.598] the ordering of the suppliers is achieved as A2 >

A5 > A4 > A3 > A1 and for q ∈ [3.598, 10] the ordering of the suppliers is found as
A2 > A4 > A5 > A3 > A1.

Moreover, by changing the rung parameter, q , between 1 and 10, and employing the
q-ROTrFHWG operator with constant values of � � 3, Fig. 8 depicts the graphical interpre-
tation of score values of the suppliers.

As q increases from 1 to 10, multiple ranking of the suppliers’ outcomes is achieved, as
shown in Fig. 8.

When q ∈ [1, 4.15] the ordering of the suppliers is achieved as A2 > A5 > A3 > A4 >

A1.
And for q ∈ [4.15, 10] the ordering of the suppliers is achieved as A2 > A3 > A5 >

A4 > A1.
Figure 9 signifies the graphical interpretation of score values of the suppliers by varying

the Hamacher parameter, �, between 0 and 10, using q-ROTrFHWA operator with fixed
values of q � 3.

From Fig. 9, it is observed that the score values of the suppliers are decreasing and many
ranking results are obtained, as � changes from 0 to 10.

When � ∈ [0, 0.823], the ordering of the suppliers is achieved as A2 > A4 > A5 > A3 >

A1.
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Table 14 Score values obtained through of proposed method

Proposed
method

Score values Ranking

S(A1) S(A2) S(A3) S(A4) S(A5)

q-ROTrFHWA −0.0665 0.0958 0.0370 0.0466 0.0553 A2 > A5 > A4 > A3 > A1
q-ROTrFHWG −0.1108 0.0412 0.0181 −0.0224 0.0199 A2 > A5 > A3 > A4 > A1

Fig. 7 Impact of rung parameter (q) on q-ROTrFHWA operator

Fig. 8 Impact of rung parameter (q) on q-ROTrFHWG operator
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Fig. 9 Impact of Hamacher parameter (�) on q-ROTrFHWA operator

Fig. 10 Impact of Hamacher parameter (�) on q-ROTrFHWG operator

Again for � ∈ [0.823, 7.316], the ordering of the suppliers is achieved as A2 > A5 >

A4 > A3 > A1. And when � ∈ [7.316, 10] the ordering of the suppliers is achieved as
A2 > A5 > A3 > A4 > A1.

Figure 10 signifies the graphical representation of score values of the suppliers by adjusting
the Hamacher parameter, �, between 0 and 10, using q-ROTrFHWG operator with fixed
values of q � 3.

The score values of the suppliers are increasing in Fig. 10, and two ranking outcomes are
achieved as � changes from 0 to 10.

When � ∈ [0, 0.265] the ordering of the suppliers is achieved as A2 > A3 > A5 > A4 >

A1. Again for � ∈ [0.265, 10] the ordering of the suppliers is achieved as A2 > A5 > A3 >

A4 > A1.
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So, it is observed that in all cases, A2 is the best green supplier and A1 is the worst green
supplier.

6 Comparative analysis

In this section, the new approach is compared to certain existing ones.
Firstly, the results of Example 1 are compared with Aydin’s (Aydin et al. 2020) method-

ologies. Table 15 represents the ranking using Aydin’s Technique (Aydin et al. 2020) and
proposed method. Both Aydin’s (Aydin et al. 2020) and suggested approaches result in the
same ranking. However, almost everywhere, the suggested method’s difference between two
successive candidates (rank wise) is larger than current Aydin’s techniques (Aydin et al.
2020). This shows the betterment of the proposed method. The bar diagram of the score
value difference is presented in Fig. 11.

Next, example 2 is compared with various operators, including ITFWAA (Jianqiang and
Zhong2009), ITFWG(WuandCao2013), ITFEWAand ITFEWG(Zhao et al. 2017), PTFWA
(Shakeel et al. 2019a, b), and PTFEWG (Shakeel et al. 2019a, b). Table 16 shows the score
values and ranking of the suppliers.

Table 16 demonstrates that the ranks of the suppliers obtained by various operators are
almost similar to the suggested operators, implying that the proposed ranking approach is

Table 15 Comparison of score value and ranking for Example 1

Method Score values Ranking

S(A1) S(A2) S(A3) S(A4)

Aydin et al. (2020) method 0.100 0.143 0.093 0.048 A2 > A1 > A3 > A4
q-ROTrFHWA 0.0766 0.1204 0.0248 −0.0383 A2 > A1 > A3 > A4
q-ROTrFHWG −0.0344 0.0222 −0.0714 −0.1062 A2 > A1 > A3 > A4
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Fig. 11 Difference between ordered alternatives’ score values

123



  263 Page 36 of 39 S. Gayen et al.

Table 16 Comparison based on Example 2

Operators Score value Ranking results

S(A1) S(A2) S(A3) S(A4) S(A5)

ITFWAA
(Jianqiang
and Zhong
2009)

−0.1400 0.1674 0.0771 −0.0620 0.1240 A2 > A5 > A3 > A4 > A1

ITFWG (Wu
and Cao
2013)

−0.1987 0.0927 0.0489 −0.0421 0.0686 A2 > A5 > A3 > A4 > A1

ITFEWA (Zhao
et al. 2017)

−0.1512 0.1577 0.0738 0.0450 0.1180 A2 > A5 > A3 > A4 > A1

ITFEWG (Zhao
et al. 2017)

−0.1911 0.1042 0.0529 −0.0301 0.0759 A2 > A5 > A3 > A4 > A1

PTFWA
(Shakeel et al.
2019a, b)

−0.1026 0.1470 0.0620 0.0699 0.0949 A2 > A5 > A4 > A3 > A1

PTFEWG
(Shakeel et al.
2019a, b)

−0.1627 0.0730 0.0353 −0.0323 0.0435 A2 > A5 > A3 > A4 > A1

q-ROTrFHWA −0.0665 0.0958 0.0370 0.0466 0.0553 A2 > A5 > A4 > A3 > A1
q-ROTrFHWG −0.1108 0.0412 0.0181 −0.0224 0.0199 A2 > A5 > A3 > A4 > A1

effective. Furthermore, all of the following operators may be generated from the suggested
operator by taking into account the specific value of the Hamacher parameter, �, and the rung
parameter, q .

If q � 1 and � � 1, then q-ROTrFHWA (or q-ROTrFHWA) reduces to ITFWAA
(Jianqiang and Zhong 2009) (or ITFWG (Wu and Cao 2013)) operator. If q � 1 and � � 2,
then q-ROTrFHWA (or q-ROTrFHWA) reduces to ITFEWA (Zhao et al. 2017) (or ITFEWG
(Zhao et al. 2017)) operator. If q � 2 and � � 1, then q-ROTrFHWA reduces to PTFWA
(Shakeel et al. 2019a, b) operator. If q � 2 and � � 2, then q-ROTrFHWG reduces to
PTFEWG (Shakeel et al. 2019a, b) operator. So, the proposed operator can cover all the
above-mentioned operators.

Moreover, when this problem is executed with q-ROTrFHWA or q-ROTrFHWG operator,
the suppliers are ranked in several ways. As a consequence, by modifying the associated
parameters, the proposed approach may capture the idea of a large quantity of data.

7 Conclusion

The q-ROTrFNs is a combination of q-ROFN and TrFN which is a powerful tool to solve
decision making problems involving uncertainty. Hamacher t-norms and t-conorms pos-
sess a more generalised structure that successfully integrates complicated data. In this paper
Hamacher based new operational laws are introduced, using those laws two aggregation
operators viz., Hamacher weighted averaging q-ROTrFHWA, q-rung orthopair trapezoidal
fuzzy Hamacher weighted geometric q-ROTrFHWG operators are introduced in q-ROTrF
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context. The proposed operators satisfy three fundamental properties of an aggregation oper-
ator, viz., idempotency, monotonicity and boundedness. Further, a novel MCGDM technique
is presented, with the DMs’ assessment values in the form of q-ROTrFN. This is the first
paper on Hamacher averaging and geometric operators with q-rung orthopair trapezoidal
fuzzy numbers. These developments are due to two factors (1) In comparison to other forms
of fuzzy sets, q-ROTrFSs include more information, and (2) If there are outliers in the
data, Hamacher averaging and the Hamacher geometric operator can catch the value of the
data. Therefore, combining Hamacher averaging or geometric operator and q-rung orthopair
trapezoidal fuzzy number provides advantages in the MCGDM problem. A sales consultant
selection problem is solved to demonstrate the applicability of the proposed methodology.
Three DMs’ opinions were evaluated in order to choose the best candidate among four
candidates. It demonstrates that the proposed methodology is capable of dealing with the
MCGDM problem. An empirical application validates the proposed approach to selecting
the best green supplier in an automobile manufacturing company. Further, considering an
example based on supplier section problems, the effectiveness and purpose of these studies
have been shown. Brief comparative studies between the existing method and the proposed
method are discussed and it is shown that the proposed method is more reliable and effec-
tive than the existing method. In future, the following topics may be explored: Hamachar
operation based aggregation operators on probabilistic q-ROTrFSs, neutrosophic fuzzy sets
(Jana et al. 2020), Linguistic q-ROTrF power aggregation operators, Archimedean t-norms
and t-conorms based aggregation operator on q-ROTrFSs, Some correlation coefficients on
q-ROTrFSs, Some similarity measure on q-ROTrFSs.
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gestions to improve the quality of the manuscript. One of the authors, Souvik Gayen, thankfully acknowledge
the financial support from University Grants Commission, Govt. of India to carry out the study vide UGC
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Appendix

X Universal set

P q-ROFS

q Rung parameter

μP Membership degree of P
νP Non membership degree of P
℘̃ q-ROFN

μ Membership value of q-ROFN

ν Non-membership value of
q-ROFN

r̃ A q-ROTrFN

μr̃ Membership value of q-ROTrFN r̃

ν̃r Non-membership value of
q-ROTrFN r̃
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S(̃r) Score function of q-ROTrFN r̃

A(̃r) Accuracy function of q-ROTrFN r̃

� Hamacher parameter

T H
� Hamacher t-norm

SH
� Hamacher t-conorm

λ A scaler

ω Weight vector
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Development of q-Rung
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Operators and Their
Application in MCGDM
Problems
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Abstract: Compared to previous extensions, the q-rung orthopair fuzzy sets are superior to intuitionistic ones and Pythagorean ones because they
allow decision-makers to use a more extensive domain to present judgment arguments. The purpose of this study is to explore the multicriteria
group decision-making (MCGDM) problemwith the q-rung orthopair trapezoidal fuzzy (q-ROTrF) context by employing Einstein t-conorms and
t-norms. Firstly, some arithmetical operations for q-ROTrF numbers, such as Einstein-based sum, product, scalar multiplication, and
exponentiation, are introduced based on Einstein t-conorms and t-norms. Then, Einstein operations-based averaging and geometric
aggregation operators (AOs), viz., q-ROTrF Einstein weighted averaging and weighted geometric operators, are developed. Further, some
prominent characteristics of the suggested operators are investigated. Then, based on defined AOs, a MCGDM model with q-ROTrF
numbers is developed. In accordance with the proposed operators and the developed model, two numerical examples are illustrated. The
impacts of the rung parameter on decision results are also analyzed in detail to reflect the suitability and supremacy of the developed approach.

Keywords: Multicriteria group decision-making, q-rung orthopair trapezoidal fuzzy number, Einstein operations, weighted averaging and
weighted geometric aggregating operators

1. Introduction

Multicriteria group decision-making (MCGDM) is a technique for
choosing the most desirable alternatives from a collection of finite
alternatives based on a group of decision-makers’ (DMs) aggregate
assessment values. However, because it incorporates the complexity of
human cognitive thinking, the MCGDM process tends to be vague
and imprecise, making it difficult for DMs to provide precise
evaluations or preference information during the evaluation process.
To cope with such issues, Atanassov’s intuitionistic fuzzy set (IFS)
(Atanassov, 1986) might be considered an appealing method for
dealing with data fuzziness and inaccuracy. IFS is characterized by
membership and nonmembership degrees in which their sum is not
beyond one. Despite numerous IFS’s advantages, there may be
situations in which the sum of membership and nonmembership
degrees is greater than 1. Yager (2013a) and Yager (2013b)
introduced the Pythagorean fuzzy set (PFS) to address these issues,
ensuring that the squared sum of its degree of membership and degree

of nonmembership is ≤1. As a result, PFS have a more extensive
region to model real-life situations than IFSs. Wang and Garg (2021)
introduced Archimedean t-conorm and t-norm-based Pythagorean
fuzzy interactive weighted averaging (WA) and weighted geometric
(WG) operators as novel interaction Pythagorean operators. After the
inception of PFS, it has been broadly studied and employed by
scholars (Fei & Deng, 2020; Zeng et al., 2016; Sarkar & Biswas, 2019).

However, in real-world situations, the square sumof the degrees of
membership and degree of nonmembership is more than 1. In such
situations, PFS and IFS are inadequate for describing DMs’
evaluation information. To address this flaw, Yager (2016) redefined
the notion of q-rung orthopair fuzzy (q-ROF) set (q-ROFS) as a
generalization of PFS and IFS, wherein the sum of qth power of
membership and nonmembership degrees is less than or equal to
unity. It is important to keep in mind that the space of admissible
orthopairs expands as the rung q increases, making q-ROFs better
suited to unpredictable environments. Based on q-ROF environment,
Peng et al. (2021) defined entropy measure, distance measure, and
similarity measure and solved decision-making problems utilizing
those measures. Under q-ROF context, Riaz et al. (2021a)
established numerous WA and WG aggregation operators (AOs),
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viz., q-ROF fuzzy interaction-ordered and hybrid averaging AOs as
well as geometric versions of these AOs. Zeng et al. (2021) defined
induced weighted logarithmic-based two distance measures of q-
ROFSs. Recently, Alkan and Kahraman (2021) developed two
different TOPSIS methods under the q-ROF context and applied to
determine the most appropriate strategy. Ever since q-ROFSs’
appearance, many studies (Liu et al., 2018; Liu & Wang, 2020;
Sarkar & Biswas, 2021) have been conducted on decision-making
methods under q-ROF environment.

The use of trapezoidal fuzzy numbers (TrFNs) (Abbasbandy &
Hajjari, 2009) has also become increasingly widespread as a starting
point for developing fuzzy sets. TrFN is the best fit for conveying
the uncertainty of the alternative. If the alternative’s uncertainty is
expressed as an interval, TrFN is the best choice for representing it.
Gupta et al. (2021) presented the notion of q-rung orthopair TrFNs
(q-ROTrFNs), which was inspired by the ideas of q-ROFS (Yager,
2016) and TrFN (Wang & Zhang, 2009). For q-ROTrFNs, Wan
et al. (2021a) established a novel ranking algorithm and Hamming
distance measure. They also recommended using q-ROTrFNs for
developing a new TODIM group decision-making approach.

1.1 Motivations

It is worth noting that operational regulations play a crucial role in
data integration. Gupta et al. (2021) proposed the basic operations laws
and definedWAandWGAOs for q-ROTrFNs andmoreover developed
a TOPSIS approach for solving theMAGDMproblem.As an alternative
to algebraic sum and product, Einstein-based t-norm and t-conorm
provide the best approximation for sum and product of q-ROTrFNs.
The AOs are most typically employed to aggregate each individual
preference into the overall preference information and generate a
collective preference value for each alternative. There appear to be
limited studies into aggregation approaches for aggregating a
collection of q-ROTrF data in the literature. From the above
motivation, the aim of this research is to design some information
AOs using Einstein operations on q-ROTrFNs.

1.2 Contributions

In the present paper, we will research some Einstein-based
operational laws of the q-ROTrNs. Moreover, as the applications,
we give two novel AOs. As can be summarized from the
motivations above, the contributions are shown in the following:

• Using Einstein t-conorm and t-norms, the current study prolonged
the concept of aggregating distinct q-ROTrFNs. For this purpose,
firstly Einstein operating laws for q-ROTrFNs have been devised.

• Using defined operational rules, a set of q-ROTrF Einstein WA
(q-ROTrFEWA) and q-ROTrF Einstein WG (q-ROTrFEWG)
operators have been proposed for integrating q-ROTrF
information. Some desirable properties of these developed
operators are also investigated in detail.

• A novel MCGDM method based on the proposed operators has
been described under q-ROTrF context.

• By comparing the proposed approach to the existing method, it is
determined that the method proposed in this study has proven to be
useful in q-ROTrFNs research.

The following is the outline of the paper: Section 2 briefly recalls
fundamental conceptions related to q-ROFS, q-ROTrFN, and Einstein
operations. Based on Einstein operations, some basic operational rules
for q-ROTrFN are defined in Section 3. To aggregate q-ROTrFNs,
Section 4 introduces some operators based on Einstein operations,
viz., q-ROTrFEWA and q-ROTrFEWG operators. Further, some

characteristics of these developed operators are also exhibited in this
section. Section 5 illustrates a MCGDM approach utilizing the
developed AOs. Utilizing the proposed approach, two numerical
examples have been solved in Section 6, and comparative and
sensitivity analyses are also presented here. Finally, in Section 7, an
overall summary of the current study is depicted.

2. Preliminaries

Several basic principles that will be used throughout the
article are briefly reviewed in this section. In order to better
understand this paper, we will introduce some basic and useful
concepts of q-ROFSs (Yager, 2016), q-ROTrFN (Gupta et al.,
2021), and Einstein operations (Klement et al., 2004) in this section.

2.1 q-ROFS

The notion of q-ROFS is introduced by Yager (2016). In the
following, some basic notions pertaining to q-ROF sets are
presented from Yager (2016).

Definition 2.1. (Yager, 2016) On a universal set X, a q-ROFS, P is
presented by:

P ¼ x;µPðxÞ; νPðxÞð Þjx 2 Xf g;

where the values of µP and νP that lie in the closed unit interval
designate membership and nonmembership values, respectively,
following the requirement that

µPðxÞð Þq þ νPðxÞð Þqð Þ 2 0; 1½ �; where rung parameter q � 1:

For convenience, Yager (2016) named the pair µPðxÞ; νPðxÞð Þ
as a q-ROF number (q-ROFN) and symbolized it by }̃ ¼ µ; νð Þ.

2.2 q-ROTrFN

The concept of q-ROTrFN suggested by Gupta et al. (2021) as a
generalization of intuitionistic TrFN and Pythagorean fuzzy number
is as follows:

Definition 2.2. (Gupta et al., 2021) Suppose X be a fixed set.
A q-ROFN R̃ is said to be q-ROTrFN explained on [0,1], denoted
by R̃ ¼ h a; b; c; d½ �; γR̃ð Þ; a1; b; c; d1½ �; δR̃ð Þi if

γR̃ðxÞ ¼

x�að ÞµR̃
b�að Þ ; a � x � b
µR̃; b � x � c
d�xð ÞµR̃
d�cð Þ ; c � x � d
0 Otherwise

8>><
>>: (1)

δR̃ðxÞ ¼

b�xð Þþ x�a1ð ÞνR̃
b�a1ð Þ ; a1 � x � b

νR̃; b � x � c
x�cð Þþ d1�xð ÞνR̃

d1�cð Þ ; c � x � d1
1 Otherwise

8>><
>>: (2)

where a, a1, b, c, d, and d1 are given numbers, and γR̃ðxÞ 2 0; 1½ �
denotes the degree of membership and δR̃ðxÞ 2 0; 1½ � denotes the
degree of nonmembership with the condition that 0 � ðγR̃ðxÞÞq
þðδR̃ðxÞÞq � 1 where x 2 X and rung parameter q � 1.

For convenience, consider a ¼ a1 and d ¼ d1; therefore, the
real numbers a, b, c, and d and µr̃, νr̃ define the q-ROTrFN r̃ which
is denoted by h a; b; c; d½ �;µr̃; νr̃i. The membership function γ R̃ðxÞ
and nonmembership function δR̃ðxÞ of a q-ROTrFN have a graphical
representation, as shown in Figure 1, of a trapezoidal with a; d½ � being
the base of the trapezoidal.
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• When q ¼ 1 is considered, q-ROTrFN reduces to an intuitionistic
trapezoidal fuzzy number (Ye, 2011).

• For q ¼ 2, q-ROTrFN reduces to the Pythagorean trapezoidal
fuzzy number (Shakeel et al., 2018; Shakeel et al., 2019).

• If q ¼ 1 and b ¼ c are considered, q-ROTrFN is converted to an
intuitionistic triangular fuzzy number (Riaz et al., 2021a).

• The q-ROTrFN is converted to Pythagorean triangular fuzzy
number (Zhang & Liu, 2010) for considering q ¼ 2 and b ¼ c.

• When b ¼ c, q-ROTrFN changes in q-rung orthopair triangular
fuzzy number (Fahmi & Aslam, 2021; Wan et al., 2021a).

There are many different t-conorms and t-norms families to choose
from when modeling intersections and unions, and Einstein product
and Einstein sum are good choices because they typically yield the
same smooth approximation as algebraic product and algebraic sum,
respectively.

2.3 Einstein operations

Klement et al. (2004) introduced one of generalized t-norm and
t-conorm, which is known as Einstein t-norms and t-conorms and
expressed as:

• Einstein t-norm: TE x; yð Þ ¼ xy
1þ 1�xð Þ 1�yð Þ ;

• Einstein t-conorm: SE x; yð Þ ¼ xþy
1þxy.

2.4 Score and accuracy functions

Wan et al. (2021b) proposed the definition of a score and
accuracy functions for q-ROTrFNs in order to compare them.

Definition 2.3. (Wan et al., 2021b) Let r̃ ¼ h a; b; c; d½ �;µ; νi be a
q-ROTrFN, then score function S r̃ð Þ and accuracy function A r̃ð Þ
are presented as:

S r̃ð Þ ¼ aþ bþ cþ d
4

µq � νqð Þ; (3)

A r̃ð Þ ¼ aþ bþ cþ d
4

µq � νqð Þ: (4)

To effectively compare the two q-ROTrFNs, using the score
S r̃ð Þ and accuracy A r̃ð Þ functions, Wan et al. (2021b) defined a com-
parison law presented as follows:

Definition 2.4. (Wan et al., 2021b) Let r̃1 ¼ h a1; b1; c1; d1½ �;µ1; ν1i
and r̃2 ¼ h a2; b2; c2; d2½ �;µ2; ν2i are any two q-ROTrFNs, then com-
parison rule between r̃1 and r̃2 are presented in the following way:

(i) If S r̃1ð Þ > Sðr̃2Þ, then r̃1 � r̃2;
(ii) If S r̃1ð Þ ¼ Sðr̃2Þ, then

• If A r̃1ð Þ < Aðr̃2Þ, then r̃1 � r̃2;
• If A r̃1ð Þ ¼ Aðr̃2Þ, then r̃1 � r̃2.

3. Einstein Operations-Based q-ROTrF AOs

This section first introduces some basic operational laws for
q-ROTrFNs based on Einstein t-norm and t-conorm, and then
using defined operational rules, two new AOs were constructed.

3.1. Einstein operations for q-ROTrFNs

In this part, the Einstein t-conorm, SE, and t-norm, TE, are used
to propose several q-ROTrF Einstein AOs.

The Einstein sum and product on two q-ROTrFNs r̃1 and r̃2 are
also be a q-ROTrFN denoted by r̃1	Er̃2 and r̃1
Er̃2, respectively, as
follows.

Definition 3.1. Let r̃i ¼ h ai; bi; ci; di½ �;µi; νii, i ¼ 1; 2ð Þ and
r̃ ¼ h a; b; c; d½ �;µ; νi be any three q-ROTrFNs, then their addition,
r̃1	E r̃2, multiplication, r̃1
E r̃2, λ > 0ð Þ

(i) r̃1	E r̃2 ¼
D
a1 þ a2; b1 þ b2; c1 þ c2; d1 þ d2½ �; µ1

qþµ2
q

1þµ1
qµ2

q

� �1
q;

ν1
qν2

q

1þ 1�ν1
qð Þ 1�ν2

qð Þ
� �1

q

E
;

(ii) r̃1
E r̃2 ¼ a1a2; b1b2; c1c2; d1d2½ �; µ1
qµ2

q

1þ 1�µ1
qð Þ 1�µ2

qð Þ
� �1

q;
D

ν1
qþν2

q

1þν1
qν2

q

� �1
q

E
;

(iii) λ�E r̃ ¼ λa; λb; λc; λd½ �; 1þµqð Þλ� 1�µqð Þλ
1þµqð Þλþ 1�µqð Þλ

� �1
q; 2νqλ

2�νqð Þλþνqλ

� �1
q

D E
;

(iv) r̃λ ¼ aλ; bλ; cλ; dλ½ �; 2µqλ

2�µqð Þλþµqλ

� �1
q; 1þνqð Þλ� 1�νqð Þλ

1þνqð Þλþ 1�νqð Þλ
� �1

q

D E
.

Proof (i). Since ai; bi; ci; di 2 R, then it is evident that
a1 þ a2; b1 þ b2; c1 þ c2; d1 þ d2 2 R.

We have to show that µ1
qþµ2

q

1þµ1
qµ2

q

� �1
q

� �q
þ ν1

qþν2
q

1þ 1�ν1
qð Þ 1�ν2

qð Þ
� �1

q

� �q � 1, i.e., µ1
qþµ2

q

1þµ1
qµ2

q þ ν1
qþν2

q

1þ 1�ν1
qð Þ 1�ν2

qð Þ � 1.

From the definition of q-ROTrFNs, r̃i, the membership and
nonmembership degrees satisfy the condition that

µ1
q þ ν1

q � 1; (5)

and

µ2
q þ ν2

q � 1; (6)

i.e., µ1
q � 1� ν1

q, µ2
q � 1� ν2

q,

) µ2
qµ2

q � 1� ν1
qð Þ 1� ν2

qð Þð∵µi; νi 2 0; 1½ �
) 1þ µ2

qµ2
q � 1þ 1� ν1

qð Þ 1� ν2
qð Þ: (7)

Adding (5) and (6),

µ1
q þ ν1

q þ µ2
q þ ν2

q � 2; (8)

and since µi 2 ½0; 1�

Figure 1
Graphical representation of q-ROTrFN r̃ ¼ h a; b; c; d½ �;µr̃; νr̃i
Note. Several fuzzy numbers can be generated from q-ROTrFN

based on changing the rung parameter q
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µ1
qµ2

q � 1; i:e:; 1þ µ1
qµ2

q � 2: (9)

From (8) and (9),

µ1
q þ µ2

q þ ν1
q þ ν2

q

1þ µ1
qµ2

q � 1; or;
µ1

q þ µ2
q

1þ µ1
qµ2

q þ
ν1

q þ ν2
q

1þ µ1
qµ2

q � 1;

Now using (3.3), µ1
qþµ2

q

1þµ1
qµ2

q þ ν1
qþν2

q

1þ 1�ν1
qð Þ 1�ν2

qð Þ � 1.

So r̃1	E r̃2 is an q-ROTrFN.
In a parallel way, it can be proven that each of r̃1
E r̃2, λ�E r̃,

and r̃λ is a q-ROTrFN.

Example 1: Let r̃1 ¼ 0:4; 0:5; 0:6; 0:7½ �; 0:7; 0:3h i and r̃2 ¼
0:3; 0:4; 0:6; 0:8½ �; 0:8; 0:5h i be any two q-ROTrFNs. Then for taking

q ¼ 3, some Einstein operations of r̃1 and r̃2 can be defined as
follows:

r̃ 1	E r̃2 ¼ 0:4þ 0:3; 0:5þ 0:4; 0:6þ 0:6; 0:7þ 0:8½ �; 0:73 þ 0:83

1þ 0:730:83

� �1
3

;

�

0:330:53

1þ 1� 0:33ð Þ 1� 0:53ð Þ
� �1

3
E
;¼ 0:7; 0:9; 1:2; 1:5½ �; 0:8993; 0:1222i;h

r̃1
E r̃2 ¼
D

0:4� 0:3; 0:5� 0:4; 0:6� 0:6; 0:7� 0:8½ �½ �;

0:730:83

1þ 1� 0:73ð Þ 1� 0:83ð Þ
� �1

3

;
0:33 þ 0:53

1þ 0:330:53

� �1
3
E
;

¼ 0:12; 0:2; 0:36; 0:56½ �; 0:5104; 0:5331h i;
2�E r̃1 ¼

D
2� 0:4; 2� 0:5; 2� 0:6; 2� 0:7½ �;

1þ 0:73ð Þ2 � 1� 0:73ð Þ2
1þ 0:73ð Þ2 þ 1� 0:73ð Þ2

� �1
3

;
2� 0:33�2

2� 0:33ð Þ2 þ 0:33�2

� �1
q
E
;

¼ 0:8; 1:0; 1:2; 1:4½ �; 0:8498; 0:0721h i;

r̃21 ¼ 0:42; 0:52; 0:62; 0:72½ �; 2�0:73�2

2� 0:73ð Þ2 þ 0:73�2

� �1
3

;

�

1þ 0:33ð Þ2 � 1� 0:33ð Þ2
1þ 0:33ð Þ2 þ 1� 0:33ð Þ2

� �1
3
E
;¼ 0:16; 0:25; 0:36; 0:49½ �; 0:4348; 0:3779h i:

3.2 Einstein operations-based q-ROTrF AOs

With the help of Einstein operations, the q-ROTrF averaging
and geometric AOs are introduced in the section.

• q-ROTrFEWA operator

Definition 3.2. Let r̃j ¼ aj; bj; cj; dj
� �

;µj; νj
	 
j j ¼ 1; 2; . . . ; n

� �
be

a collection of q-ROTrFNs. The q-ROTrFEWA operator is defined
as follows:

q� ROTrFEWA r̃1; r̃2; . . . ; r̃nð Þ ¼ 	E
n
j¼1 ωj�E r̃j
 �

; (10)

In which addition 	E and scalar multiplication �E, laws are
presented in Definition 3.1, where ω ¼ ðω1;ω2; . . . ;ωnÞT is a weight
vector of q-ROTrFNs r̃j with ωj 2 0; 1½ � andPn

j¼1ωj ¼ 1.

Theorem 3.1. Let r̃j ¼ aj; bj; cj; dj
� �

;µj; νj
	 
jj ¼ 1; 2; . . . ; n

� �
be a

group of q-ROTrFNs and ω ¼ ðω1;ω2; . . . ;ωnÞT be a weight vector
of r̃j where ωj 2 0; 1½ �, Pn

j¼1ωj ¼ 1. Then aggregated value of

r̃1; r̃2; . . . ; r̃nf g by the q-ROTrFEWA operator is still a q-ROTrFN
and

q� ROTrFEWA r̃1; r̃2; . . . ; r̃nð Þ ¼
Xn
j¼1

ωjaj;
Xn
j¼1

ωjbj;
Xn
j¼1

ωjcj;
Xn
j¼1

ωjdj

" #
;

*

Q
n
j¼1 1þ µj

q
 �

ωj �Qn
j¼1 1� µj

q
 �

ωjQ
n
j¼1 1þ µj

q
 �

ωj þQn
j¼1 1� µj

q
 �

ωj

 !1
q

;
2
Q

n
j¼1νj

qωjQ
n
j¼1 2� νj

q
 �

ωj þQn
j¼1νj

qωj

 !1
q

+
:

(11)
Proof. Based on Definition 3.1,

ωj�E r̃j ¼ ωjaj;ωjbj;ωjcj;ωjdj
� �

;
1þ µj

q
 �

ωj � 1� µj
q

 �
ωj

1þ µj
q

 �
ωj þ 1� µj

q
 �

ωj

 !1
q

;

*

2νj
qωj

2� νj
q

 �
ωj þ νj

qωj

 !1
q

+
; now; ω1 r̃1	E ω2 r̃2

¼ ω1a1 þ ω2a2;ω1b1 þ ω2b2;ω1c1 þ ω2c2;ω1d1 þ ω2d2½ �;h
Q

2
j¼1 1þ µj

q
 �

ωj �Q2
j¼1 1� µj

q
 �

ωjQ
2
j¼1 1þ µj

q
 �

ωj þQ2
j¼1 1� µj

q
 �

ωj

 !1
q

;
2
Q

2
j¼1νj

qωjQ
2
j¼1 2� νj

q
 �

ωj þQ2
j¼1νj

qωj

 !1
q

+

i.e., the theorem holds for n ¼ 2. Now, assume that the theorem is
valid for n ¼ k.

Hence, q� ROTrFEWA r̃1; r̃2; . . . ; r̃kð Þ ¼
D P

k
j¼1 ωjaj;

h
P

k
j¼1 ωjbj;

P
k
j¼1 ωjcj;

P
k
j¼1 ωjdj�;

Q
k
j¼1 1þ µj

q
 �

ωj �Qk
j¼1 1� µj

q
 �

ωjQ
k
j¼1 1þ µj

q
 �

ωj þQk
j¼1 1� µj

q
 �

ωj

 !1
q

;
2
Q

k
j¼1νj

qωjQ
k
j¼1 2� νj

q
 �

ωj þQk
j¼1νj

qωj

 !1
q

+
:

Then for n ¼ kþ 1,

q� ROTrFEWA r̃1; r̃2; . . . ; r̃k; r̃kþ1ð Þ
¼ q� ROTrFEWA r̃1; r̃2; . . . ; r̃kð Þ	E ωkþ1 r̃kþ1ð Þ

¼
Xk
j¼1

ωjaj;
Xk
j¼1

ωjbj;
Xk
j¼1

ωjcj;
Xk
j¼1

ωjdj

" #
;

*

Q
k
j¼1 1þ µj

q
 �

ωj �Qk
j¼1 1� µj

q
 �

ωjQ
k
j¼1 1þ µj

q
 �

ωj þQk
j¼1 1� µj

q
 �

ωj

 !1
q

;
2
Q

k
j¼1νj

qωjQ
k
j¼1 2� νj

q
 �

ωj þQk
j¼1νj

qωj

 !1
q

+

	E ωkþ1akþ1;ωkþ1bkþ1;ωkþ1ckþ1;ωkþ1dkþ1½ �; 1þ µkþ1
qð Þωkþ1 � 1� µkþ1

qð Þωj

1þ µkþ1
qð Þωj þ 1� µkþ1

qð Þωj

� �1
q;

�

2νkþ1
qωkþ1

2� νj
q

 �
ωkþ1 þ νkþ1

qωkþ1

 !1
q

+
;¼

Xkþ1

j¼1

ωjaj;
Xkþ1

j¼1

ωjbj;
Xkþ1

j¼1

ωjcj;
Xkþ1

j¼1

ωjdj

" #
;

*

Qkþ1
j¼1 1þ µj

q
 �

ωj �Qkþ1
j¼1 1� µj

q
 �

ωjQkþ1
j¼1 1þ µj

q
 �

ωj þQkþ1
j¼1 1� µj

q
 �

ωj

 !1
q

;
2
Qkþ1

j¼1 νj
qωjQkþ1

j¼1 2� νj
q

 �
ωj þQkþ1

j¼1 νj
qωj

 !1
q

+
:

Therefore, the theorem is true for n ¼ kþ 1 also and
is valid 8n.

Example 2: Let r̃1 ¼ 0:4; 0:5; 0:6; 0:7½ �; 0:4; 0:3h i, r̃2 ¼
0:1; 0:2; 0:3; 0:4½ �; 0:5; 0:2h i, and r̃3 ¼ 0:4; 0:5; 0:7; 0:8½ �; 0:2; 0:5h i
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be a collection of q-ROTrFNs. If the weights of three q-ROTrFNs are
taken, respectively, such as 0.3, 0.25, and 0.35, then their aggregated
value by using the q-ROTrFEWA operator is also a q-ROTrF and
obtained as:

q� ROTrFEWA r̃1; r̃2; r̃3ð Þ

¼
X3
j¼1

ωjaj;
X3
j¼1

ωjbj;
X3
j¼1

ωjcj;
X3
j¼1

ωjdj

" #
;

*

Q
3
j¼1 1þ µj

3
 �

ωj �Q3
j¼1 1� µj

3
 �

ωjQ
3
j¼1 1þ µj

3
 �

ωj þQ3
j¼1 1� µj

3
 �

ωj

 !1
3

;
2
Q

3
j¼1νj

3ωjQ
3
j¼1 2� νj

3
 �

ωj þQ3
j¼1νj

3ωj

 !1
3

+
;

¼ 0:2850; 0:3750; 0:5000; 0:5900½ �; 0:3765; 0:5734h i:

Now, some fundamental characteristics of the proposed
q-ROTrFEWA operator are stated in the following section.

Theorem 3.2. (Idempotency) Suppose r̃j ¼ h aj; bj; cj; dj
� �

;µj; νj
� 


j ¼ 1; 2; . . . ; nj g be a group of q-ROTrFNs. If r̃j ¼ r̃ ¼
h a; b; c; d½ �;µ; νi 8j, then

q� ROTrFEWA r̃1; r̃2; . . . ; r̃nð Þ ¼ r̃:

.
Proof. q� ROTrFEWAðr̃1; r̃2; . . . ; r̃nÞ ¼

Xn
j¼1

ωjaj;
Xn
j¼1

ωjbj;
Xn
j¼1

ωjcj;
Xn
j¼1

ωjdj

" #
; 1�

Yn
j¼1

1� µj
q

 �
ωj

 !1
q

;
Yn
j¼1

νj
ωj

* +
:

Since r̃j ¼ r̃ 8j,

q� ROTrFEWA r̃; r̃; . . . ; r̃ð Þ

¼
Xn
j¼1

ωj

 !
a;

Xn
j¼1

ωj

 !
b;

Xn
j¼1

ωj

 !
c;

Xn
j¼1

ωj

 !
d

" #
;

*

1� 1� µqð Þ
P

j¼1
ωj

� �1
q
; ν
P

n
j¼1

ωj

+
¼ h a; b; c; d½ �;µ; νi ¼ r̃:

Theorem 3.3. (Monotonicity) Let r̃j ¼ h aj; bj; cj; dj
� �

;µj; νji
� �

and

r̃j 0 ¼ h a0j; b
0
j; c

0
j; d

0
j

h i
;µ0

j; ν
0
ji

n o
be two collections of n q-ROTrFNs. If

aj � a0j; bj � b0j; cj � c0j; dj � d0j, µj � µ0
j and νj � ν0j 8j, then,

q� ROTrFEWA r̃1; r̃2; . . . ; r̃nð Þ≼ q� ROTrFEWA r̃10; r̃20; . . . ; r̃n0ð Þ:
(12)

Proof. Let gðtÞ ¼ 1þt
1�t, t 2 0; 1½ Þ, then g0ðtÞ ¼ 2

1�tð Þ2 > 0, thus g is an
increasing function. Since for every r̃j and r̃j 0, µj � µ0

j,

1þ µj
q

 �
1� µj

q
 � � 1þ µ0

j
q

� �
1� µ0

j
q

� � : So; 1þ µj
q

1� µj
q

 !
ωj

� 1þ µ0
j
q

1� µ0
j
q

 !
ωj

;

,
Y

n
j¼1

1þ µj
q

1� µj
q

 !
ωj

�
Y

n
j¼1

1þ µ0
j
q

1� µ0
j
q

 !
ωj

;

,
Y

n
j¼1

1þ µj
q

1� µj
q

 !
ωj

þ 1 �
Y

n
j¼1

1þ µ0
j
q

1� µ0
j
q

 !
ωj

þ 1;

, 1Q
n
j¼1

1þµj
q

1�µj
q

� �
ωj þ 1

� 1Q
n
j¼1

1þµ0
j
q

1�µ0
j
q

� �
ωj þ 1

;

, 2
Q

n
j¼1 1� µj

q
 �

ωjQ
n
j¼1 1þ µj

q
 �

ωj þQn
j¼1 1� µj

q
 �

ωj

�
2
Q

n
j¼1 1� µ0

j
q

� �
ωj

Q
n
j¼1 1þ µ0

j
q

� �
ωj þQn

j¼1 1� µ0
j
q

� �
ωj
;

, 1� 2
Q

n
j¼1 1� µj

q
 �

ωjQ
n
j¼1 1þ µj

q
 �

ωj þQn
j¼1 1� µj

q
 �

ωj

� 1�
2
Q

n
j¼1 1� µ0

j
q

� �
ωj

Q
n
j¼1 1þ µ0

j
q

� �
ωj þQn

j¼1 1� µ0
j
q

� �
ωj
;

,
Q

n
j¼1 1þ µj

q
 �

ωi �Qn
j¼1 1� µj

q
 �

ωjQ
n
j¼1 1þ µj

q
 �

ωj þQn
j¼1 1� µj

q
 �

ωj

�
Q

n
j¼1 1þ µ0

j
q

� �
ωj �Qn

j¼1 1� µ0
j
q

� �
ωj

Q
n
j¼1 1þ µ0

j
q

� �
ωj þQn

j¼1 1� µ0
j
q

� �
ωj
;

(13)

Again let f ðuÞ ¼ 2�u
u , u 2 0; 1ð �, then f 0ðuÞ ¼ � 2

u2 < 0, thus
f ðuÞ is a decreasing function.

Since, νjq � ν
0q
j 8j, then

2� νj
q

νj
q � 2� ν

0q
j

ν
0q
j

; thus;
2� νj

q

νj
q

 !
ω

j

� 2� ν
0q
j

ν
0q
j

 !
ωj

;

,
Y

n
j¼1

2� ν
q
j

ν
q
j

 !
ωj

�
Y

n
j¼1

2� ν
0q
j

ν
0q
j

 !
ωj

;,
Y

n
j¼1

2� ν
q
j

ν
q
j

 !
ωj

þ 1 �
Y

n
j¼1

2� ν
0q
j

ν
0q
j

 !
ωj

þ1;, 1Q
n
j¼1

2�νj
q

νj
q

� �
ωjþ1

� 1Q
n
j¼1

2�ν0j
q

ν0j
q

� �
ωjþ1

;, 2
Q

n
j¼1νj

qωjQ
n
j¼1 2� νj

q
 �

ωj þQn
j¼1νj

qωj

� 2
Q

n
j¼1ν

0
j
qωjQ

n
j¼1 2� ν0j

q
� �

ωj þQn
j¼1ν

0
j
qωj

:

(14)

From (13) and (14) and using the relationsP
n
j¼1 ωjaj �

P
n
j¼1 ωja

0
j,

P
n
j¼1 ωjbj �

P
n
j¼1 ωjb

0
j,

P
n
j¼1 ωjcj �P

n
j¼1 ωjc0j and

P
n
j¼1 ωjdj �

P
n
j¼1 ωjd0j, it is clear that

S q� ROTrFEWA r̃1; r̃2; . . . ; r̃nð Þð Þ
� S q� ROTrFEWA r̃10; r̃20; . . . ; r̃n0ð Þð Þ:

Therefore; q�ROTrFEWA r̃1; r̃2; . . . ; r̃nð Þ≼ q�ROTrFEWA r̃10; r̃20; . . . ; r̃n 0ð Þ.
Hence, inequality (12) follows.
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Theorem 3.4. (Boundedness) Let r̃j ¼ h aj; bj; cj; dj
� �

;µj; νji
�

j ¼ 1; 2; . . . ; nj g be a group of q-ROTrFNs and assume

r̃j� ¼ minj aj
� �

;minj bj
� �

;minj cj
� �

;minj dj
� �� �

;minj µj

� �
;maxj νj

� �	 

; and

r̃jþ ¼ maxj aj
� �

;maxj bj
� �

;maxj cj
� �

;maxj dj
� �� �

;maxj µj

� �
;minj νj

� �	 

;

then, r̃j� � q� ROTrFEWAðr̃1; r̃2; . . . ; r̃nÞ � r̃j
þ.

Proof. Since min aj
� � � aj � max aj

� �
, min bj

� � � bj
� max bj

� �
, min cj

� � � cj � max cj
� �

, min dj
� � � dj � max dj

� �
,

min µj

� � � µj � max µj

� �
and min νj

� � � νj � max νj
� �8j,

then r̃j
� � r̃j8j.

Thus, from monotonicity

q� ROTrFEWA r̃j�; r̃j�; . . . ; r̃j�
 �

� q� ROTrFEWA r̃1; r̃2; . . . ; r̃nð Þ:

Now applying the idempotency theorem, the above inequality
takes the form as:

r̃j� � q� ROTrFEWA r̃1; r̃2; . . . ; r̃nð Þ: (15)

Similarly, it can be shown that

q� ROTrFEWA r̃1; r̃2; . . . ; r̃nð Þ � r̃jþ: (16)

So, by combining (15) and (16), it follows that

r̃j� � q� ROTrFEWA r̃1; r̃2; . . . ; r̃nð Þ � r̃jþ:

• q-ROTrFEWG operator
In this subsection, q-ROTrFEWG operator is developed based

on Einstein operational rules.

Definition 3.3. Let r̃j ¼ h aj; bj; cj; dj
� �

;µj;νjijj ¼ 1; 2; . . . ; n
� �

be a
collection of q-ROTrFNs. The q-ROTrFEWG operator is defined as
follows:

q� ROTrFEWG r̃1; r̃2; . . . ; r̃nð Þ ¼ r̃1ω1
E r̃2ω2
E . . .
Er̃nωn ; (17)

In which multiplication 
E and exponential laws are presented
in Definition 3.1, where ω ¼ ðω1;ω2; . . . ;ωnÞT is a vector of
q-ROTrFNs r̃j with ωj 2 0; 1½ � andPn

j¼1ωj ¼ 1.

Theorem 3.5. Let r̃j ¼ aj; bj; cj; dj
� �

;µj; νjijj ¼ 1; 2; . . . ; n
	 ��

be a
set of q-ROTrFNs and ω ¼ ðω1;ω2; . . . ;ωnÞT represent the weight
vector of r̃j where ωj 2 0; 1½ �, Pn

j¼1ωj ¼ 1. Then their aggregated

value using q-ROTrFEWG operator is furthermore a q-ROTrFN and

q� ROTrFEWG r̃1; r̃2; . . . ; r̃nð Þ

¼
Yn
j¼1

aj
ωj ;
Yn
j¼1

bj
ωj ;
Yn
j¼1

cj
ωj ;
Yn
j¼1

dj
ωj

" #
;

2
Q

n
j¼1µj

qωjQ
n
j¼1 2� µj

q
 �

ωj þQn
j¼1µj

qωj

 !1
q

;

*

Q
n
j¼1 1þ νj

q
 �

ωj �Qn
j¼1 1� νj

q
 �

ωjQ
n
j¼1 1þ νj

q
 �

ωj þQn
j¼1 1� νj

q
 �

ωj

 !1
q

+
: (18)

Proof. The proof is same as Theorem 3.1.
Example 3:. In Example 2, if the geometric aggregation

operator is used q-ROTrFEWG, then the aggregating values of the
three q-ROTrFNs, r̃1, r̃2, and r̃3, are computed as:

q� ROTrFEWG r̃1; r̃2; r̃3ð Þ ¼
Y3
j¼1

aj
ωj ;
Y3
j¼1

bj
ωj ;
Y3
j¼1

cj
ωj ;
Y3
j¼1

dj
ωj

" #
;

*

2
Q

3
j¼1µj

3ωjQ
3
j¼1 2� µj

3
 �

ωj þQ3
j¼1µj

3ωj

 !1
3

;

Q
3
j¼1 1þ νj

3
 �

ωj �Q3
j¼1 1� νj

3
 �

ωjQ
3
j¼1 1þ νj

3
 �

ωj þQ3
j¼1 1� νj

3
 �

ωj

 !1
3

+
;

¼ 0:3100; 0:4262; 0:5604; 0:6609½ �; 0:7112; 0:3780h i:

Next, the characteristics of the defined q-ROTrFEWG operator are
presented.

Theorem 3.6. (Idempotency) Let r̃j ¼ h aj; bj; cj; dj
� �

;µj; νji
j ¼ 1; 2; . . . ; nð Þ be a set of n Lq-ROFNs. If r̃j ¼ r̃ ¼
h a; b; c; d½ �;µ; νi 8j, then

q� ROTrFEWG r̃1; r̃2; . . . ; r̃nð Þ ¼ r̃

.
Proof. The proof is same as Theorem 3.2.

Theorem 3.7. (Monotonicity) Suppose r̃j ¼ h aj; bj; cj; dj
� �

;µj; νji
and r̃j 0 ¼ h a0j; b

0
j; c

0
j; d

0
j

h i
;µ0

j; ν
0
ji be two set of n q-ROTrFNs. If

aj � a0j; bj � b0j; cj � c0j; dj � d0j, µj � µ0
j and νj � ν0j 8j, then

q� ROTrFEWG r̃1; r̃2; . . . ; r̃nð Þ � q� ROTrFEWG r̃1
0; r̃20; . . . ; r̃n0ð Þ

.
Proof. The proof is similar as Theorem 3.3.

Theorem 3.8. (Boundedness) If r̃j ¼ h aj; bj; cj; dj
� �

;µj; νji
� �

represents a set of n q-ROTrFNs, and

r̃j� ¼ minj aj
� �

;minj bj
� �

;minj cj
� �

;minj dj
� �� �

;min µj

� �
;maxj νj

� �	 

and

r̃jþ ¼ maxj aj
� �

;maxj bj
� �

;maxj cj
� �

;maxj dj
� �� �

;maxj µj

� �
;minj νj

� �	 

; then

r̃j
� � q� ROTrFEWG r̃1; r̃2; . . . ; r̃nð Þ � r̃j

þ:

Proof. The proof is same as Theorem 3.4.

4. MCGDM Approach Based on the Proposed AOs
under q-ROTrF Environment

In this part, a novel MCGDM method has been propounded in
which the evaluation information is in the form of q-ROTrFNs.

For a MCGDM problem, let E ¼ eð1Þ; eð2Þ; . . . ; e kð Þ� �
be the

group of the DMs with their associated weight vector
Ω ¼ Ω1;Ω2; . . . ;Ωkð ÞT . Suppose A ¼ Aif ji ¼ 1; 2; . . . ;mg be a set
of m discrete alternatives and C ¼ Cjjj ¼ 1; 2; . . . ; n

� �
represents

the set of n criteria along with their weight vector
ω ¼ ω1;ω2; . . . ;ωnð ÞT , satisfying ωi 2 0; 1½ � and

P
n
i¼1ωi ¼ 1.

DMs give their assessment values in terms of q-ROTrFNs. The
DMs use q-ROTrFNs to express their judgment values, and q-ROTrF
decision matrix (q-ROTrFDM) is provided as

DðlÞ ¼�r̃ðlÞij �m�n
¼�	�aðlÞij ; bðlÞij ; cðlÞij ; dðlÞij i;µðlÞ

ij ; ν
ðlÞ
ij

Ei
m�n

ðl¼1; 2; . . .; kÞ,
where r̃ðlÞij ¼ aðlÞij ; b

ðlÞ
ij ; c

ðlÞ
ij ; d

ðlÞ
ij

h i
;µðlÞ

ij ; ν
ðlÞ
ij

D E
denotes a q-ROTrFN

given by the DM eðlÞ for the alternative Ai under the criteria Cj.
The purpose is to find the best suitable alternative(s) in light of

the presented approach. The following is a step-by-step breakdown
of the computing procedure.
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Step 1. Normalize DðlÞ, if required, into N ðlÞ ¼ }̃ij
ðlÞ

h i
m�n

as
follows:

}̃ij
ðlÞ ¼

aðlÞij ; b
ðlÞ
ij ; c

ðlÞ
ij ; d

ðlÞ
ij

h i
;µðlÞ

ij ; ν
ðlÞ
ij

D E
if Cj is type of benefit criteria

aðlÞij ; b
ðlÞ
ij ; c

ðlÞ
ij ; d

ðlÞ
ij

h i
; νðlÞij ;µ

ðlÞ
ij

D E
if Cj is type of cost criteria;

8<
:

(19)

i ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; n:
Step 2. Utilize q-ROTrFEWA (or q-ROTrFEWG) operator to

aggregate all the individual normalized q-ROTrFDMs,

N ðlÞ ¼ }̃ij
ðlÞ

h i
m�n

ðl ¼ 1; 2; . . . ; kÞ into a single

q-ROTrFDM,

N ¼ }̃ij

h i
m�n

i ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; nð Þ as:

}̃ij ¼
X3
l¼1

ΩðlÞaðlÞij ;
X3
l¼1

ΩðlÞbðlÞij ;
X3
l¼1

ΩðlÞcðlÞij ;
X3
l¼1

ΩðlÞdðlÞij

" #
;

*

Q
3
l¼1 1þ µ

ðlÞ
ij

� �
q

� �
ΩðlÞ

�Q3
l¼1 1� µ

ðlÞ
ij

� �
q

� �
ΩðlÞ

Q
3
l¼1 1þ µ

ðlÞ
ij

� �
q

� �
ΩðlÞ

þQ3
l¼1 1� µ

ðlÞ
ij

� �
q

� �
ΩðlÞ

0
B@

1
CA

1
q

;

2
Q

3
l¼1 ν

ðlÞ
ij

� �
qΩðlÞ

Q
3
l¼1 2� ν

ðlÞ
ij

� �
q

� �
ΩðlÞ

þQ3
l¼1 ν

ðlÞ
ij

� �
qΩðlÞ

0
B@

1
CA

1
q+

; (20)

or }̃ij
0 ¼ Y3

l¼1

aðlÞij
� �

ΩðlÞ
;
Y3
l¼1

aðlÞij
� �

ΩðlÞ
;
Y3
l¼1

aðlÞij
� �

ΩðlÞ
;
Y3
l¼1

aðlÞij
� �

ΩðlÞ
" #

;

*

2
Q

3
l¼1 µ

ðlÞ
ij

� �
qΩðlÞ

Q
3
l¼1 2� µ

ðlÞ
ij

� �
q

� �
ΩðlÞ

þQ3
l¼1 µ

ðlÞ
ij

� �
qΩðlÞ

0
B@

1
CA

1
q

;

Q
3
l¼1 1þ ν

ðlÞ
ij

� �
q

� �
ΩðlÞ

�Q3
l¼1 1� ν

ðlÞ
ij

� �
q

� �
ΩðlÞ

Q
3
l¼1 1þ ν

ðlÞ
ij

� �
q

� �
ΩðlÞ

þQ3
l¼1 1� ν

ðlÞ
ij

� �
q

� �
ΩðlÞ

0
B@

1
CA

1
q

i:

(21)

Step 3. Aggregate the q-ROTrFN }̃ij (or }̃ij
0) for each

Ai ði ¼ 1; 2; . . . ;mÞ applying q-ROTrFEWA (or q-ROTr-
FEWG) operator as follows:

}̃i ¼ q� ROTrFEWA }̃i1; }̃i2; . . . ; }̃inð Þ; (22)

or,

}̃i
0 ¼ q� ROTrFEWG }̃i1; }̃i2; . . . ; }̃inð Þ: (23)

Step 4. Compute the score values S }̃ið Þ (or S }̃0
ið Þ) of the }̃i (or }̃0

i)
for obtaining ordering among the alternatives, Ai.

Step 5. Sort the scores of all the alternatives in descending order,
then choose the one with the highest score function.

The flowchart of the above methodology is presented through
the Figure 2.

5. Illustrative Examples

In this part, two numerical examples, previously studied by Aydin
et al. (2020) and Zhao et al. (2017), are given to illustrate the application
of the proposed q-ROTrFEWA and q-ROTrFEWG operators.

5.1 Example 4

The human resources department of a corporation is looking to
hire a sales consultant. Three human resource specialists will assess
the four candidates based on the following criteria:

C1: experience;
C2: competencies;
C3: foreign language skills;
C4: human relationship management.

where C1, C2, and C3, are benefit type, and last one is cost type. DMs
evaluate four candidates A1;A2;A3;A4f g with q-ROTrFNs
presented in Tables 1, 2 and 3. Let ω ¼ 0:15; 0:25; 0:25; 0:35ð ÞT
and Ω ¼ 0:45; 0:25; 0:30ð ÞT represent the weight vector of criteria
and DMs, respectively.

Now q-ROTrFEWA and q-ROTrFEWG operators are
implemented to choose the ideal candidate.

Step 1: The criteria are classified into two groups: criteria C1 � C3
are classified as benefit criteria. The cost criterion is C4. So,
by using Eq. (19), the normalized q-ROTrFDMs is
obtained, which is shown in Tables 4, 5 and 6, respectively.

Step 2: Apply the q-ROTrFEWA operator, presented in
Eq. (20), to aggregate all the normalized q-ROTrFDM
N ðlÞ ¼ �}̃ij

ðlÞ�
m�n ðl ¼ 1; 2; 3; 4Þ. The integrated

q-ROTrFDM, N ¼ �}̃ij

�
m�n is shown in Table 7.

Step 3: Again, by Eq. (22) and Table 7, the final aggregated values
}̃i of Ai are found as:

Figure 2
Flowchart of the proposed methodology
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Table 1
q-ROTrFDM eð1Þ

C1 C2 C3 C4
A1 0:5; 0:6; 0:8; 0:9½ �; 0:5; 0:6h i 0:6; 0:7; 0:8; 0:9½ �; 0:5; 0:2h i 0:4; 0:7; 0:8; 0:9½ �; 0:7; 0:4h i 0:2; 0:3; 0:4; 0:5½ �; 0:6; 0:9h i
A2 0:2; 0:3; 0:5; 0:6½ �; 0:3; 0:6h i 0:1; 0:3; 0:6; 0:9½ �; 0:7; 0:2h i 0:4; 0:6; 0:7; 0:9½ �; 0:3; 0:3h i 0:5; 0:6; 0:7; 0:8½ �; 0:4; 0:8h i
A3 0:3; 0:4; 0:5; 0:9½ �; 0:4; 0:8h i 0:2; 0:3; 0:5; 0:7½ �; 0:6; 0:1h i 0:3; 0:4; 0:5; 0:6½ �; 0:4; 0:7h i 0:4; 0:5; 0:7; 0:8½ �; 0:3; 0:6h i
A4 0:5; 0:7; 0:8; 0:9½ �; 0:8; 0:4h i 0:2; 0:4; 0:6; 0:8½ �; 0:3; 0:8h i 0:4; 0:5; 0:8; 0:9½ �; 0:8; 0:5h i 0:3; 0:5; 0:6; 0:8½ �; 0:6; 0:4h i

Table 2
q-ROTrFDM eð2Þ

C1 C2 C3 C4
A1 0:4; 0:6; 0:7; 0:8½ �; 0:6; 0:7h i 0:6; 0:7; 0:8; 0:9½ �; 0:1; 006h i 0:5; 0:6; 0:7; 0:8½ �; 0:3; 0:6h i 0:4; 0:5; 0:8; 0:9½ �; 0:4; 0:4h i
A2 0:5; 0:6; 0:7; 0:8½ �; 0:6; 0:7h i 0:5; 0:7; 0:8; 0:9½ �; 0:3; 0:4h i 0:1; 0:3; 0:5; 0:6½ �; 0:9; 0:5h i 0:3; 0:6; 0:7; 0:8½ �; 0:5; 0:6h i
A3 0:6; 0:7; 0:8; 0:9½ �; 0:6; 0:9h i 0:2; 0:4; 0:5; 0:7½ �; 0:4; 0:7h i 0:6; 0:7; 0:8; 0:9½ �; 0:2; 0:6h i 0:4; 0:5; 0:7; 0:8½ �; 0:2; 0:3h i
A4 0:5; 0:6; 0:8; 0:9½ �; 0:5; 0:6h i 0:4; 0:5; 0:6; 0:7½ �; 0:3; 0:8h i 0:4; 0:6; 0:8; 0:9½ �; 0:5; 0:6h i 0:3; 0:4; 0:7; 0:9½ �; 0:6; 0:4h i

Table 3
q-ROTrFDM eð3Þ

C1 C2 C3 C4
A1 0:5; 0:6; 0:8; 0:9½ �; 0:3; 0:7h i 0:5; 0:7; 0:8; 0:9½ �; 0:2; 0:4h i 0:4; 0:7; 0:8; 0:9½ �; 0:2; 0:4h i 0:4; 0:7; 0:8; 0:9½ �; 0:4; 0:4h i
A2 0:6; 0:7; 0:8; 0:9½ �; 0:4; 0:6h i 0:3; 0:5; 0:7; 0:9½ �; 0:9; 0:5h i 0:4; 0:5; 0:7; 0:9½ �; 0:4; 0:3h i 0:3; 0:5; 0:8; 0:9½ �; 0:6; 0:3h i
A3 0:5; 0:6; 0:7; 0:8½ �; 0:1; 0:3h i 0:2; 0:3; 0:5; 0:7½ �; 0:5; 0:8h i 0:3; 0:4; 0:5; 0:6½ �; 0:6; 00:7h i 0:4; 0:5; 0:7; 0:8½ �; 0:3; 0:4h i
A4 0:1; 0:3; 0:5; 0:7½ �; 0:2; 0:7h i 0:2; 0:3; 0:4; 0:5½ �; 0:3; 0:2h i 0:1; 0:2; 0:4; 0:5½ �; 0:3; 0:7h i 0:3; 0:5; 0:6; 0:8½ �; 0:7; 0:2h i

Table 4
Normalized q-ROTrFDM N ð1Þ

C1 C2 C3 C4
A1 0:5; 0:6; 0:8; 0:9½ �; 0:5; 0:6h i 0:6; 0:7; 0:8; 0:9½ �; 0:5; 0:2h i 0:4; 0:7; 0:8; 0:9½ �; 0:7; 0:4h i 0:2; 0:3; 0:4; 0:5½ �; 0:9; 0:6h i
A2 0:2; 0:3; 0:5; 0:6½ �; 0:3; 0:6h i 0:1; 0:3; 0:6; 0:9½ �; 0:7; 0:2h i 0:4; 0:6; 0:7; 0:9½ �; 0:3; 0:3h i 0:5; 0:6; 0:7; 0:8½ �; 0:8; 0:4h i
A3 0:3; 0:4; 0:5; 0:9½ �; 0:4; 0:8h i 0:2; 0:3; 0:5; 0:7½ �; 0:6; 0:1h i 0:3; 0:4; 0:5; 0:6½ �; 0:4; 0:7h i 0:4; 0:5; 0:7; 0:8½ �; 0:6; 0:3h i
A4 0:5; 0:7; 0:8; 0:9½ �; 0:8; 0:4h i 0:2; 0:4; 0:6; 0:8½ �; 0:3; 0:8h i 0:4; 0:5; 0:8; 0:9½ �; 0:8; 0:5h i 0:3; 0:5; 0:6; 0:8½ �; 0:4; 0:6h i

Table 5
Normalized q-ROTrFDM N ð2Þ

C1 C2 C3 C4
A1 0:4; 0:6; 0:7; 0:8½ �; 0:6; 0:7h i 0:6; 0:7; 0:8; 0:9½ �; 0:1; 0:6h i 0:5; 0:6; 0:7; 0:8½ �; 0:3; 0:6h i 0:4; 0:5; 0:8; 0:9½ �; 0:4; 0:4h i
A2 0:5; 0:6; 0:7; 0:8½ �; 0:6; 0:7h i 0:5; 0:7; 0:8; 0:9½ �; 0:3; 0:4h i 0:1; 0:3; 0:5; 0:6½ �; 0:9; 0:5h i 0:3; 0:6; 0:7; 0:8½ �; 0:6; 0:5h i
A3 0:6; 0:7; 0:8; 0:9½ �; 0:6; 0:9h i 0:2; 0:4; 0:5; 0:7½ �; 0:4; 0:7h i 0:6; 0:7; 0:8; 0:9½ �; 0:2; 0:6h i 0:4; 0:5; 0:7; 0:8½ �; 0:3; 0:2h i
A4 0:5; 0:6; 0:8; 0:9½ �; 0:5; 0:6h i 0:4; 0:5; 0:6; 0:7½ �; 0:3; 0:8h i 0:4; 0:6; 0:8; 0:9½ �; 0:5; 0:6h i 0:3; 0:4; 0:7; 0:9½ �; 0:4; 0:6h i

Table 6
Normalized q-ROTrFDM N ð3Þ

C1 C2 C3 C4
A1 0:5; 0:6; 0:8; 0:9½ �; 0:3; 0:7h i 0:5; 0:7; 0:8; 0:9½ �; 0:2; 0:4h i 0:4; 0:7; 0:8; 0:9½ �; 0:2; 0:4h i 0:4; 0:7; 0:8; 0:9½ �; 0:4; 0:4h i
A2 0:6; 0:7; 0:8; 0:9½ �; 0:4; 0:6h i 0:3; 0:5; 0:7; 0:9½ �; 0:9; 0:5h i 0:4; 0:5; 0:7; 0:9½ �; 0:4; 0:3h i 0:3; 0:5; 0:8; 0:9½ �; 0:3; 0:6h i
A3 0:5; 0:6; 0:7; 0:8½ �; 0:1; 0:3h i 0:2; 0:3; 0:5; 0:7½ �; 0:5; 0:8h i 0:3; 0:4; 0:5; 0:6½ �; 0:6; 0:7h i 0:4; 0:5; 0:7; 0:8½ �; 0:4; 0:3h i
A4 0:1; 0:3; 0:5; 0:7½ �; 0:2; 0:7h i 0:2; 0:3; 0:4; 0:5½ �; 0:3; 0:2h i 0:1; 0:2; 0:4; 0:5½ �; 0:3; 0:7h i 0:3; 0:5; 0:6; 0:8½ �; 0:2; 0:7h i
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}̃1 ¼ 0:4285; 0:5982; 0:7270; 0:8270½ �; 0:6121; 0:4502h i;
}̃2 ¼ 0:3420; 0:5125; 0:7270; 0:6840½ �; 0:6637; 0:4140h i;
}̃3 ¼ 0:3490; 0:4552; 0:6090; 0:7542½ �; 0:4905; 0:4070h i;
}̃4 ¼ 0:3483; 0:4207; 0:6302; 0:7810½ �; 0:5182; 0:5811h i:

Step 4: Utilizing Eq. (3), calculate the scores of }̃1, }̃2, }̃3, and }̃4

as S }̃1ð Þ ¼ 0:0891, S }̃2ð Þ ¼ 0:1254, S }̃3ð Þ ¼ 0:0274, and
S }̃4ð Þ ¼ �0:0312.

Step 5: Conferring to the score function, using Definition 2.4,
alternatives’ ranking is achieved as follows:

A2 � A1 � A3 � A4. Thus, the best alternative is A2.

Now, developed geometric operator, i.e., q-ROTrFEWG is used
to aggregate the separable q-ROTrF data into a communal one.

Step 3: Apply the geometric operator, q-ROTrFEWG, to aggregate
all the individual q-ROTrFDMs into a collective
q-ROTrFDM N 0 ¼ �}̃ij

0�
m�n, as shown in Table 8.

Step 4: For collecting overall values }̃i
0, aggregate all the prefer-

ence values }̃ij
0 i ¼ 1; 2; . . . ; 4; j ¼ 1; 2; . . . ; 4ð Þ.

}̃1
0 ¼ 0:4071; 0:5125; 0:5756; 0:8108½ �; 0:4258; 0:5093h i;

}̃2
0 ¼ 0:2991; 0:4922; 0:6775; 0:8258½ �; 0:5255; 0:4738h i;

}̃3
0 ¼ 0:3288; 0:4414; 0:5985; 0:7477½ �; 0:4212; 0:5941h i;

}̃4
0 ¼ 0:2753; 0:4374; 0:6152; 0:7674½ �; 0:3882; 0:6393h i:

Step 5: Use the score function, as displayed in Eq. (3), for
finding the score value of }̃1

0, }̃2
0, }̃3

0, and }̃4
0. The score

values are found as S }̃1
0ð Þ ¼ �0:0352, S }̃2

0ð Þ ¼ 0:0178,
S }̃3

0ð Þ ¼ �0:0792, and S }̃4
0ð Þ ¼ �0:1100.

Step 6: Rank the alternatives based on the above score values,
S }̃i

0ð Þ, using Definition 2.4. Alternatives’ ordering is
obtained as A2 � A1 � A3 � A4. So, the best alternative
is identified as A2.

We can see that the rankings are the same in two cases, viz., using
q-ROTrFWA and q-ROTrFWG operators. Hence, the candidate
A2 is the most potential sales consultant over the other three
candidates. As q is assigned different values, the developed
approach provides more general and versatile properties when
combined with Einstein operations. The proposed approach is
superior to other recent research works in real practical decision-
making situations.

5.2 Example 5

Another MCGDM problem is previously studied by Zhao et al.
(2017) which is looking for the best green supplier for one of the
essential components in the automobile production process.
Suppose a company sets up a panel with three DMs, viz., e1, e2
and e3, whose weighting vector is Ω ¼ 0:35; 0:4; 0:25ð ÞT . Let there
be five supplier Ai i ¼ 1; 2; 3; 4; 5ð Þ. We have to evaluate the most
suitable alternative through the evaluation process on the basis of
four criteria: product quality C1, technology capability C2, pollution
control C3, and environment management C4, whose weighting vec-
tor is ω ¼ 0:2; 0:1; 0:3; 0:4ð ÞT ), and construct the following three
normalized intuitionistic trapezoidal fuzzy decision matrices,
N ðlÞ ¼ }̃ij

ðlÞ�
5�4 l ¼ 1; 2; 3ð Þ as shown in Tables 9, 10 and 11.
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After evaluation, the final score values of alternatives are
achieved by the proposed methodology as shown in Table 12.

5.2.1 Result and discussion
Using q-ROTrFEWA and q-ROTrFEWG operators, the

achieved results are discussed by varying rung parameter, q,
continuously in a specified interval as shown in Figures 3 and 4.

Using the q-ROTrFEWA operator and adjusting the rung
parameter, q, between 1 and 10, Figure 2 provides the graphical
clarification of the score values of the alternatives.

As the value of q changes from 1 to 10, it is noticed in Figure 3
that several ranking results are obtained.

When q 2 1; 2:1061½ �, the alternative’s rank is achieved
as A2 > A5 > A3 > A4 > A1.

When q 2 2:377; 3:3901½ �, the alternative’s rank is achieved as
A2 > A5 > A4 > A3 > A1. And when q 2 3:3901; 10½ �, the alterna-
tive’s rank is achieved as A2 > A4 > A5 > A3 > A1.

Further, Figure 4 signifies the graphical interpretation of score
values of the alternatives by varying the rung parameter, q, between 1
and 10, using q-ROTrFEWG operator.

From Figure 4, it is experimental that many ordering results are
obtained, as q changes from 1 to 10.

When q 2 1; 4:1443ð Þ, the ranking of alternatives is achieved
as A2 > A5 > A3 > A4 > A1.

And when q 2 4:1443; 10ð Þ, the ranking of alternative is
achieved as A2 > A3 > A5 > A4 > A1. So in all cases, we obtained
that the A2 is the best alternative and A1 is the worst alternative.

5.3 Comparative analysis

The newmethod is compared to various existingmethods in this
section.

First, we have compared the results of Example 4 with Aydin’s
(Aydin et al., 2020) method. The rankings of the Aydin’s method
(Aydin et al., 2020) and our method are presented in Table 13.
The rankings of both Aydin’s (Aydin et al., 2020) and proposed
methods are the same. However, the score value difference of two
consecutive alternatives (rank-wise) in the proposed method is
higher than existing Aydin’s method (Aydin et al., 2020) almost
everywhere.

Next, Example 5 is compared with some existing operators
such as ITFWAA (Wang & Zhang, 2009), ITFWG (Wu & Cao,
2013), ITFEWA and ITFEWG (Zhao et al., 2017), PTFWA
(Shakeel et al., 2019), and PTFEWG (Shakeel et al., 2019)
operators. The score values and rankings of alternatives are
described in Table 14.

Table 14 shows that the rankings of the alternatives acquired by
different operators are almost identical to the proposed operators,
indicating that the proposed ranking technique is effective.

The suggested MCDM strategy based on q-ROTrFN AOs
is found to have two key advantages. On the one hand, the
q-ROTrFNs used in this work can be used to represent assessment
data in a variety of ways. They can also manage a variety of
specific situations where a variety of alternative values can cause
confusion about the best option while maintaining the accuracy of
the original data. The proposed operators, on the other hand, are
based on Einstein t-norms and t-conorms, which makes them
more beneficial than regular algebraic operations. Furthermore,
the proposed approach can provide a variety of options for
implementing decision-making with q-ROTrF data. This
circumstance can prevent the preferred information from being
lost or distorted. As a result, the final outcomes are more closely
related to real-world decision-making issues.
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Table 9
Normalized decision matrix given by DM e1

C1 C2 C3 C4
A1 0:5; 0:6; 0:7; 0:8½ �; 0:5; 0:4h i 〈[0.1,0.2,0.3,0.4]; 0.6,0.3〉 〈[0.5,0.6,0.8,0.9]; 0.3,0.6〉 〈[0.4,0.5,0.6,0.7]; 0.2,0.7〉
A2 0:6; 0:7; 0:8; 0:9½ �; 0:7; 0:3h i 〈[0.5,0.6,0.7,0.8]; 0.7,0.2〉 〈[0.4,0.5,0.7,0.8]; 0.7,0.2〉 〈[0.5,0.6,0.7,0.9]; 0.4,0.5〉
A3 0:1; 0:2; 0:4; 0:5½ �; 0:6; 0:4h i 〈[0.2,0.3,0.5,0.6]; 0.5,0.4〉 〈[0.5,0.6,0.7,0.8]; 0.5,0.3〉 〈[0.3,0.5,0.7,0.9]; 0.2,0.3〉
A4 0:3; 0:4; 0:5; 0:6½ �; 0:8; 0:1h i 〈[0.1,0.3,0.4,0.5]; 0.6,0.3〉 〈[0.1,0.3,0.5,0.7]; 0.3,0.4〉 〈[0.6,0.7,0.8,0.9]; 0.2,0.6〉
A5 0:2; 0:3; 0:4; 0:5½ �; 0:6; 0:2h i 〈[0.3,0.4,0.5,0.6]; 0.4,0.3〉 〈[0.2,0.3,0.4,0.5]; 0.7,0.1〉 〈[0.5,0.6,0.7,0.8]; 0.1,0.3〉

Table 10
Normalized decision given by DM e2

C1 C2 C3 C4
A1 〈[0.4,0.5,0.6,0.7]; 0.4,0.3〉 〈[0.1,0.2,0.3,0.4]; 0.5,0.2〉 〈[0.4,0.5,0.7,0.8]; 0.2,0.5〉 〈[0.3,0.4,0.5,0.6]; 0.1,0.6〉
A2 〈[0.5,0.6,0.7,0.8]; 0.6,0.2〉 〈[0.4,0.5,0.6,0.7]; 0.6,0.1〉 〈[0.3,0.4,0.6,0.7]; 0.6,0.1〉 〈[0.3,0.4,0.6,0.8]; 0.3,0.4〉
A3 〈[0.1,0.2,0.3,0.4]; 0.5,0.3〉 〈[0.1,0.2,0.4,0.5]; 0.4,0.3〉 〈[0.4,0.5,0.6,0.7]; 0.4,0.2〉 〈[0.2,0.4,0.6,0.8]; 0.5,0.2〉
A4 〈[0.2,0.3,0.4,0.5]; 0.7,0.1〉 〈[0.1,0.2,0.3,0.5]; 0.5,0.2〉 〈[0.1,0.2,0.4,0.6]; 0.2,0.3〉 〈[0.5,0.6,0.7,0.8]; 0.1,0.5〉
A5 〈[0.1,0.2,0.3,0.4]; 0.5,0.1〉 〈[0.2,0.3,0.4,0.5]; 0.3,0.2〉 〈[0.1,0.2,0.3,0.4]; 0.6,0.2〉 〈[0.4,0.5,0.6,0.7]; 0.4,0.2〉

Table 11
Normalized decision by DM e3

C1 C2 C3 C4
A1 〈[0.6,0.7,0.8,0.9]; 0.4,0.5〉 〈[0.2,0.3,0.4,0.5]; 0.5,0.4〉 〈[0.6,0.7,0.9,1.0]; 0.2,0.7〉 〈[O.5,0.6,0.7,0.8]; 0.1,0.8〉
A2 〈[0.7,0.8,0.9,1.0]; 0.6,0.4〉 〈[0.6,0.7,0.8,0.9]; 0.6,0.3〉 〈[0.5,0.6,0.8,0.9]; 0.6,0.3〉 〈[0.6,0.7,0.8,1.0]; 0.3,0.6〉
A3 〈[0.2,0.3,0.5,0.6]; 0.5,0.5〉 〈[0.3,0.4,0.6,0.7]; 0.4 0.5〉 〈[0.6,0.7,0.8,0.9]; 0.4,0.4〉 〈0.4,0.6,0.8,1.0]; 0.5,0.4〉
A4 〈[0.4,0.5,0.6,0.7]; 0.7,0.2〉 〈[0.2,0.4,0.5,0.6]; 0.5,0.4〉 〈[0.2,0.4,0.6,0.8]; 0.2,0.5〉 〈[0.7,0.8,0.9,1.0]; 0.6,0.3〉
A5 〈[0.3,0.4,0.5,0.6]; 0.5,0.3〉 〈[0.4,0.5,0.6,0.7]; 0.3,0.4〉 〈[0.3,0.4,0.5,0.6]; 0.6,0.2〉 〈[0.6,0.7,0.8,0.9]; 0.4,0.4〉

Table 12
Score values obtained through the proposed method

Proposed method Score values Ranking
S(A1) S(A2) S(A3) S(A4) S(A5)

q-ROTrFEWA −0.0646 0.0989 0.0377 0.0513 0.0571 A2 > A5 > A4 > A3 > A1

q-ROTrFEWG −0.1143 0.0392 0.0177 −0.0237 0.0195 A2 > A5 > A3 > A4 > A1

Figure 3
Effect of rung parameter (q) on q-ROTrFEWA operator
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Effect of rung parameter (q) on q-ROTrFEWG operator
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6. Conclusion

This research looks into the MCGDM problem using assessment
values in the form of q-ROTrFN and proposes a novel MCGDM
approach. On the basis of Einstein t-conorm and t-norm, some
basic operation laws for q-ROTrFNs are defined. Two AOs based
on Einstein operations, q-ROTrFEWA and q-ROTrFEWG, are
introduced in this study. Their appropriate characteristics, viz.,
idempotency, monotonicity, and boundedness, are also defined.
Two motives for these expansions are as follows: (1) q-ROTrFN
comprise more information than other kinds of fuzzy numbers and
(2) Einstein averaging and Einstein geometric operators have
the capability to catch the value if there are outliers of data.
So, merging Einstein averaging and geometric operators and
q-ROTrFN provides advantages in the MCGDM problem. This
article tackles a personnel selection problem to demonstrate
the applicability of the presented methodology. It proves that the
proposed methodology can handle the MCGDM problem efficiently.

However, our study still has some limitations. Our methodology
will be unable to determine the best alternative whenDMs’ and criteria
weight are totally unknown. The developed AOs are insufficient to
evaluate information when DMs hesitate to make the decision. Our
proposed method neglects the preference information of DMs.

In the future, we will develop the concept of hesitant
q-ROTrFN. Moreover, various decision-making methods will be
extended to handle hesitant q-ROTrFNs. The proposed operators
could be used in a variety of domains, viz., bipolar fuzzy (Poulik &
Ghorai, 2021), cubic fuzzy (Riaz et al., 2021b), T-spherical fuzzy
(Chen, 2021), and other environments. We will continue to work on
expanding and applying the proposed operators to other disciplines,
such as medical diagnostics (Šušteršič et al., 2021) and pattern
recognition (Sánchez-Salgado et al., 2021) and, in the future.
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Abstract. In many cases, use of Pythagorean hesitant fuzzy sets may not be sufficient to characterize uncertain information
associated with decision making problems. From that view point the concept of interval-valued Pythagorean hesitant fuzzy sets
are introduced in this paper. Considering the flexibility with the general parameters, Archimedean t-conorms and t-norms are
applied to develop several operational laws in interval-valued Pythagorean hesitant fuzzy environment. Some characteristics of the
developed operators are presented. The newly developed operators are used to derive a methodology for solving multicriteria
decision making problems with interval-valued Pythagorean hesitant fuzzy information. Finally, two illustrative examples are
provided to establish the validity of the proposed approach and are compared with the existing technique to exhibit its flexibility
and effectiveness.

Keywords: Multicriteria decision making, interval-valued Pythagorean fuzzy set, Pythagorean hesitant fuzzy set, Archimedean
t-conorm and t-norm, weighted averaging and geometric operators

1. Introduction

Human perceptions are frequently involved with indeterminacy and indecisiveness. Most of the time, it becomes
difficult for the decision makers (DMs) to exert their opinion using a single crisp value. Under this situation, fuzzy
sets [1] came into account. Several variants of fuzzy sets, viz., intuitionistic fuzzy sets (IFSs) [2–4], Pythagorean
fuzzy sets (PFSs) [5,6], etc. appeared, thereafter, as the extensions of fuzzy sets and been implemented successfully
in solving multi-criteria decision making (MCDM) [7–10] problems. PFS is more general than IFS due to the fact
that PFS consists membership degree along with non-membership degree having their square sum less than or equals
to 1; whereas, the sum of membership and non-membership degrees is less than or equals to 1 in IFS. So, in terms
of flexibility and dealing with uncertainties, PFS can express uncertain information more effectively. For example,
if a DM provides 0.7, as membership value and 0.6, as non-membership value, PFS can successfully deal with
such values. But IFS fails to consider those values. For this useful characteristics, PFSs are applied to solve real
life decision making problems, e.g., pattern recognition [11], supplier selection [12], transportation problem [13],
risk evaluation [14,15], and other emerging areas. Following the concept of interval-valued fuzzy sets, Peng and
Yang [16] introduced the idea of interval-valued Pythagorean fuzzy (IVPF) sets (IVPFSs), where the membership
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and non-membership values of an element to a given set are represented by the subintervals of [0, 1]. With the use of
IVPFS, DMs can evaluate the input data in a more convenient way than IFS as well as PFS.

Sometimes, in many MCDM situations, DMs face difficulties in assigning membership value corresponding to
some element; rather they prefer to express their opinions using a set of possible values. To address such situations,
Torra and Narukawa [17] and Torra [18] proposed another generalization of fuzzy sets, called hesitant fuzzy sets
(HFSs). It offers the DMs flexibility to assign the membership degree using several possible crisp numbers lying in
between [0, 1]. In many MCDM problems HFSs [19–24] are applied efficiently. Combining the idea of HFS and
PFS, Wei et al. [25] defined Pythagorean hesitant fuzzy (PHF) set (PHFS). PHFS is found to be very much useful in
modelling uncertainties associated with real life problems.

Inspired by the concept of IVPFS, PHFSs have been extended in this article to generate interval-valued PHF
(IVPHF) set (IVPHFS). It possesses greater capability of capturing uncertainties than existing variants of fuzzy sets.
It is to be noted here that, if lower and upper limits of the intervals coincide with each other, an IVPHFS becomes
PHFS. Again, if each membership and non-membership degrees of the elements of IVPHFS are expressed by single
intervals, IVPHFS reduces to IVPFS. Therefore, it can be concluded that IVPHFS is a more generalised version of
the other variants of fuzzy sets as described above.

Moreover, Archimedean t-norm and t-conorm (At-N&t-CN) satisfy all the properties of t-norm (t-N) and t-
conorm (t-CN) to aggregate input arguments. Algebraic, Einstein, Hamacher, Frank classes are widely used At-
N&t-CNs for developing aggregation operators. Motivated by the aforementioned discussions, in this article various
weighted averaging (WA) and weighted geometric (WG) aggregation operators are developed using At-N&t-CN
based operations on IVPHF numbers (IVPHFNs). Following those operations, IVPHF WA (IVPHFWA), IVPHF
Einstein WA (IVPHFEWA), IVPHF Hamacher WA (IVPHFHWA) and IVPHF Frank WA (IVPHFFWA) operators,
and their WG variants are presented. Several desirable properties of those developed operators are also investigated.
Using those operators, an approach for solving MCDM problems under the IVPHF environment is presented to show
the efficiency and usefulness of the proposed operators. Literature review on the allied topics is performed in the next
section.

2. Literature review

It is well known that PFS [5] is one of the most useful tools to resolve ambiguous information of MCDM problems.
Zhang and Xu [26] provided standard arithmetic operations on PFSs. For aggregating PFSs, Yager [6] proposed a
series of WA and WG aggregation operators. Several aggregation operators [27,28] and methods [29,30] for solving
MCDM problems are developed on PFSs by numerous researchers.

After the development of IVPFS [16], an accuracy function for ranking the IVPF numbers (IVPFNs) was developed
by Garg [31], considering the hesitancy degree of IVPFNs for solving MCDM problems. Rahman et al. [32] introduced
a class of IVPF geometric aggregation operators for IVPFNs, viz. IVPF WG, ordered WG, hybrid geometric operators.
Biswas and Sarkar [33] introduced similarity measures based on point operators for IVPFSs. Technique for order of
preference by similarity to ideal solution (TOPSIS) method was introduced by Garg [34] under IVPF environment.
Further, Garg [35] proposed some new IVPF aggregation operators on the basis of novel exponential operational
laws of IVPFS. Generalised IVPF aggregation operators are introduced by Rahman and Abdullah [36] for IVPF
multicriteria group decision making (MCGDM) problems. An IVPF extended TOPSIS method was developed by Yu
et al. [37] for sustainable supplier selection under MCGDM context. Tang et al. [38] proposed IVPF MCDM approach
based on Muirhead mean and applied it on green supplier selection. Some induced IVPF aggregation operators are
developed by Rahman et al. [39] for tackling uncertainties in MCDM situation.

Following the concepts of HFS and PFSs, PHFS [25] has now become another emerging area of research. An
application to PHFS with incomplete weight information was proposed by Khan et al. [40] for solving group decision
making problems. Wei et al. [25] developed PHF Hamacher WA (PHFHWA) and PHF Hamacher WG (PHFHWG)
aggregation functions to aggregate the PHF information. A new approach for PHF TOPSIS method was presented by
Khan et al. [41] in the context of solving MCDM problems. Recently, Sarkar and Biswas [42] proposed At-N&t-CN
based operations [43] on PHF numbers (PHFNs) to construct two types of aggregation operators such as At-N&t-
CN-based PHF WA and WG operators. An extension of VIKOR method was developed by Khan et al. [44] for PHF
MCDM context. Further, Khan et al. [45] introduced Choquet integral to PHFSs and generated a series of aggregation
operators, viz., PHF Choquet integral averaging operator, PHF Choquet integral geometric operator, generalised PHF
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Choquet integral averaging operator and generalised PHF Choquet integral geometric operator. Khan et al. [46] also
developed some hybrid aggregation operators to aggregate PHF data for MCGDM. From the literature survey, it had
been found that the combination of IVPFS and PHFS had not been done yet. Thus it would be significant to develop a
series of aggregation operators, viz., IVPHFWA, IVPHFEWA, IVPHFHWA, IVPHFFWA, IVPHF WG (IVPHFWG),
IVPHF Einstein WG (IVPHFEWG), IVPHF Hamacher WG (IVPHFHWG) and IVPHF Frank WG (IVPHFFWG)
operators based on At-N&t-CN for evaluating IVPHF information. In addition, the novelty of this research work is to
deliver an approach for solving MCDM problems under the IVPHF environment to show the applicability of the
developed operators. Two illustrative examples are provided for the sake of application of the developed MCDM
method.

3. Preliminaries

In this section some elementary definitions related to the development of At-N&t-CN based operators are briefly
discussed.

3.1. IVPFS

Peng and Yang [16] introduced the concept of IVPFSs, which is presented as follows:

Definition 1. Let X be a fixed set. An IVPFS, P̃ in X is given by

P̃ =
{〈
x,
[
µl
P̃
(x) , µu

P̃
(x)
]
,
[
νl
P̃
(x) , νu

P̃
(x)
]〉
|x ∈ X

}
,

where two closed intervals [µl
P̃
(x) , µu

P̃
(x)] and [νl

P̃
(x) , νu

P̃
(x)] are subintervals of [0, 1], denote the degree of

membership and degree of non-membership of the element, x ∈ X to the set P̃ , respectively, with the condition

0 6
(
µu
P̃
(x)
)2

+
(
νu
P̃
(x)
)2

6 1.
For computational convenience, Peng and Yang [16] used the notation, p̃ =

([
µl, µu

]
,
[
νl, νu

])
to represent an

IVPFN.

3.2. PHFS

Inspired by the idea of PFSs and HFSs, Wei et al. [25] elaborated PFS to PHFS, which is structured with a set of
several possible PFNs, symbolically defined as follows:

Definition 2. Let X be a universe of discourse. A PHFS on X is defined as:

Â =
{〈
x, hÂ (x)

〉
|x ∈ X

}
,

where hÂ (x) is a set of possible PFNs.
For convenience, Wei et al. [25] called â = hÂ (x) =

⋃
(γ,η)∈hÂ(x) {(γ, η)} as a PHFN, and it is denoted by

â = hÂ = (µ, ν).
For ordering of PHFNs, the score and accuracy functions of PHFNs are presented [25] as follows:
Let â = (µ, ν) be any PHFN, the score function, S (â) of â be presented as follows:

S (â) =
1

2

(
1 +

1

lh

∑
(γ,η)∈(µ,ν)

(
γ2 − η2

))
,

and the accuracy function, A (â) of â be expressed as follows:

A (â) =
1

lh

∑
(γ,η)∈(µ,ν)

(
γ2 + η2

)
,

where lh are the number of elements in h.

Definition 3. For two PHFNs, âi = (µi, νi) (i = 1, 2), the ranking can be done in the following manners [25]:
• If S (â1) > S (â2), then â1 > â2;
• If S (â1) = S (â2), then
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(1) If A (â1) > A (â2), then â1 > â2;
(2) If A (â1) = A (â2), then â1 = â2.

3.3. At-N&t-CN operations

Definition 4. Satisfying the following properties, a function T : [0, 1]× [0, 1]→ [0, 1] is known as a t-N [43]:
(i) T (a, 1) = a for all a.

(ii) T (b, d) 6 T (b∗, d∗) for b 6 b∗ and d 6 d∗

(iii) T (a, b) = T (b, a) for all a and b.
(iv) T (a, T (b, d)) = T (T (a, b) , d) for all a, b and d.
(v) T is a continuous function.

(vi) T (a, a) < a.
Definition 5. A function S : [0, 1]× [0, 1]→ [0, 1] is called a t-CN if the following criteria are satisfied [43]:

(i) S (a, 0) = a for all a.
(ii) S (b, d) 6 S (b∗, d∗) when b 6 b∗ and d 6 d∗

(iii) S (a, b) = S (b, a) for all a and for all b.
(iv) S (a, S (b, d)) = S (S (a, b) , d) for all a, b and d.
(v) S is a continuous function.

(vi) S (a, a) > a.
It is well known that At-N&t-CN operations are expressed using increasing or decreasing generators as follows [47]:

Definition 6. An Archimedean t-N (At-N), T is formulated using a decreasing function, f as

T (a, b) = f (−1) (f (a) + f (b)) . (1)

Similarly, using increasing function, g, an Archimedean t-CN (At-CN) S is represented as

S (a, b) = g(−1) (g (a) + g (b)) for all a, b ∈ [0, 1] . (2)

The generators have the relationship g (t) = f (1− t) for all a, b, t ∈ [0, 1].
Several t-Ns and t-CNs are derived by Klement [47] using different forms of increasing and decreasing functions

which are furnished below:
(1) For f (t) = −logt, At-N&t-CN is reduced to algebraic t-N and t-CN [48], and are defined as SA (a, b) =

a+ b− ab, TA (a, b) = ab.
(2) When f (t) = log

(
2−t
t

)
, g (t) = log

(
2−(1−t)

1−t

)
, f−1 (t) = 2

et+1 , g−1 (t) = 1 − 2
et+1 , At-N&t-CN is

reduced to Einstein t-N and t-CN [48] and are defined as SE (a, b) = a+b
1+ab , TE (a, b) = ab

1+(1−a)(1−b) .

(3) Let f (t) = log
(
ψ+(1−ψ)t

t

)
, ψ > 0, g (t) = log

(
ψ+(1−ψ)(1−t)

1−t

)
, f−1 (t) = ψ

et+ψ−1 , g−1 (t) = 1− ψ
et+ψ−1 ,

then At-N&t-CN called Hamacher t-N and t-CN [48] and are presented as SHψ (a, b) = a+b−ab−(1−ψ)ab
1−(1−ψ)ab ,

THψ (a, b) = ab
ψ+(1−ψ)(a+b−ab) , ψ > 0.

When ψ = 1, the Hamacher t-N and t-CN reduce to algebraic t-N and t-CN, respectively. Again, for ψ = 2,
the Hamacher t-N and t-CN reduce to Einstein t-N and t-CN, respectively.

(4) For f (t) = log
(
τ−1
τt−1

)
, τ > 1, g (t) = log

(
τ−1

τ1−t−1

)
, f−1 (t) =

log
(
τ−1+et

et

)
logτ , g−1 (t) = 1−

log
(
τ−1+et

et

)
logτ ,

an At-N&t-CN are named as Frank t-N and t-CN [48], respectively, and are defined as SFτ (a, b) =

1 − logτ

(
1 +

(τ1−a−1)(τ1−b−1)
τ−1

)
, TFτ (a, b) = logτ

(
1 +

(τa−1)(τb−1)
τ−1

)
, τ > 1. Especially, if τ → 1,

limτ→1 f (t) = −log t.

3.4. At-N&t-CN operations on PHF environment

Sarkar and Biswas [42] recently introduced At-N&t-CN operations on PHF environment, which are defined as
follows:

Definition 7. Let â = (µ, ν) and âi = (µi, νi) (i = 1, 2) be three arbitrary PHFNs, and λ be any positive number.
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Then the operational laws for the PHFNs based on At-N&t-CN are defined as follows:
Let â = (µ, ν) and âi = (µi, νi) (i = 1, 2) be three arbitrary PHFNs and λ be any positive number. Then the

operational laws for the PHFNs based on At-N&t-CN are defined as follows:

(1) â1⊕Aâ2 =
⋃

(γi,ηi)∈(µi,νi)
i=1,2

{(√
S (γ12, γ22),

√
T (η12, η22)

)}
=
⋃

(γi,ηi)∈(µi,νi)
i=1,2

{(√
g−1 (g (γ12) + g (γ22)),

√
f−1 (f (η12) + f (η22))

)}
;

(2) â1⊗Aâ2 =
⋃

(γi,ηi)∈(µi,νi)
i=1,2

{(√
T (γ12, γ22),

√
S (η12, η22)

)}
=
⋃

(γi,ηi)∈(µi,νi)
i=1,2

{(√
f−1 (f (γ12) + f (γ22)),

√
g−1 (g (η12) + g (η12))

)}
;

(3) λâ =
⋃

(γ,η)∈(µ,ν)

{(√
g−1 (λg (γ2)),

√
f−1 (λf (η2))

)}
;

(4) âλ =
⋃

(γ,η)∈(µ,ν)

{(√
f−1 (λf (γ2)),

√
g−1 (λg (η2))

)}
.

Based on the above concepts, the notion of IVPHFSs is introduced in the following section.

4. Development of IVPHFS

Sometimes, it becomes inadequate to describe an uncertain situation using PHF information. To tackle this type of
situation, the concept of IVPHFS is introduced. In this section, PHFS is extended with the use of interval numbers to
construct IVPHFS. Also, score and accuracy functions on them are defined. Furthermore, some operations based on
At-N&t-CN are proposed in this section.

4.1. IVPHFS

Definition 8. Let X be a universe of discourse, an IVPHFS, K̃ on X is expressed as:

K̃= {〈x, hK̃(x)〉|x ∈ X} , (3)

in which hK̃(x) = {([γl(x), γu(x)], [ηl(x), ηu(x)])} is a set containing some IVPFNs, where [γlx), γu(x)],
[ηl(x) , ηu(x)] ⊆ [0, 1] satisfies the condition 0 6 ((γu(x))

+
)
2
+ ((ηu(x))

+
)
2
61, (γu (x))+=max {γu (x)} and

(ηu (x))
+
=max {ηu (x)}, for all x∈X .

Thus, IVPHFS represents a HFS whose membership degrees are expressed by several IVPFNs.
For convenience, hK̃ =

{([
γl, γu

]
,
[
ηl, ηu

])}
is named as an IVPHFN and is denoted by k̃. The set of all

IVPHFNs is given by K̃.

To illustrate the above definition, the following example is presented.

Example 1. Let the possible assessment values of an element x∈X are represented by the IVPFNs, ([0.1, 0.3],
[0.3, 0.4]), ([0.5, 0.6], [0.4, 0.5]) and ([0.7, 0.8], [0.4, 0.6]), where [0.1, 0.3], [0.5, 0.6] and [0.7, 0.8] indicate
the possible degree of membership and [0.3, 0.4], [0.4, 0.5] and [0.4, 0.6] indicate the possible degree of
non-membership for the element x∈X . Then the IVPHFN is represented as an element of the set K̃ as
k̃ = {([0.1, 0.3], [0.3, 0.4]), ([0.5, 0.6] , [0.4, 0.5]) , ([0.7, 0.8] , [0.4, 0.6])} in which (γu)

+
= max {γu (x)} =

max {0.3, 0.6, 0.8} = 0.8, (ηu)+=max {ηu (x)}=max {0.4, 0.5, 0.6} = 0.6, satisfying the condition 0 6
(0.8)

2
+ (0.6)

2 6 1.

To compare any two IVPHFNs, the score and accuracy functions are presented as follows:
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Definition 9. For an IVPHFN, k̃, the score function, S
(
k̃
)

is described as:

S
(
k̃
)
=

1

2

1 +
1

2

 1∣∣∣k̃∣∣∣
∑

([γl, γu],[ηl, ηu])∈k̃

((
γl
)2

+ (γu)
2 −

(
ηl
)2 − (ηu)

2
) , (4)

and the accuracy function, A
(
k̃
)

is expressed as:

A
(
k̃
)
=

1

2

 1∣∣∣k̃∣∣∣
∑

([γl, γu],[ηl, ηu])∈k̃

((
γl
)2

+ (γu)
2
+
(
ηl
)2

+ (ηu)
2
) , (5)

where
∣∣∣k̃∣∣∣ is the number of IVPFNs in k̃.

Using the score and accuracy functions, S and A, respectively, any two IVPHFNs can be compared via the
following rules as shown below:

Definition 10. Let k̃i (i = 1, 2) be any two IVPHFNs, then

(i) If S
(
k̃1

)
> S

(
k̃2

)
then k̃1 > k̃2;

(ii) If S
(
k̃1

)
= S

(
k̃2

)
then

• k̃1 > k̃2 for A
(
k̃1

)
> A

(
k̃2

)
;

• k̃1 = k̃2 for A
(
k̃1

)
= A

(
k̃2

)
.

Thus from the above ranking process, it is clear that the rank of the IVPHFNs are first performed based on the
score values. If those are found as equal, then the rank is made based on the value of the accuracy function.

4.2. IVPHF operations based on At-N&t-CN

On the basis of At-N&t-CN operations, several operations on IVPHFNs are proposed as follows:

Definition 11. Let k̃i (i = 1, 2) and k̃ be any three IVPHFNs, and λ > 0 be any scalar. Now, utilising At-N&t-CNs,
the basic algebraic operations of IVPHFNs, viz., addition ⊕A and multiplication ⊗A, are defined as follows.

(1) Addition: k̃1⊕Ak̃2 =
⋃
([γli,γ

u
i ],[η

l
i,η

u
i ])∈k̃i

i=1,2

{([√
S
((
γl1
)2
,
(
γl2
)2)

,

√
S
(
(γu1 )

2
, (γu2 )

2
)]
,

[√
T
((
ηl1
)2
,
(
ηl2
)2)

,

√
T
(
(ηu1 )

2
, (ηu2 )

2
)])}

;

=
⋃
([γli,γ

u
i ],[η

l
i,η

u
i ])∈k̃i

i=1,2

{([√
g−1

(
g
((
γl1
)2)

+ g
(
γl2
)2)

,

√
g−1

(
g
(
(γu1 )

2
)
+ g

(
(γu2 )

2
))]

,

[√
f−1

(
f
((
ηl1
)2)

+ f
((
ηl2
)2))

,

√
f−1

(
f
(
(ηu1 )

2
)
+ f

(
(ηu2 )

2
))])}

;

(2) Multiplication: k̃1⊗Ak̃2 =
⋃
([γli,γ

u
i ],[η

l
i,η

u
i ])

∈k̃i,i=1,2

{([√
T
((
γl1
)2
,
(
γl2
)2)

,

√
T
(
(γu1 )

2
, (γu2 )

2
)]
,

[√
S
((
ηl1
)2
,
(
ηl2
)2)

,

√
S
(
(ηu1 )

2
, (ηu2 )

2
)])}

;

=
⋃
([γli,γ

u
i ],[η

l
i,η

u
i ])∈k̃i,

i=1,2

{([√
f−1

(
f
((
γl1
)2)

+ f
((
γl2
)2))

,

√
f−1

(
f
(
(γu1 )

2
)
+ f

(
(γu2 )

2
))]

,
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g−1

(
g
((
ηl1
)2)

+ g
((
ηl2
)2))

,

√
g−1

(
g
(
(ηu1 )

2
)
+ g

(
(ηu2 )

2
))])}

;

(3) Scalar multiplication: λk̃ =
⋃

([γl, γu],[ηl, ηu])∈k̃

{([√
g−1

(
λg
(
γl

2
))
,
√
g−1 (λg (γu2))

]
,

[√
f−1

(
λf
(
(ηl)

2
))
,

√
f−1

(
λf
(
(ηu)

2
))])}

;

(4) Exponentiation: k̃λ =
⋃

([γl, γu],[ηl, ηu])∈k̃

{([√
f−1

(
λf
(
(γl)

2
))
,

√
f−1

(
λf
(
(γu)

2
))]

,[√
g−1

(
λg
(
(ηl)

2
))
,

√
g−1

(
λg
(
(ηu)

2
))])}

.

The above operations are defined based on several increasing and decreasing operators. Now, choosing specific
decreasing generating functions, some special types of aggregation operators are obtained, which are presented in the
following manners:

• Algebraic t-N and t-CN: Considering f (t) = −log t, operational laws for IVPHFNs based on Algebraic t-N
and t-CN, are described as follows:

(1) k̃1 ⊕ k̃2 =
⋃
([γli,γ

u
i ],[η

l
i,η

u
i ])∈k̃i,

i=1,2{([√(
γl1
)2

+
(
γl2
)2 − (γl1)2 (γl2)2,√(γu1 )

2
+ (γu2 )

2 − (γu1 )
2
(γu2 )

2

]
,
[
ηl1η

l
2, η

u
1 η

u
2

])}
(2) k̃1 ⊗ k̃2 =

⋃
([γli,γui ],[ηli,ηui ])∈k̃i,i=1,2{([

γl1γ
l
2, γ

u
1 γ

u
2

]
,

[√(
ηl1
)2

+
(
ηl2
)2 − (ηl1)2(ηl2)2,√(ηu1 )

2
+ (ηu2 )

2 − (ηu1 )
2
(ηu2 )

2

])}
;

(3) λk̃ =
⋃

([γl,γu],[ηl,ηu])∈k̃

{([√
1−

(
1− (γl)

2
)λ
,

√
1−

(
1− (γu)

2
)λ]

,
[(
ηl
)λ
, (ηu)

λ
])}

,

(4) k̃λ=
⋃

([γl, γu],[ηl, ηu])∈k̃

{([(
γl
)λ
, (γu)

λ
]
,

[√
1−

(
1− (ηl)

2
)λ
,

√
1−

(
1− (ηu)

2
)λ])}

.

• Einstein t-N and t-CN: Considering f (t) = log
(
2−t
t

)
, operational laws for IVPHFNs based on Einstein t-N

and t-CN, are described as follows:

(1) k̃1⊕E k̃2 =
⋃
([γli,γui ],[ηli,ηui ])∈k̃i,i=1,2{([√

γl1
2+γl2

2

1+γl1
2γl2

2 ,
√

γu1
2+γu2

2

1+γu1
2γu2

2

]
,

[
ηl1η

l
2√

1+(1−ηl1
2)(1−ηl2

2)
,

ηu1 η
u
2√

1+(1−ηu1 2)(1−ηu2 2)

])}
;

(2) k̃1⊗E k̃2 =
⋃
([γli,γui ],[ηli,ηui ])∈k̃i,i=1,2


 γl1γ

l
2√

1+
(
1−(γl1)

2
)(

1−(γl2)
2
) , γu1 γ

u
2√

1+
(
1−(γu1 )

2
)(

1−(γu2 )
2
)
 ,

[√
(ηl1)

2
+(ηl2)

2

1+(ηl1)
2
(ηl2)

2 ,

√
(ηu1 )

2
+(ηu2 )

2

1+(ηu1 )
2
(ηu2 )

2

])}
;

(3) λk̃ =
⋃

([γl, γu],[ηl, ηu])∈k̃

{([√
(1+(γl)2)

λ−(1−(γl)2)
λ

(1+(γl)2)
λ
+(1−(γl)2)

λ ,

√
(1+(γu)2)

λ−(1−(γu)2)
λ

(1+(γu)2)
λ
+(1−(γu)2)

λ

]
,
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√
2(ηl)

λ√
(2−(ηl)2)

λ
+((ηl)2)

λ
,

√
2(ηu)λ√

(2−(ηu)2)
λ
+((ηu)2)

λ

])}
,

(4) k̃λ =
⋃

([γl, γu],[ηl, ηu])∈k̃

{([
√
2(γl)

λ√
(2−(γl)2)

λ
+((γl)2)

λ
,

√
2(γu)λ√

(2−(γu)2)
λ
+((γu)2)

λ

]
,

[√
(1+(ηl)2)

λ−(1−(ηl)2)
λ

(1+(ηl)2)
λ
+(1−(ηl)2)

λ ,

√
(1+(ηu)2)

λ−(1−(ηu)2)
λ

(1+(ηu)2)
λ
+(1−(ηu)2)

λ

])}
.

• Hamacher t-N and t-CN: When f (t) = log
(
ψ+(1−ψ)t

t

)
, ψ > 0, then the following operations for IVPHFNs,

based on Hamacher t-N and t-CN, are defined as

(1) k̃1⊕H k̃2 =
⋃
([γli,γui ],[ηli,ηui ])∈k̃i,i=1,2

{([√
(γl1)

2
+(γl2)

2−(γl1)
2
(γl2)

2−(1−ψ)(γl1)
2
(γl2)

2

1−(1−ψ)(γl1)
2
(γl2)

2 ,

√
(γu1 )

2
+(γu2 )

2−(γu1 )
2
(γu2 )

2−(1−ψ)(γu1 )
2
(γu2 )

2

1−(1−ψ)(γu1 )
2
(γu2 )

2

]
, ηl1η

l
2√

ψ+(1−ψ)
(
(ηl1)

2
+(ηl2)

2−(ηl1)
2
(ηl2)

2
) , ηu1 η

u
2√

ψ+(1−ψ)
(
(ηu1 )

2
+(ηu2 )

2−(ηu1 )
2
(ηu2 )

2
)
 ;

(2) k̃1⊗H k̃2 =
⋃
([γli,γ

u
i ],[η

l
i,η

u
i ])∈k̃i

i=1,2
 γl1γ

l
2√

ψ+(1−ψ)
(
(γl1)

2
+(γl2)

2−(γl1)
2
(γl2)

2
) , γu1 γ

u
2√

ψ+(1−ψ)
(
(γu1 )

2
+(γu2 )

2−(γu1 )
2
(γu2 )

2
)
 ,

[√
(ηl1)

2
+(ηl2)

2−(ηl1)
2
(ηl2)

2−(1−ψ)(ηl1)
2
(ηl2)

2

1−(1−ψ)(ηl1)
2
(ηl2)

2 ,

√
(ηu1 )

2
+(ηu2 )

2−(ηu1 )
2
(ηu2 )

2−(1−ψ)(ηu1 )
2
(ηu2 )

2

1−(1−ψ)(ηu1 )
2
(ηu2 )

2

])}
;

(3) λk̃ =
⋃

([γl, γu] ,
[ηl, ηu])∈k̃

{([√
(1+(ψ−1)(γl)2)

λ−(1−γl2)
λ

(1+(ψ−1)γl2)
λ
+(ψ−1)(1−γl2)

λ ,

√
(1+(ψ−1)(γu)2)

λ−(1−(γu)2)
λ

(1+(ψ−1)(γu)2)
λ
+(ψ−1)(1−(γu)2)

λ

]
,

[
√
ψ(ηl)

λ√
(1+(ψ−1)(1−(ηl)2))

λ
+(ψ−1)(ηl)2λ

,
√
ψ(ηu)λ√

(1+(ψ−1)(1−(ηu)2))
λ
+(ψ−1)(ηu)2λ

])}
;

(4) k̃λ =
⋃

([γl, γu],[ηl, ηu])∈k̃

{([
√
ψ(γl)

λ√
(1+(ψ−1)(1−γl2))

λ
+(ψ−1)γl2λ

,
√
ψ(γu)λ√

(1+(ψ−1)(1−γu2))λ+(ψ−1)γu2λ

]
,

[√
(1+(ψ−1)(ηl)2)

λ−(1−(ηl)2)
λ

(1+(ψ−1)(ηl)2)
λ
+(ψ−1)(1−(ηl)2)

λ ,

√
(1+(ψ−1)(ηu)2)

λ−(1−(ηu)2)
λ

(1+(ψ−1)(ηu)2)
λ
+(ψ−1)(1−(ηu)2)

λ

])}
.

For ψ = 1 the above four Hamacher operational laws are reduced to algebraic operational laws and for ψ= 2 those
four Hamacher operational laws are reduced into Einstein operational laws.

Example 2. Let k̃1 = {([0.3, 0.5], [0.2, 0.4]), ([0.7, 0.8], [0.4, 0.6])} and k̃2 = {([0.3, 0.4], [0.2, 0.6]), ([0.1, 0.3],
[0.2, 0.5]), ([0.4, 0.7], [0.3, 0.6])} be two IVPHFNs, and consider ψ = 2 and λ = 3. The mathematical operations
based on Hamacher t-N and t-CN are presented as follows:
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(1) k̃1⊕H k̃2 =
⋃

([γl1,γ
u
1 ],[η

l
1,η

u
1 ])∈

{([0.3,0.5],[0.2,0.4]),([0.7,0.8],[0.4,0.6])},
([γl2,γ

u
2 ],[η

l
2,η

u
2 ])∈

{([0.3,0.4],[0.2,0.6]),([0.1,0.3],[0.2,0.5]),
([0.4,0.7],[0.3,0.6])}{([√

γl1
2+γl2

2−γl1
2γl2

2+γl1
2γl2

2

1+γl1
2γl2

2 ,
√

γu1
2+γu2

2−γu1 2γu2
2+γu1

2γu2
2

1+γu1
2γu2

2

]
,[

ηl1η
l
2√

2−(ηl1
2+ηl2

2−ηl1
2ηl2

2)
,

ηu1 η
u
2√

2−(ηu1 2+ηu2
2−ηu1 2ηu2

2)

])}
= {([0.4146, 0.6083] , [0.0400, 0.2400]) , ([0.3148, 0.5635] , [0.0400, 0.2000]) ,

([0.4854, 0.7858] , [0.0600, 0.2400]) , ([0.7321, 0.8352] , [0.0800, 0.3600]) ,

([0.7036, 0.8200] , [0.0800, 0.3000]) , ([0.7560, 0.9035] , [0.1200, 0.3600])}

(2) k̃1⊗H k̃2 =
⋃

([γl1,γ
u
1 ],[η

l
1,η

u
1 ])∈

{([0.3,0.5],[0.2,0.4]),([0.7,0.8],[0.4,0.6])},
([γl2,γ

u
2 ],[η

l
2,η

u
2 ])∈

{([0.3,0.4],[0.2,0.6]),([0.1,0.3],[0.2,0.5]) ,
([0.4,0.7],[0.3,0.6])}{([
γl1γ

l
2√

2−(γl1
2+γl2

2−γl1
2γl2

2)
,

γu1 γ
u
2√

2−(γu1 2+γu2
2−γu1 2γu2

2)

]
,

[√
ηl1

2+ηl2
2−ηl1

2ηl2
2+ηl1

2ηl2
2

1+ηl1
2ηl2

2 ,
√

ηu1
2+ηu2

2−ηu1 2ηu2
2+ηu1

2ηu2
2

1+ηu1
2ηu2

2

])}
= {([0.0900, 0.2000] , [0.2800, 0.6800]) , ([0.0300, 0.1500] , [0.2800, 0.6083]) ,

([0.1200, 0.3500] , [0.3555, 0.6800]) , ([0.2100, 0.3200] , [0.4400, 0.7684]) ,

([0.0700, 0.2400] , [0.4400, 0.7211]) , ([0.2800, 0.5600] , [0.4854, 0.7684])}

(3) k̃1 =
⋃
([γl1,γ

u
1 ],[η

l
1,η

u
1 ])∈

{([0.3,0.5],[0.2,0.4])
([0.7,0.8],[0.4,0.6])}{([√

(1+γl2)
3−(1−γl2)

3

(1+γl2)
3
+(1−γl2)

3 ,
√

(1+γu2)3−(1−γu2)3

(1+γu2)3+(1−γu2)3

]
,

[
√
2ηl

3√
(1+(1−ηl2))

3
+ηl6

,
√
2ηu3√

(1+(1−ηu2))3+ηu6

])}
= {([0.4964, 0.7603] , [0.0080, 0.0640]) , ([0.9313, 0.9764] , [0.0640, 0.2160])}

(4) k̃31 =
⋃
([γl1,γ

u
1 ],[η

l
1,η

u
1 ])∈

{([0.3,0.5],[0.2,0.4])
([0.7,0.8],[0.4,0.6])}{([

√
2γl

3√
(1+(1−γl2))

3
+γl6

,
√
2γu3√

(1+(1−γu2))3+γu6

]
,

[√
(1+ηl2)

3−(1−ηl2)
3

(1+ηl2)
3
+(1−ηl2)

3 ,
√

(1+ηu2)3−(1−ηu2)3

(1+ηu2)3+(1−ηu2)3

])}
= {([0.0270, 0.1250] , [0.3395, 0.6382]) , ([0.3430, 0.5120] , [0.6382, 0.8590])} .

• Frank t-N and t-CN: Considering f (t) = log
(
τ−1
τt−1

)
, τ > 1, operational laws for IVPHFNs based on Frank

t-N and t-CN are described as follows:
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(1) k̃1⊕F k̃2 =
⋃
([γli,γ

u
i ],[η

l
i,η

u
i ])

∈k̃i
i=1,2



1− logτ

1 +

(
τ1−γl1

2
−1
)(

τ1−γl2
2
−1
)

τ−1

 1
2

,

(
1− logτ

(
1 +

(
τ1−γu1

2
−1
)(
τ1−γu2

2
−1
)

τ−1

) ) 1
2

 ,

logτ

1 +

(
τη
l
1
2
−1
)(

τη
l
2
2
−1
)

τ−1

 1
2

,

(
logτ

(
1 +

(
τη
u
1
2
−1
)(
τη
u
2
2
−1
)

τ−1

) ) 1
2



 ;

(2) k̃1⊗F k̃2 =
⋃
([γli,γ

u
i ],[η

l
i,η

u
i ])∈k̃i

i=1,2




√√√√√logτ

1 +

(
τγ
l
1
2
−1
)(

τγ
l
2
2
−1
)

τ−1

 ,

√√√√logτ

(
1 +

(
τ(γ

u
1 )2−1

)(
τ(γ

u
2 )2−1

)
τ−1

)  ,

√√√√√√1− logτ

1 +

(
τ
1−(ηl1)

2

−1
)(

τ
1−(ηl2)

2

−1
)

τ−1

 ,

√√√√1− logτ

(
1 +

(
τ1−(ηu1 )

2
−1
)(
τ1−(ηu2 )

2
−1
)

τ−1

)  ;

(3) λk̃ =
⋃

([γl, γu],[ηl, ηu])∈k̃


√√√√1− logτ

(
1 +

(
τ1−(γl)2−1

)λ
(τ−1)λ−1

)
,

√
1− logτ

(
1 +

(τ1−(γu)2−1)
λ

(τ−1)λ−1

)  ,
√√√√logτ

(
1 +

(
τ(η

l)2−1
)λ

(τ−1)λ−1

)
,

√
logτ

(
1 +

(τ(ηu)2−1)
λ

(τ−1)λ−1

)  ;

(4) k̃λ =
⋃

([γl, γu],[ηl, ηu])∈k̃


√√√√logτ

(
1 +

(
τ(γ

l)2−1
)λ

(τ−1)λ−1

)
,

√
logτ

(
1 +

(τ(γu)2−1)
λ

(τ−1)λ−1

)  ,
√√√√1− logτ

(
1 +

(
τ1−(ηl)2−1

)λ
(τ−1)λ−1

)
,

√
1− logτ

(
1 +

(τ1−(ηu)2−1)
λ

(τ−1)λ−1

)  .

For τ → 1 the above four Frank operational laws are reduced to algebraic operations.
It is to be noted here that, for each of the cases (3) and (4), λ > 0 is considered.

Example 3. Let k̃1= {([0.3, 0.5] , [0.2, 0.4]) , ([0.7, 0.8] , [0.4, 0.6])} and k̃2= {([0.3, 0.4] , [0.2, 0.6]) , ([0.1, 0.3] ,
[0.2, 0.5]) , ([0.4, 0.7] , [0.3, 0.6])} be two IVPHFNs and consider the Frank parameter as τ = 2 and the scalar value
as λ = 3. The mathematical operations based on Frank t-N and t-CN are presented as follows:

(1) k̃1⊕F k̃2 =
⋃

([γl1,γ
u
1 ],[η

l
1,η

u
1 ])∈

{([0.3,0.5],[0.2,0.4]),
([0.7,0.8],[0.4,0.6])},
([γl2,γ

u
2 ],[η

l
2,η

u
2 ])∈

{([0.3,0.4],[0.2,0.6]) ,
([0.1,0.3],[0.2,0.5]),
([0.4,0.7],[0.3,0.6])}

{([(
1− log2

(
1 +

(
21−γ

l
1
2

− 1
)(

21−γ
l
2
2

− 1
)) ) 1

2

,
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(
1− log2

(
1 +

(
21−γ

u
1

2 − 1
)(

21−γ
u
2

2 − 1
)) ) 1

2

]
,

[(
log2

(
1 +

(
2η

l
1
2

− 1
)(

2η
l
2
2

− 1
)) ) 1

2

,

(
log2

(
1 +

(
2η

u
1
2 − 1

)(
2η

u
2
2 − 1

)) ) 1
2

])}
= {([0.4172, 0.6151] , [0.0338, 0.2172]) , ([0.3152, 0.5679] , [0.0338, 0.1779]) ,

([0.4890, 0.7960] , [0.0511, 0.2172]) , ([0.7368, 0.8417] , [0.0689, 0.3339]) ,

([0.7042, 0.8241] , [0.0689, 0.2745]) , ([0.7636, 0.9145] , [0.1042, 0.3339])}

(2) k̃1⊗F k̃2 =
⋃

([γl1,γ
u
1 ],[η

l
1,η

u
1 ])∈

{([0.3,0.5],[0.2,0.4]),([0.7,0.8],[0.4,0.6])},
([γl2,γ

u
2 ],[η

l
2,η

u
2 ])∈

{([0.3,0.4],[0.2,0.6]),([0.1,0.3],[0.2,0.5])
([0.4,0.7],[0.3,0.6])}

{([√
log2

(
1 +

(
2γ

l
1
2 − 1

)(
2γ

l
2
2 − 1

))
,

√
log2

(
1 +

(
2γ

u
1

2 − 1
) (

2γ
u
2

2 − 1
)) ]

,

[√
1− log2

(
1 +

(
21−η

l
1
2 − 1

)(
21−η

l
2
2 − 1

))
,

√
1− log2

(
1 +

(
21−η

u
1
2 − 1

) (
21−η

u
2
2 − 1

)) ])}
= {([0.0772, 0.1779] , [0.2808, 0.6876]) , ([0.0254, 0.1322] , [0.2808, 0.6151]) ,

([0.1042, 0.3262] , [0.3569, 0.6876]) , ([0.1926, 0.3025] , [0.4419, 0.7801]) ,

([0.0637, 0.2257] , [0.4419, 0.7312]) , ([0.2586, 0.5420] , [0.4890, 0.7801])}

(3) 3k̃1 =
⋃

([γl1,γ
u
1 ],[η

l
1,η

u
1 ])∈

{([0.3,0.5],[0.2,0.4]),([0.7,0.8],[0.4,0.6])}


√√√√1− log2

(
1 +

(
21−γl

2−1
)3

(2−1)3−1

)
,

√
1− log2

(
1 +

(21−γu2−1)
3

(2−1)3−1

) ]
,

√√√√log2

(
1 +

(
2ηl

2−1
)3

(2−1)3−1

)
,

√
log2

(
1 +

(2ηu2−1)
3

(2−1)3−1

) 
= {([0.6511, 0.7312] , [0.1277, 0.2586]) , ([0.8327, 0.8877] , [0.2586, 0.3957])}

(4) k̃31 =
⋃

([γl1,γ
u
1 ],[η

l
1,η

u
1 ])∈

{([0.3,0.5],[0.2,0.4]),([0.7,0.8],[0.4,0.6])}


√√√√logτ

(
1 +

(
2γl

2−1
)3

(2−1)3−1

)
,

√
log2

(
1 +

(2γu2−1)
3

(2−1)3−1

) ]
,

√√√√1− log2

(
1 +

(
21−ηl

2−1
)3

(2−1)3−1

)
,

√
1− log2

(
1 +

(21−ηu2−1)
3

(2−1)3−1

) 
= {([0.1926, 0.3262] , [0.6233, 0.6876]) , ([0.4675, 0.5420] , [0.6876, 0.7801])} .

The arithmetic operations on IVPHFNs based on different commonly used At-N&t-CNs are presented above.
Now, based on those operations, IVPHF Archimedean aggregation operators are derived in the next section.

5. IVPHF archimedean aggregation operators

In this section some IVPHF Archimedean averaging operators and geometric operators are proposed using the
operational rules based on At-N&t-CN. Also, some special cases using specific generating functions are presented.
Moreover, several important properties of those operators are also discussed in this section.
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5.1. IVPHF archimedean averaging operators

To aggregate IVPHFNs, Archimedean operation-based IVPHF averaging aggregation operators are introduced
through the following definition.

Definition 12. For any collection of IVPHFNs, k̃i (i = 1, 2, . . . , n) and weight vector, ω = (ω1, ω2, . . . , ωn), an
At-N&t-CN-based IVPHFWA (AIVPHFWA) operator is defined by a mapping, AIVPHFWA:Kn → K such that

AIVPHFWA
(
k̃1, k̃2, . . . , k̃n

)
= ⊕Ani=1

(
ωik̃i

)
,

where ωi ∈ [0, 1] and
∑n
i=1 ωi = 1.

Theorem 1. The aggregated value of any collections of IVPHFNs, k̃i (i = 1, 2, . . . , n), using AIVPHFWA operator
is also an IVPHFN and is given by

AIVPHFWA
(
k̃1, k̃2, . . . , k̃n

)
=
⋃

([γli,γui ],[ηli,ηui ])∈k̃i,i=1,2,...,n

{([√
g−1

(∑n

i=1
ωig

(
γli

2
))
,

√
g−1

(∑n

i=1
ωig

(
γui

2
))]

,

[√
f−1

(∑n

i=1
ωif

((
ηli
)2))

,

√
f−1

(∑n

i=1
ωif

(
(ηui )

2
))])}

.

Proof: For n = 2,

ω1k̃1 =
⋃

([γl1,γu1 ],[ηl1,ηu1 ])∈k̃1

{([√
g−1

(
ω1g

((
γl1
)2))

,

√
g−1

(
ω1g

(
(γu1 )

2
))]

,

[√
f−1

(
ω1f

((
ηl1
)2))

,

√
f−1

(
ω1f

(
(ηu1 )

2
))])}

.

ω2k̃2 =
⋃

([γl2,γu2 ],[ηl2,ηu2 ])∈k̃2

{([√
g−1

(
ω2g

((
γl2
)2))

,

√
g−1

(
ω2g

(
(γu2 )

2
))]

,

[√
f−1

(
ω2f

((
ηl2
)2))

,

√
f−1

(
ω2f

(
(ηu2 )

2
))])}

.

Now,

ω1k̃1⊕Aω2k̃2 =⋃
([γli,γui ],[ηli,ηui ])∈k̃i,i=1,2

{([√
g−1

(
g
(
g−1

(
ω1g

((
γl1
)2)))

+ g
(
g−1

(
ω2g

((
γl2
)2))))

,

√
g−1

(
g
(
g−1

(
ω1g

(
(γu1 )

2
)))

+ g
(
g−1

(
ω2g

(
(γu2 )

2
))))]

,

[√
f−1

(
f
(
f−1

(
ω1f

((
ηl1
)2)))

+ f
(
f−1

(
ω2f

((
ηl2
)2))))

,

√
f−1

(
f
(
f−1

(
ω1f

(
(ηu1 )

2
)))

+ f
(
f−1

(
ω2f

(
(ηu2 )

2
))))])}

=
⋃

([γli,γ
u
i ],[η

l
i,η

u
i ])

∈k̃i,i=1,2

{([√
g−1

(
ω1g

((
γl1
)2)

+ ω2g
((
γl2
)2))

,

√
y−1

(
ω1g

(
(γu1 )

2
)
+ ω2g

(
(γu2 )

2
))]

,
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f−1

(
ω1f

((
ηl1
)2)

+ ω2f
((
ηl2
)2))

,

√
f−1

(
ω1f

(
(ηu1 )

2
)
+ ω2f

(
(ηu2 )

2
))])}

=
⋃

([γli,γui ],[ηli,ηui ])∈k̃i,i=1,2

{([√
g−1

(∑2

i=1
ωig

((
γli
)2))

,

√
g−1

(∑2

i=1
ωig

(
(γui )

2
))]

,

[√
f−1

(∑2

i=1
ωif

((
ηli
)2))

,

√
f−1

(∑2

i=1
ωif

(
(ηui )

2
))])}

i.e., the theorem holds for n = 2.
Suppose that theorem is true for n = m, i.e.,

AIVPHFWA
(
k̃1, k̃2, . . . , k̃m

)
=
⋃

([γli,γui ],[ηli,ηui ])∈k̃i,i=1,2,...,m

{([√
g−1

(∑m

i=1
ωig

((
γli
)2))

,

√
g−1

(∑m

i=1
ωig

(
(γui )

2
))]

,

[√
f−1

(∫ m

i=1

ωif
((
ηli
)2))

,

√
f−1

(∑m

i=1
ωif

(
(ηui )

2
))])}

.

Now, when n = m+ 1,

AIVPHFWA
(
k̃1, k̃2, . . . , k̃m, k̃m+1

)
= AIVPHFWA

(
k̃1, k̃2, . . . , k̃m

)
⊕Aωm+1k̃m+1

=
⋃

([γli,γui ],[ηli,ηui ])∈k̃i,i=1,2,...,m

{([√
g−1

(∑m

i=1
ωig

((
γli
)2))

,

√
g−1

(∑m

i=1
ωig

(
(γui )

2
))]

,

[√
f−1

(∫ m

i=1

ωif
((
ηli
)2))

,

√
f−1

(∑m

i=1
ωif

(
(ηui )

2
))])}

⊕A

⋃
([γlm+1,γ

u
m+1],[ηlm+1,η

u
m+1])∈k̃m+1

{([√
g−1

(
ωm+1g

((
γlm+1

)2))
,

√
g−1

(
ωm+1g

((
γum+1

)2))]
,

[√
f−1

(
ωm+1f

((
ηlm+1

)2))
,

√
f−1

(
ωm+1f

((
ηum+1

)2))])}

=
⋃

([γli,γ
u
i ],[η

l
i,η

u
i ])∈k̃i

i=1,2,...,m,m+1

{([√
g−1

(
g
(
g−1

(∑m

i=1
ωig

((
γli
)2)))

+ g
(
g−1

(
ωk+1g

((
γlm+1

)2))))
,

√
g−1

(
g
(
g−1

(∑m

i=1
ωig

(
(γui )

2
)))

+ g
(
g−1

(
ωm+1g

((
γum+1

)2))))]
,

[√
f−1

(
f
(
f−1

(∑m

i=1
ωif

((
ηli
)2)))

+ f
(
f−1

(
ωm+1f

((
ηlm+1

)2))))
,

√
f−1

(
f
(
f−1

(∑m

i=1
ωif

(
(ηui )

2
)))

+ f
(
f−1

(
ωm+1f

((
ηum+1

)2))))])}

=
⋃

([γli,γui ],[ηli,ηui ])∈k̃i,i=1,2,...,m,m+1

{([√
g−1

(∑m

i=1
ωig

((
γli
)2)

+ ωm+1g
((
γlm+1

)2))
,
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g−1

(∑m

i=1
ωig

(
γui

2
)
+ ωm+1g

(
γum+1

2
))]

,

[√
f−1

(∑m

i=1
ωif

(
ηli

2
)
+ ωm+1f

(
ηlm+1

2
))
,

√
f−1

(∑m

i=1
ωif

(
(ηui )

2
)
+ ωm+1f

((
ηum+1

)2))])}

=
⋃

([γli,γui ],[ηli,ηui ])∈k̃i,i=1,2,...,m,m+1

{([√
g−1

(∑m+1

i=1
ωig

((
γli
)2))

,

√
g−1

(∑m+1

i=1
ωig

(
(γui )

2
))]

,

[√
f−1

(∑m+1

i=1
ωif

((
ηli
)2))

,

√
f−1

(∑m+1

i=1
ωif

(
(ηui )

2
))])}

.

Hence, the above is true for n=m+1, also. Thus, the theorem is true for all integers.
This completes the proof of the theorem.

Considering specific decreasing generating functions, different forms of AIVPHFWA operator can be generated,
which are shown in the following manners.

• Algebraic t-N and t-CN Operations on AIVPHFWA: For f (t) = −logt , the AIVPHFWA operator is
reduced to the IVPHFWA operator and is described as:

IVPHFWA
(
k̃1, k̃2, . . . , k̃n

)
=
⋃

([γli,γui ],[ηli,ηui ])∈k̃i,i=1,2,...,n

{([√
1−

∏n

i=1

(
1− γli

2
)ωi

,

√
1−

∏n

i=1

(
1− γui 2

)ωi]
,

[∏n

i=1

(
ηli
)ωi

,
∏n

i=1
(ηui )

ωi
])}

. (6)

• Einstein t-N and t-CN Operations on AIVPHFWA: For f (t) = log
(
2−t
t

)
, the AIVPHFWA operator is

reduced into IVPHFEWA operator and is presented as:

IVPHFEWA
(
k̃1, k̃2, . . . , k̃n

)

=
⋃

([γli,γ
u
i ],[η

l
i,η

u
i ])∈k̃i,

i=1,2,...,n




√∏n

i=1

(
1 +

(
γli
)2)ωi−∏n

i=1

(
1−

(
γli
)2)ωi√∏n

i=1

(
1 +

(
γli
)2)ωi

+
∏n
i=1

(
1−

(
γli
)2)ωi ,

√∏n
i=1

(
1 + (γui )

2
)ωi
−
∏n
i=1

(
1− (γui )

2
)ωi

√∏n
i=1

(
1 + (γui )

2
)ωi

+
∏n
i=1

(
1− (γui )

2
)ωi

 ,


√
2
∏n
i=1

(
ηli
)ωi√∏n

i=1

(
2−

(
ηli
)2)ωi

+
∏n
i=1

((
ηli
)2)ωi ,

√
2
∏n
i=1 (η

u
i )
ωi√∏n

i=1

(
2− (ηui )

2
)ωi

+
∏n
i=1

(
(ηui )

2
)ωi



 . (7)

• Hamacher t-N and t-CN Operations on AIVPHFWA: For f (t) = log
(
ψ+(1−ψ)t

t

)
, ψ > 0, the AIVPH-

FWA operator is reduced into the IVPHFHWA operator which is described as:

IVPHFHWA
(
k̃1, k̃2, . . . , k̃n

)
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=
⋃

([γli,γui ],[ηli,ηui ])∈k̃i,i=1,2,...,n





√∏n
i=1

(
1 + (ψ − 1)

(
γli
)2)ωi −∏n

i=1

(
1−

(
γli
)2)ωi√∏n

i=1

(
1 + (ψ − 1)

(
γli
)2)ωi

+ (ψ − 1)
∏n
i=1

(
1−

(
γli
)2)ωi ,

√∏n
i=1

(
1 + (ψ − 1) (γui )

2
)ωi
−
∏n
i=1

(
1− (γui )

2
)ωi

√∏n
i=1

(
1 + (ψ − 1) (γui )

2
)ωi

+ (ψ − 1)
∏n
i=1

(
1− (γui )

2
)ωi

 ,


√
ψ
∏n
i=1

(
ηli
)ωi√∏n

i=1

(
1 + (ψ − 1)

(
1−

(
ηli
)2))ωi

+(ψ − 1)
∏n
i=1

((
ηli
)2)ωi ,

√
ψ
∏n
i=1 (η

u
i )
ωi√∏n

i=1

(
1 + (ψ − 1)

(
1− (ηui )

2
))ωi

+(ψ − 1)
∏n
i=1

(
(ηui )

2
)ωi



 . (8)

For ψ = 1 and ψ = 2, IVPHFHWA operator is converted into IVPHFWA and IVPHFEWA operators,
respectively. So, IVPHFHWA operator is said to be a generalised version of IVPHFWA and IVPHFEWA
operators.
• Frank t-N and t-CN Operations on AIVPHFWA: For f (t) = log

(
τ−1
τt−1

)
, τ > 1, the AIVPHFWA operator

is reduced to IVPHFFWA operator in the form of

IVPHFFWA
(
k̃1, k̃2, . . . , k̃n

)

=
⋃

([γli,γ
u
i ],[η

l
i,η

u
i ])∈k̃i,

i=1,2,...,n




√√√√

1−
log
(
1 +

∏n
i=1

(
τ1−(γ

l
i)

2

− 1
)ωi)

log τ
,

√√√√
1−

log
(
1 +

∏n
i=1

(
τ1−(γ

u
i )

2

− 1
)ωi)

log τ

 ,

√√√√ log

(
1 +

∏n
i=1

(
τ(η

l
i)

2

− 1
)ωi)

log τ
,

√√√√ log
(
1 +

∏n
i=1

(
τ(η

u
i )

2

− 1
)ωi)

log τ



 .

For τ → 1, IVPHFFWA operator is reduced to IVPHFWA operator. So, IVPHFFWA operator may be considered
as a generalisation of IVPHFWA operator.

Some important properties of the proposed AIVPHFWA aggregation operators are presented below.

Theorem 2. (Boundary) Let k̃i (i = 1, 2, . . . , n) be a collections of IVPHFNs, and for all i= 1, 2,. . .,n, let

γlmin = min
{
γlimin
|γlimin

= min[γli,γui ]∈h̃i
{
γli
}}

,

γumax = max
{
γuimax
|γuimax

= max[γli,γui ]∈h̃i {γ
u
i }
}
,

ηlmax = max
{
ηlimax
|ηlimax

= max[ηli,ηui ]∈h̃i
{
ηli
}}

,
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ηumin = min
{
ηuimin
|ηuimin

= min[ηli,ηui ]∈h̃i {η
u
i }
}
,

and also γlmax, γumin, ηlmin and ηumax convey the alike meanings as above. Then

k̃− 6 AIVPHFWA
(
k̃1, k̃2, . . . , k̃n

)
6 k̃+, (9)

where k̃− =
([
γlmin, γ

u
min

]
,
[
ηlmax, η

u
max

])
and k̃+ =

([
γlmax, γ

u
max

]
,
[
ηlmin, η

u
min

])
.

Proof: For any i= 1, 2,. . .,n, γlmin 6 γli 6 γlmax and γumin 6 γui 6 γumax.
i.e.,

(
γlmin

)2
6
(
γli
)2

6
(
γlmax

)2
and (γumin)

2 6 (γui )
2 6 (γumax)

2.
Since g (t) (t ∈ [0, 1]) is a monotonic increasing function,

g−1
(∑n

i=1
ωig

((
γlmin

)2))
6 g−1

(∑n

i=1
ωig

((
γli
)2))

6 g−1
(∑n

i=1
ωig

((
γlmax

)2))
,

which implies that
(
γlmin

)2
6 g−1

(∑n
i=1 ωig

((
γli
)2))

6
(
γlmax

)2
.

So, γlmin 6

√
g−1

(∑n

i=1
ωig

((
γli
)2))

6 γlmax. (10)

Similarly, γumin 6

√
g−1

(∑n

i=1
ωig

(
(γui )

2
))

6 γumax. (11)

Now, for any i= 1, 2,. . .,n,
(
ηlmin

)2
6
(
ηli
)2

6
(
ηlmax

)2
.

Since f (t) (t ∈ [0, 1]) is a decreasing function,

f−1
(∑n

i=1
ωif

((
ηlmin

)2))
6 f−1

(∑n

i=1
ωif

((
ηli
)2))

6 f−1
(∑n

i=1
ωif

((
ηlmax

)2))
,

which implies that
(
ηlmin

)2
6 f−1

(∑n
i=1 ωif

((
ηli
)2))

6
(
ηlmax

)2
.

So, ηlmin 6

√
f−1

(∑n

i=1
ωif

((
ηli
)2))

6 ηlmax. (12)

Similarly, ηumin 6

√
f−1

(∑n

i=1
ωif

(
(ηui )

2
))

6 ηumax. (13)

From Eqs (10) and (12),

γlmin − ηlmax 6

√
g−1

(∑n

i=1
ωig

((
γli
)2))−√f−1 (∑n

i=1
ωif

((
ηli
)2))

6 γlmax − ηlmin.

From Eqs (11) and (13),

γumin − ηumax 6

√
g−1

(∑n

i=1
ωig

(
(γui )

2
))
−
√
f−1

(∑n

i=1
ωif

(
(ηui )

2
))

6 γumax − ηumin.

Then, S
(
k̃−

)
6 S

(
AIVPHFWA

(
k̃1, k̃2, . . . , k̃n

))
6 S

(
k̃+

)
.

Therefore, k̃− 6 AIVPHFWA
(
k̃1, k̃2, . . . , k̃n

)
6 k̃+.

Theorem 3. Let k̃i (i = 1, 2, . . . , n) be a collection of IVPHFNs, ωi ∈ [0, 1] (i = 1, 2, . . . , n) be their corresponding
weight vectors, and

∑n
i=1 ωi = 1. If k̃ be an IVPHFN, then

AIVPHFWA
(
k̃1⊕Ak̃, k̃2⊕Ak̃, . . . , k̃n⊕Ak̃

)
= AIVPHFWA

(
k̃1, k̃2, . . . , k̃n

)
⊕Ak̃. (14)

Proof.
It is clear that k̃i⊕Ak̃ =
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⋃
([γli,γ

u
i ],[η

l
i,η

u
i ])∈k̃i

i=1,2,...,n,

([γl, γu],[ηl, ηu])∈k̃

{([√
g−1

(
g
((
γli
)2)

+ g
(
(γl)

2
))
,

√
g−1

(
g
(
(γui )

2
)
+ g

(
(γu)

2
))]

,

[√
f−1

(
f
((
ηli
)2)

+ f
(
(ηl)

2
))
,

√
f−1

(
f
(
(ηui )

2
)
+ f

(
(ηu)

2
))])}

.

Let AIVPHFWA
(
k̃1⊕Ak̃, k̃2⊕Ak̃, . . . , k̃n⊕Ak̃

)
=
⋃

([γli,γ
u
i ],[η

l
i,η

u
i ])∈k̃i

i=1,2,...,n

([γl, γu],[ηl, ηu])∈k̃

{([√
g−1

(∑n

i=1
ωig

(
g−1

(
g
((
γli
)2)

+ g
(
(γl)

2
))))

,

√
g−1

(∑n

i=1
ωig

(
g−1

(
g
(
(γui )

2
)
+ g

(
(γu)

2
))))]

,

[√
f−1

(∑n

i=1
ωif

(
f−1

(
f
((
ηli
)2)

+ f
(
(ηl)

2
))))

,

√
f−1

(∑n

i=1
ωif

(
f−1

(
f
(
(ηui )

2
)
+ f

(
(ηu)

2
))))])}

=
⋃

([γli,γ
u
i ],[η

l
i,η

u
i ])∈k̃i

, i=1,2,...,n,

([γl, γu],[ηl, ηu])∈k̃

{([√
g−1

(∑n

i=1
ωi

(
g
((
γli
)2)

+ g
(
(γl)

2
)))

,

√
g−1

(∑n

i=1
ωi

(
g
(
(γui )

2
)
+ g

(
(γu)

2
)))]

,

[√
f−1

(∑n

i=1
ωi

(
f
((
ηli
)2)

+ f
(
(ηl)

2
)))

,

√
f−1

(∑n

i=1
ωi

(
f
(
(ηui )

2
)
+ f

(
(ηu)

2
)))])}

=
⋃

([γli,γ
u
i ],[η

l
i,η

u
i ])∈k̃i

i=1,2,...,n

([γl, γu],[ηl, ηu])∈k̃

{([√
g−1

(∑n

i=1
ωig

((
γli
)2)

+ g
(
(γl)

2
))
,

√
g−1

(∑n

i=1
ωig

(
(γui )

2
)
+ g

(
(γu)

2
))]

,

[√
f−1

(∑n

i=1
ωif

((
ηli
)2)

+ f
(
(ηl)

2
))
,

√
f−1

(∑n

i=1
ωif

(
(ηui )

2
)
+ f

(
(ηu)

2
))])}

.

Now, AIVPHFWA
(
k̃1, k̃2, . . . , k̃n

)
⊕Ak̃

=
⋃

([γli,γui ],[ηli,ηui ])∈k̃i,i=1,2,...,n

{([√
g−1

(∑n

i=1
ωig

((
γli
)2))

,

√
g−1

(∑n

i=1
ωig

(
(γui )

2
))]

,

[√
f−1

(∑n

i=1
ωif

((
ηli
)2))

,

√
f−1

(∑n

i=1
ωif

(
(ηui )

2
))])}

⊕A
{([

γl, γu
]
,
[
ηl, ηu

])}
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=
⋃

([γli,γ
u
i ],[η

l
i,η

u
i ])∈k̃i

i=1,2,...,n,

([γl, γu],[ηl, ηu])∈k̃

{([√
g−1

(
g
(
g−1

(∑n

i=1
ωig

((
γli
)2)))

+ g
(
(γl)

2
))

,

√
g−1

(
g
(
g−1

(∑n

i=1
ωig

(
(γui )

2
)))

+ g
(
(γu)

2
))]

,

[√
f−1

(
f
(
f−1

(∑n

i=1
ωif

((
ηli
)2)))

+ f
(
(ηl)

2
))
,

√
f−1

(
f
(
f−1

(∑n

i=1
ωif

(
(ηui )

2
)))

+ f
(
(ηu)

2
))])}

=
⋃

([γli,γ
u
i ],[η

l
i,η

u
i ])∈k̃i

i=1,2,...,n

([γl, γu],[ηl, ηu])∈k̃

{([√
g−1

(∑n

i=1
ωig

((
γli
)2)

+ g
(
(γl)

2
))
,

√
g−1

(∑n

i=1
ωig

(
(γui )

2
)
+ g

(
(γu)

2
))]

,

[√
f−1

(∑n

i=1
ωif

((
ηli
)2)

+ f
(
(ηl)

2
))
,

√
f−1

(∑n

i=1
ωif

(
(ηui )

2
)
+ f

(
(ηu)

2
))])}

.

Hence the theorem.

Theorem 4. (Idempotency) If all k̃i (i = 1, 2, . . . , n) are equal, and let k̃i =
{([

γl, γu
]
,
[
ηl, ηu

])}
for all

(i = 1, 2, . . . , n), then

AIVPHFWA
(
k̃1, k̃2, . . . , k̃n

)
= k̃ =

{([
γl, γu

]
,
[
ηl, ηu

])}
. (15)

Proof: Here, AIVPHFWA
(
k̃1, k̃2, . . . , k̃n

)
=
⋃

([γli,γui ],[ηli,ηui ])∈k̃i,i=1,2,...,n

{([√
g−1

(∑n

i=1
ωig

((
γli
)2))

,

√
g−1

(∑n

i=1
ωig

(
(γui )

2
))]

,

[√
f−1

(∑n

i=1
ωif

((
ηli
)2))

,

√
f−1

(∑n

i=1
ωif

(
(ηui )

2
))])}

.

Now, since k̃i = k̃ =
{([

γl, γu
]
,
[
ηl, ηu

])}
for all (i = 1, 2, . . . , n), then

γli = γl, γui = γu, ηli = ηl and ηui = ηu for all (i = 1, 2, . . . , n). Therefore,

AIVPHFWA
(
k̃, k̃, . . . , k̃

)
⋃

([γl, γu],[ηl, ηu])∈k̃
i=1,2,...,n

{([√
g−1

(
g
(
(γl)

2
)∑n

i=1
ωi

)
,

√
g−1

(
g
(
(γu)

2
)∑n

i=1
ωi

)]
,

[√
f−1

(
f
(
(ηl)

2
)∑n

i=1
ωi

)
,

√
f−1

(
f
(
(ηu)

2
)∑n

i=1
ωi

)])}
=
⋃

([γl, γu],[ηl, ηu])∈k̃
i=1,2,...,n

{([
γl, γu

]
,
[
ηl, ηu

])}
=
{([

γl, γu
]
,
[
ηl, ηu

])}
.

Hence the theorem.
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5.2. IVPHF Archimedean geometric operators

In the following, some IVPHF Archimedean geometric operators based on the Archimedean operations of IVPHFNs
is proposed.

Definition 13. For any collection of IVPHFNs, k̃i (i = 1, 2, . . . , n) and weight vector, ω = (ω1, ω2, . . . , ωn), an
At-N&t-CN-based IVPHFWG (AIVPHFWG) operator is defined by a mapping, AIV PHFWG : Kn → K such
that

AIVPHFWG
(
k̃1, k̃2, . . . , k̃n

)
= ⊗Ani=1

(
k̃ωii

)
,

where ωi ∈ [0, 1] and
∑n
i=1 ωi = 1.

Theorem 5. The aggregated value of any collections of IVPHFNs, k̃i (i = 1, 2, . . . , n) using AIVPHFWG operator
is also an IVPHFN, and is given by

AIVPHFWG
(
k̃1, k̃2, . . . , k̃n

)
=
⋃

([γli,γui ],[ηli,ηui ])∈k̃i,i=1,2,...,n

{([√
f−1

(∑n

i=1
ωif

((
γli
)2))

,

√
f−1

(∑n

i=1
ωif

(
(γui )

2
))]

,

[√
g−1

(∑n

i=1
ωig

((
ηli
)2))

,

√
g−1

(∑n

i=1
ωig

(
(ηui )

2
))])}

. (16)

Proof. Proof is same as the proof of Theorem 1.

It is worthy to mention here that for different forms of the decreasing generator, f , several forms of familiar
IVPHFWG operators can be obtained, which are described below.

Algebraic t-N and t-CN Operations on AIVPHFWG: If f (t) = −log t, then the AIVPHFWG operator reduces
to the IVPHF WG (IVPHFWG) operator, and is defined as:

IVPHFWG
(
k̃1, k̃2, . . . , k̃n

)
=
⋃

([γli,γui ],[ηli,ηui ])∈k̃i,i=1,2,...,n

{([∏n

i=1

(
γli
)ωi

,
∏n

i=1
(γui )

ωi
]
,[√

1−
∏n

i=1

(
1−

(
ηli
)2)ωi

,

√
1−

∏n

i=1

(
1− (ηui )

2
)ωi])}

. (17)

Einstein t-N and t-CN Operations on AIVPHFWG: If f (t) = log
(
2−t
t

)
is considered, then AIVPHFWG

operator reduces to IVPHF Einstein WG (IVPHFEWG) operator as:

IVPHFEWG
(
k̃1, k̃2, . . . , k̃n

)
=

⋃
([γli,γui ],[ηli,ηui ])∈k̃i,i=1,2,...,n





√
2
∏n
i=1

(
γli
)ωi√∏n

i=1

(
2−

(
γli
)2)ωi

+
∏n
i=1

((
γli
)2)ωi ,

√
2
∏n
i=1 (γ

u
i )
ωi√∏n

i=1

(
2− (γui )

2
)ωi

+
∏n
i=1

(
(γui )

2
)ωi

 ,
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√∏n

i=1

(
1 +

(
ηli
)2)ωi−∏n

i=1

(
1−

(
ηli
)2)ωi√∏n

i=1

(
1 +

(
ηli
)2)ωi

+
∏n
i=1

(
1−

(
ηli
)2)ωi ,

√∏n
i=1

(
1 + (ηui )

2
)ωi
−
∏n
i=1

(
1− (ηui )

2
)ωi

√∏n
i=1

(
1 + (ηui )

2
)ωi

+
∏n
i=1

(
1− (ηui )

2
)ωi



 . (18)

• Hamacher t-N and t-CN Operations on AIVPHFWG: When f (t) = log
(
ψ+(1−ψ)t

t

)
, ψ > 0, AIVPHFWG

operator reduces to IVPHF Hamacher WG (IVPHFHWG) operator in the form of

IVPHFHWG
(
k̃1, k̃2, . . . , k̃n

)
=
⋃

([γli,γui ],[ηli,ηui ])∈k̃i,i=1,2,...,n



√
ψ
∏n
i=1

(
γli
)ωi√∏n

i=1

(
1 + (ψ − 1)

(
1−

(
γli
)2))ωi

+(ψ − 1)
∏n
i=1

((
γli
)2)ωi ,

√
ψ
∏n
i=1 (γ

u
i )
ωi√∏n

i=1

(
1 + (ψ − 1)

(
1− (γui )

2
))ωi

+(ψ − 1)
∏n
i=1

(
(γui )

2
)ωi

 ,


√∏n
i=1

(
1 + (ψ − 1)

(
ηli
)2)ωi −∏n

i=1

(
1−

(
ηli
)2)ωi√∏n

i=1

(
1 + (ψ − 1)

(
ηli
)2)ωi

+ (ψ − 1)
∏n
i=1

(
1−

(
ηli
)2)ωi

√∏n
i=1

(
1 + (ψ − 1) (ηui )

2
)ωi
−
∏n
i=1

(
1− (ηui )

2
)ωi

√∏n
i=1

(
1 + (ψ − 1) (ηui )

2
)ωi

+ (ψ − 1)
∑n
i=1

(
1− (ηui )

2
)ωi



 . (19)

For ψ = 1 and ψ = 2, IVPHFHWG operator is turned into IVPHFWG and IVPHFEWG operators, respectively.
So, IVPHFHWG operator becomes a generalised version of IVPHFWG and IVPHFEWG operators.
• Frank t-N and t-CN Operations on AIVPHFWG: When f (t) = log

(
τ−1
τt−1

)
, τ > 1, AIVPHFWG operator

reduces to IVPHF Frank WG (IVPHFFWG) operator; thus, IVPHFFWG operator is defined as:

IVPHFFWG
(
k̃1, k̃2, . . . , k̃n

)
=
⋃

([γli,γui ],[ηli,ηui ])∈k̃i,i=1,2,...,n


√√√√ log

(
1 +

∏n
i=1

(
τ(γ

l
i)

2

− 1
)ωi)

log τ
,

√√√√ log
(
1 +

∏n
i=1

(
τ(γ

u
i )

2

− 1
)ωi)

log τ

 ,

√√√√

1−
log
(
1 +

∏n
i=1

(
τ1−(η

l
i)

2

− 1
)ωi)

log τ
,

√√√√
1−

log
(
1 +

∏n
i=1

(
τ1−(η

u
i )

2

− 1
)ωi)

log τ



 . (20)
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For τ → 1, IVPHFFWG operator is converted into IVPHFWG operator. So, IVPHFFWG operator is considered as
a generalisation of IVPHFWG operator.

It is to be mentioned here that AIVPHFWG operator possesses same properties as like AIVPHFWA operator as
discussed above. The proofs are also the same as that of AIVPHFWA operator. So, the proofs are skipped here.

6. MCDM method based on IVPHF information

In the present section, an approach to MCDM using IVPHF information is developed by utilising the proposed
AIVPHFWA and AIVPHFWG operators.

Let A = {A1, A2, . . . , Am} and C = {C1, C2, . . . , Cn} be a set of alternatives and a collection of criteria, respec-
tively, such that weight vector of the criteria is given by ω = (ω1, ω2, . . . , ωn) with ωj ∈ [0, 1] for j = 1, 2, . . . , n,
and

∑n
j=1 ωj = 1. The IVPHF decision matrix D̃=(d̃ij)m×n is constructed only when, all the performance scores

of the alternatives are obtained. In solving MCDM problems, the cost criteria are required to transform into benefit
criteria using the following method. Thus the decision matrix, D̃=(d̃ij)m×n is converted into a normalised decision
matrix, R̃=(r̃ij)m×n by the following way:

r̃ij =

{
d̃ij for benefit criteria Cj
d̃cij for cost criteria Cj

(21)

i= 1, 2,. . .,m and j= 1, 2,. . .,n. Here d̃cij denotes the complement of d̃ij .
Now, the newly defined AIVPHFWA (or AIVPHFWG) operator is utilized to develop an approach for solving

MCDM problems under IVPHF environment. The whole process is described through the following steps:
Step 1: Transform the decision matrix, D̃=

(
d̃ij

)
m×n

into the normalised form, R̃=(r̃ij)m×n using Eq. (21).
Step 2: Aggregate the IVPHFNs, r̃ij for each alternative, Ai using AIVPHFWA (or AIVPHFWG) operator for a

suitable weight vector, w and the parameters, ψ, τ as follows:

r̃Ai = AIVPHFWA (r̃i1, r̃i2, . . . , r̃in)

=
⋃

([γlij ,γuij],[ηlij ,ηuij])∈r̃ij ,j=1,2,...,n{([√
g−1

(∑n

j=1
ωjg

((
γlij
)2))

,

√
g−1

(∑n

j=1
ωjg

((
γuij
)2))]

,[√
f−1

(∑n

j=1
ωjf

((
ηlij
)2))

,

√
f−1

(∑n

i=1
ωjf

((
ηuij
)2))])}

(22)

or

r̃Gi = AIVPHFWG (r̃i1, r̃i2, . . . , r̃in)

=
⋃

([γlij ,γuij],[ηlij ,ηuij])∈r̃ij ,j=1,2,...,n{([√
f−1

(∑n

j=1
ωjf

((
γlij
)2))

,

√
f−1

(∑n

j=1
ωjf

((
γuij
)2))]

,[√
g−1

(∑n

j=1
ωjg

((
ηlij
)2))

,

√
g−1

(∑n

i=1
ωjg

((
ηuij
)2))])}

(23)

i = 1, 2, . . . ,m; j = 1, 2, . . . , n.

Step 3: Utilizing the score function as mentioned in Definition 2, the rank of all alternatives is evaluated.

The above method is validated through the following illustrative examples.
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Table 1
IVPHF decision matrix

C1 C2

A1 {([.1, .2] , [.3, .6]) , ([.2, .3] , [.4, .7])}
{
([.3, .4] , [.6, .9]) , ([.3, .5] , [.4, .8]) ,

([.2, .7] , [.2, .6])

}
A2 {([.2, .4] , [.3, .5]) , ([.5, .6] , [.4, .7])} {([.2, .5] , [.6, .7]) , ([.3, .6] , [.4, .8])}
A3 {([.6, .9] , [.1, .2]) , ([.7, .8] , [.2, .3])} {([.4, .6] , [.2, .4]) , ([.5, .7] , [.3, .4])}
A4 {([.6, .7] , [.3, .5]) , ([.7, .8] , [.3, .4])} {([.4, .5] , [.2, .5]) , ([.5, .6] , [.4, .5])}
A5 {([.3, .7] , [.3, .4]) , ([.6, .8] , [.4, .6])} {([.3, .5] , [.3, .6]) , ([.3, .7] , [.4, .7])}

C3 C4

A1 {([.2, .5] , [.5, .8]) , ([.2, .6] , [.3, .8])} {([.2, .6] , [.3, .8]) , ([.2, .7] , [.4, .6])}
A2 {([.2, .5] , [.3, .7]) , ([.3, .5] , [.6, .7])} {([.2, .5] , [.4, .7]) , ([.4, .7] , [.5, .6])}

A3

{
([.5, .6] , [.1, .2]) , ([.7, .8] , [.4, .6]) ,

([.8, .9] , [.1, .2])

}
{([.4, .7] , [.3, .5]) , ([.6, .9] , [.2, .4])}

A4 {([.4, .5] , [.2, .3]) , ([.5, .6] , [.4, .5])}
{
([.4, .6] , [.2, .6]) , ([.3, .6] , [.3, .7]) ,

([.5, .8] , [.4, .6])

}
A5 {([.2, .6] , [.4, .6]) , ([.3, .7] , [.4, .7])} {([.3, .6] , [.4, .6]) , ([.5, .6] , [.3, .7])}

7. Illustrative examples

To establish application potentiality of the proposed approach, two illustrative examples are considered and solved
in this section.

7.1. Example 1

At first, a revised problem (adapted from Wei et al. [25]) relating to green supply chain management (GSCM) is
considered and solved under IVPHF context.

It is well known that the choice of suitable green supplier is a key factor of GSCM. Due to the fact that the entire
supply chain depends upon the quality of the suppliers; and the ecological performance of industrial companies,
organizations is directly or indirectly balanced by the suppliers’ characteristics, so, in the view of sociological or
environmental impact of the suppliers, appropriate green supplier assessment has now become an emerging research
topic. In this section, the proposed methodology is applied to GSCM with IVPHF data for supplier evaluation and
choosing most potential supplier.

The problem is discussed in the following manner:
In a GSCM five green suppliers are available as alternatives which are given by the set, A = {Ai|i = 1, 2, 3, 4, 5}.
The four criteria on which the suppliers are evaluated by the experts are given by
• C1: The product quality factors.
• C2: Environmental factors.
• C3: Delivery factors.
• C4: Price factors.
The criteria weight vector is considered as w = (0.4, 0.1, 0.2, 0.3)

T .
The DM provided judgement values on the alternatives considering the above-mentioned criteria by using IVPHFNs,

and the resulting IVPHF decision matrix is presented in Table 1.
Now, the developed method is applied to find the best supplier in the decision making context. The steps of the

methodology are presented below:
Step 1: All the criteria as shown in Table 1, being the benefit criteria, the decision matrix need not be normalised

further.
Step 2: Utilising IVPHFHWA operator to aggregate IVPHFNs for each alternative, Ai, considering associated

weight vector, w = (0.4, 0.1, 0.2, 0.3)
T , and the value of the parameter, ψ = 2, the aggregated IVPHFNs are

calculated. For simplicity of presentation, only the aggregated IVPHFNs corresponding to the alternative, A2 is
presented below.

rA2 = IVPHFHWA (r̃21, r̃22, r̃23, r̃24)

= {([0.2000, 0.4631] , [0.3520, 0.6155]) , ([0.2762, 0.5414] , [0.3774, 0.5867]) , ([0.2237, 0.4631] ,
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Table 2
Score values for ψ = 2

Operator Parameter S
(
r̃A1

)
S
(
r̃A2

)
S
(
r̃A3

)
S
(
r̃A4

)
S
(
r̃A5

)
IVPHFHWA ψ = 2 0.4153 0.4545 0.7240 0.6049 0.5259

Fig. 1. Variation of the score values using IVPHFHWA operator.

[0.4061, 0.6155]) , ([0.2937, 0.5414] , [0.4346, 0.5867]) , ([0.2122, 0.4754] , [0.3370, 0.6248]) ,

([0.2851, 0.5515] , [0.3614, 0.5957]) , ([0.2346, 0.4754] , [0.3891, 0.6248]) , ([0.3021, 0.5515] ,

[0.4167, 0.5957]) , ([0.3543, 0.5431] , [0.39450.7000, ]) , ([0.4015, 0.6081] , [0.4224, 0.6693]) ,

([0.3679, 0.5431] , [0.4538, 0.7000]) , ([0.4134, 0.6081] , [0.4849, 0.6693]) , ([0.3612, 0.5532] ,

[0.3780, 0.7098]) , ([0.4075, 0.6166] , [0.4049, 0.6790]) , ([0.3746, 0.5532] , [0.4353, 0.7098]) ,

([0.4193, 0.6166] , [0.4654, 0.6790])}

Similarly, other values of r̃Ai (i = 1, 2, . . . , 5) are calculated.
Step 3: The score values of each alternatives Ai (i = 1, 2, . . . , 5) are calculated and is presented in Table 2. The

alternatives are ranked based on the score values.
In accordance with the score values, the alternatives are ranked, and the ordering of alternatives are obtained as

A3 � A4 � A5 � A2 � A1. Therefore, the best alternative is identified as A3.

7.1.1. Sensitivity analysis
Now, based on the DM’s preferences, the parameter, ψ can presume different values. To observe the variation of

the ranking of the five alternatives based on the parameter, ψ, the values between 0 to 50 are assigned. The achieved
score values of the five alternatives are shown in Figs 1 and 2.

From Fig. 1, it is observed that, using IVPHFHWA operator, the ordering of the alternatives does not change, but
the score value of the alternatives decreases monotonically.

In a similar manner, IVPHFHWG operator is used on the given example, and the score value of alternatives are
calculated by varying the parameter, ψ between 0 to 50. The achieved results are presented in Fig. 2. It is to be
noted that the ordering of alternatives does not change as like using IVPHFHWA operator. But the score value of the
alternatives increases monotonically.

Now, if IVPHFFWA and IVPHFFWG operators are used, individually, instead of using IVPHFHWA or
IVPHFHWG operators for aggregating the attribute values of the alternatives, then the score values are presented in
the Figs 3 and 4, respectively. As like above cases, similar observations are viewed through the figures corresponding
to averaging and geometric operators.
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Fig. 2. Variation of the score values using IVPHFHWG operator.

Fig. 3. Variation of the score values using IVPHFFWA operator.

It is worthy to mention here that no changes in the orderings of the alternatives are found while making the decision
using different aggregation operators. Thus it stands that the proposed methodology possesses a strong consistency.

7.1.2. Comparison with existing method [25]
In the context of solving MCDM problems, Wei et al. [25] used PHFHWA and PHFHWG operators. It is to be

noted here that the orderings of alternatives achieved by Wei et al. [25] are the same as like the proposed method. In
the method developed by Wei et al. [25], PHF values are used. But in the proposed method, DM can evaluate the
problem more adequately using IVPHFNs. So, the proposed method is advantageous for considering DM’s flexibility
for making proper assessment in real-life MCDM contexts. Further, the existing Hamacher aggregation operators [25]
for PHFNs become a particular case of the At-N&t-CN based proposed operators. Moreover, the superiority of the
proposed method is reflected by comparing the differences between two consecutive score values of the alternatives,
which are ranked using the proposed method and the method described by Wei et al. [25]. The comparisons are
presented through Figs 5 and 6.

The above figures show that the difference between any two score values of the consecutively ranked alternatives
increases, significantly, in the proposed method. So the rank of the alternatives can be identified in a better way
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Table 3
IVPHF decision matrix

C1 C2 C3

A1 {([0.4, 0.5] , [0.3, 0.4])}
{
([0.4, 0.6] , [0.2, 0.4]) ,
[0.5, 0.7] , [0.3, 0.5]

} {
([0.1, 0.2] , [0.8, 0.9]) ,
([0.1, 0.3] , [0.5, 0.6])

}
A2

{
([0.6, 0.7] , [0.2, 0.3]) ,
([0.75, 0.9] , [0.1, 0.3])

}
{([0.6, 0.7] , [0.2, 0.3])}

{
([0.4, 0.7] , [0.1, 0.2]) ,
([0.7, 0.9] , [0.2, 0.3])

}
A3 {([0.3, 0.6] , [0.3, 0.4])}

{
([0.5, 0.6] , [0.3, 0.4]) ,
([0.6, 0.7] , [0.4, 0.5])

}
{([0.5, 0.6] , [0.1, 0.3])}

A4

{
([0.7, 0.8] , [0.1, 0.2]) ,
([0.6, 0.8] , [0.2, 0.3])

}
{([0.6, 0.7] , [0.1, 0.3])}

{
([0.3, 0.4] , [0.1, 0.2]) ,
([0.6, 0.7] , [0.1, 0.25])

}

Fig. 4. Variation of the score values using IVPHFFWG operator.

Fig. 5. Difference between two consecutive score values of the ranked alternatives using IVPHFHWA and PHFHWA operators.

than the existing method. Thus in comparison with the existing methods, the proposed methodology contains better
efficiency in ranking the alternatives.

7.2. Example 2

Another problem is considered in this section to show the applicability and efficiency of the proposed methodology,
more clearly. The problem related to investment of funds in an appropriate company. It is collected from a research
article published by Garg [31] and revised under IVPHF environment. There are four investment companies,
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Fig. 6. Difference between two consecutive score values of the ranked alternatives using IVPHFHWG and PHFHWG operators.

Fig. 7. Variation of the score values using IVPHFHWA operator.

Ai (i = 1, 2, 3, 4) satisfying three criteria, Cj (j = 1, 2, 3) with the weight vector, w = (0.35, 0.25, 0.40)
T . To

choose the best investment company, the DM evaluates the alternatives based on the above criteria using IVPHFNs,
and their evaluation values are listed in the following Table 3.

Using IVPHFHWA (Considering Hamacher parameter ψ = 0.5), the score values are obtained as S (A1) = 0.4338,
S (A2) = 0.7047, S (A3) = 0.5721, S (A4) = 0.6465.

So, the rank of the alternatives is A2 � A4 � A3 � A1.
Further, using IVPHFHWG operator (Considering Hamacher parameter = 10), the score values are achieved as

S (A1) = 0.3812, S (A2) = 0.6226, S (A3) = 0.5468, S (A4) = 0.5638.
So, the rank of the alternatives becomes A2 � A4 � A3 � A1.

7.2.1. Sensitivity analysis
Changing the Hamacher parameter, ψ in (0, 10], and using IVPHFHWA and IVPHFHWG operators, the corre-

sponding score values are presented through the Figs 7 and 8, respectively. From Fig. 7, it is clear that the ranking of
the alternatives remains unchanged using IVPHFHWA operator for ψ ∈ (0, 10]. But, Fig. 8 discloses that the ranking
of the alternatives differs for some values of ψ using IVPHFHWG operator. The ranking results are listed below.

Using IVPHFHWA operator, the ranking of alternative becomes A2 � A3 � A4 � A1 for ψ ∈ (0, 10]. Thus, the
best alternative remains the same as A2 throughout the given range.

Besides, using IVPHFHWG operator, the rankings of alternatives become
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Fig. 8. Variation of the score values using IVPHFHWG operator.

Fig. 9. The differences of overall values of the consecutively ranked alternatives.

A3 � A2 � A4 � A1 for ψ ∈ (0, 0.1089);
A2 � A3 � A4 � A1 for ψ ∈ (0.1089, 1.5762); and
A2 � A4 � A3 � A1 for ψ ∈ (1.5762, 10].
Hence the best alternative is either A2 or A3 according to the choice of the parameter.

7.2.2. Comparison with other Method [31]
Using the Method developed by Garg [31], the ranking of the alternatives is found as A2 � A4 � A3 � A1; which

is also acquired by the proposed operators by choosing particular value of the Hamacher parameter, ψ. Hence, in
dealing real life MCDM problems, the proposed method is justified. Moreover, from the view point of the ranking
results for different values of Hamacher parameter, it can be concluded that, by changing the values of the Hamacher
parameter, ψ, according to the needs of the DMs, exact decisions can be taken. Further, in Fig. 9, the differences of
overall values of the consecutively ranked alternatives are presented to compare with the existing method [31]. It is
figured out from the figure that, using the proposed operators, the differences of overall values of the consecutively
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ranked alternatives are considerably increased than the existing method [31]. This shows that the proposed method is
more effective than the existing method [31] in order to accomplish the ranking results.

8. Conclusions

In this paper, it has been shown that the proposed At-N&t-CN based aggregation operators for IVPHFNs are more
flexible than the existing operators due to the presence of the parameters, ψ, τ . Depending on the preferences of the
DMs, different values of the parameter can be chosen. As a consequence, several classes of aggregation operators can
be generated. Thus the proposed method is capable enough to capture preferences of the DMs in MCDM problems
in more flexible way. Through the illustrative examples, it has been established the fact that the proposed method
not only capture the existing Hamacher operation based aggregation operators for PHFNs (Wei et al. [25]), but also
extends the scope of using aggregation operators in IVPHF environments. The superiority of the proposed method
is established by comparing the differences between any two score values of the consecutively ranked alternatives
through the proposed method and the existing methods [25,31]. The comparison shows that all the differences have
significantly increased. Hence ordering of the alternatives using the proposed methodology is more powerful. In
future, the proposed operators may be extended to other domains, viz., q-rung orthopair fuzzy [49], bipolar fuzzy [50],
cubic fuzzy [51,52], Pythagorean cubic fuzzy [53], cubic bipolar fuzzy [54], hesitant Pythagorean fuzzy [55] and
other environments to capture uncertainties in more efficient ways. However, it is hoped that the proposed method
would open up new direction for resolving uncertainties associated with real life MCDM problems.
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Interval-valued dual hesitant fuzzy prioritized
aggregation operators based on Archimedean t-conorm

and t-norm and their applications to multi-criteria
decision making

Arun SARKAR and Animesh BISWAS

Multi-criteria decision making (MCDM) technique and approach have been a trending
topic in decision making and systems engineering to choosing the probable optimal options.
The primary purpose of this article is to develop prioritized operators to multi-criteria de-
cision making (MCDM) based on Archimedean t-conorm and t-norms (At-CN&t-Ns) under
interval-valued dual hesitant fuzzy (IVDHF) environment. A new score function is defined for
finding the rank of alternatives in MCDM problems with IVDHF information based on priority
levels of criteria imposed by the decision maker. This paper introduces two aggregation opera-
tors: At-CN&t-N-based IVDHF prioritized weighted averaging (AIVDHFPWA), and weighted
geometric (AIVDHFPWG) aggregation operators. Some of their desirable properties are also
investigated in details. A methodology for prioritization-based MCDM is derived under IVDHF
information. An illustrative example concerning MCDM problem about a Chinese university
for appointing outstanding oversea teachers to strengthen academic education is considered.
The method is also applicable for solving other real-life MCDM problems having IVDHF
information.

Key words: multi-criteria decision-making, interval-valued dual hesitant fuzzy ele-
ments, Archimedean t-conorm and t-norm, prioritized weighted averaging operator, prioritized
weighted geometric operator

1. Introduction

The ambiguity of information is becoming an unalterable situation due to
the rising complexity of our lifestyle rapidly. Multi-criteria decision making
(MCDM) methods are a handy tool to grip this type of situation. Therefore,
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MCDM has been an inexorable process to assess an object precisely. Besides the
prior several decades, various methods have been proposed for solving differ-
ent MCDM problems. Decision-maker (DM) can give their opinion by hesitant
fuzzy (HF) set (HFS) [1,2] to defeat any hesitations. Generally, aggregation oper-
ators are essential tools for dealing with such MCDM problems. Xia and Xu [3]
proposed a series of weighted averaging (WA) and weighted geometric (WG) ag-
gregation operators based on HF environment viz., HF WA, HF ordered WA and
their geometric operators. Based on Einstein operation, Zhou and Li [4] defined
HF Einstein WG, and HF Einstein ordered WG operators and established the
connections between the proposed operators. Zhang [5] proposed a method for
deriving the weights of DMs and solved a multi-criteria group decision making
(MCGDM) problem under HF information. Based onHamacher t-conorm (t-CN)
and t-norms (t-Ns), Son et al. [6] introduced some new HF power aggregation
operators. Inspired by the concept of intuitionistic fuzzy (IF) set (IFS) and HFS,
Zhu et al. [7] introduced dual HF (DHF) set (DHFS) by considering possible
membership degrees and non-membership degrees with the condition that sum
of maximum membership and non-membership degrees is less or equal to one.
Under the DHF context, Wang et al. [8] defined some WA and WG aggregation
operators: DHF WA, DHF WG, DHF ordered WA and DHF ordered WG op-
erators. With Hamacher operations, Ju et al. [9] developed several aggregation
operators viz., DHF Hamacher WA, DHF Hamacher WG, DHF Hamacher or-
dered WA, DHF Hamacher ordered WG operators, etc. Yu et al. [10] introduced
the aggregation operators for aggregating DHF elements (DHFEs) and described
these operators’ properties. Zhao et al. [11] proposed some arithmetic operations
of DHFEs based on Einstein t-CN and t-N, and some DHF aggregation operators
are also introduced. Tang et al. [12] proposed the generalized rules of DHFS
based on Frank t-CN and t-N, and used to construct the aggregation operators on
DHF assessments in the context of MCDM.

However, in several real-life MCDMmodels, due to insufficiency in available
information, DM are unable to exert their opinion with a crisp number but are
comfortable to putting the decision values by interval numbers within [0, 1]. To
address this situation, Ju et al. [13] introduced the concept of interval-valued
DHF (IVDHF) sets (IVDHFSs), which takes the hesitant membership and non-
membership degrees in the form of interval-valued fuzzy numbers. It should be
noted that when both the membership degree and non-membership degree of
each element to a given set have single interval value, the IVDHFS reduces to
the interval-valued IFS [14] and when the upper and lower limits of interval
values are identical, IVDHFS becomes DHFS [7]. Thus, it is clear that IVDHFS
is a more generalized form than other extensions of fuzzy sets. To aggregate the
IVDHF elements (IVDHFEs), Ju et al. [13] developed IVDHF WA aggregation
operator. Further, Zhang et al. [15] imposed Einstein t-CN and t-N on IVDHF
environment to develop IVDHF EinsteinWA and IVDHF EinsteinWG operators.
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During the aggregation process, the selection of appropriate operational laws is a
crucial phase. The Archimedean t-CN and t-N (At-CN&t-N) provides a general
rule of operational laws and more choices for DM. Different classes of t-CNs
and t-Ns can be derived from At-CN&t-N [16, 17], such as t-CNs and t-Ns of
the Algebraic, Einstein, Hamacher, Frank, and so on. Based on At-CN&t-N, Xia
et al. [18] introduced At-CN&t-N-based IF WA and WG operators. Zhang and
Wu [19] developed several At-CN&t-N-based interval-valued HF (IVHF) WA
and WG aggregation operators. On DHF environment, Yu [20] proposed DHF
WA and WG aggregation operators based on At-CN&t-N operations. Recently,
Sarkar and Biswas [21] introduced At-CN&t-N operations on Pythagorean HF
sets and defined a class of At-CN&t-N-based Pythagorean HF WA and WG
operators. Again Sarkar and Biswas [22] applied At-CN&t-N on the IVDHF
information and introduced a class of aggregation operators.

The above methods are all used under the premise that all criteria are in the
same priority level. Most applications involve selecting or ordering of a group of
alternatives based upon their satisfaction to a collection of criteria. To deal with
this issue, Yager [23] developed prioritized average (PA) operators by modelling
the criteria priority on the weights associated with criteria, which are dependent
on the satisfaction of higher priority criteria. Yager [24] further focused on PA
operators and proposed two methods for formulating this type of aggregation
process. It is well known that the PA operator has many advantages over other
operators. On HF environment, Yu [25] developed a family of aggregation oper-
ators based on Einstein t-CN and t-N, such as HF Einstein prioritized WA, WG
and power WA operators. Wei [26] developed two prioritized aggregation opera-
tors for aggregating HFEs: HF prioritizedWA (HFPWA), and HF prioritizedWG
(HFPWG) operators. Chen [27] introduced interval-valued IF prioritized aggrega-
tion operator and illustrated the proposed methodology by solving the watershed
site selection problem. Liang et al. [28] derived generalized intuitionistic trape-
zoidal fuzzy prioritized WA and WG operators, also construct an approach for
MCGDM under intuitionistic trapezoidal fuzzy environment. Under the IVHF
context, Ye [29] proposed IVHF prioritized WA andWG operators and presented
some properties of the proposed aggregation operators. Jin et al. [30] introduced
Einstein operational laws on IVHF sets, and also developed two prioritized ag-
gregation operators: IVHF Einstein prioritized WA (IVHFEPWA) and IVHF
Einstein prioritized WG (IVHFEPWG) operators. Ren and Wei [31] proposed a
prioritized multi-attribute decision-making method to solve decision problems
under DHF environment. Recently, Biswas and Sarkar [32] introduced Einstein
operations-based DHF prioritized WA (DHFPWA), and WG (DHFPWG) opera-
tors and constructed an approach for MCGDM. However, prioritized aggregation
operators are applied in various contexts viz., IF, HF, IVHF, DHF for MCDM.
But many prioritized-based MCDM problems can not be solved which are de-
signed on IVDHF environment. And to overcome such situation, a methodology
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is proposed for IVDHF prioritized MCDM, which is the main motivation of this
article. To do this at first define two prioritized aggregation operators based on
At-CN&t-Ns under IVDHF information.

This article is organized as follows. Some preliminary concepts on DHFS,
IVDHFS, At-CN&t-Ns and At-CN&t-Ns-based operations on IVDHFEs are
studied in Section 2. A new score function of IVDHFE is defined in Section 3. In
Section 4, At-CN&t-Ns-based IVDHF prioritizedWA (AIVDHFPWA), andWG
(AIVDHFPWG) aggregation operators are proposed to aggregate the IVDHFEs.
After that classification of the proposed operators is made for different types of
decreasing functions. Some desired properties and special cases of the proposed
operators are also investigated. Section 5 gives an approach to MCDM under
IVDHF environment. In Section 6, an illustrative example is solved using the
proposed method, and sensitivity analysis is performed by varying the parameter.
Finally, conclusion and scope for future studies have been described in Section 7.

2. Preliminaries

This section briefly reviews some basic concepts of DHFS, IVDHFS, At-
CN&t-Ns and prioritized aggregation operators.

2.1. DHFS

Definition 1 [7] The concept of DHFS was presented by Zhu et al. [7]. Let X be
a fixed set. Then a DHFS is defined as

P =
{
〈x, hP(x), gP(x)〉 �� x ∈ X

}
, (1)

where
{
µ�� µ ∈ hP(x)

}
and

{
ν�� ν ∈ gP(x)

}
denote the set of possible membership

and non-membership degrees, respectively, of the element x ∈ X to the set P,
satisfying the conditions:

0 ¬ µ, ν ¬ 1, 0 ¬ max{µ} + max{ν} ¬ 0, for all x ∈ X . For convenience,
〈hP(x), gP(x)〉 is called the DHF element (DHFE) and denoted by p = 〈h, g〉.

To compare among the DHFEs, Zhu et al. [7] derived the following compari-
son formula.
Definition 2 [7] Let p = 〈h, g〉 be a DHFE. Then the score function S(p) and
accuracy function A(p) of p is defined by

S(p) = ĥ − ĝ and A(p) = ĥ + ĝ,

where ĥ =
1
#h

∑
µ∈h

µ and ĝ =
1
#g

∑
ν∈g

ν, and #h and #g denote the number of

elements in h and g, respectively.
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For any two DHFEs p1 and p2, if S(p1) > S(p2) then p1 � p2.
To computeDMs’ preference values by an interval numberwithin [0, 1] instead

of crisp numbers, Ju et al. [13] defined the concept of IVDHFSs.

Definition 3 [13] Let X be a given set, then an IVDHFS Ã on X is described as:

Ã =
{〈

x, h̃Ã(x), g̃Ã(x)
〉 �� x ∈ X

}
, (2)

in which h̃Ã(x) =
⋃

[γl,γu]∈h̃(x)

{ [
γl, γu

] }
and g̃Ã(x) =

⋃
[ηl,ηu]∈g̃(x)

{ [
ηl, ηu

] }
are

two sets of interval values in [0, 1], representing the possible membership degree
and non-membership degree of the element x ∈ X to the set Ã, respectively,
with

[
γl, γu

] [
ηl, ηu

]
⊂ [0, 1] and 0 ¬ max {γu} + max {ηu} ¬ 1, for all x ∈ X .

For convenience, Ju et al. [13] called the pair α̃(x) =
(
h̃(x), g̃(x)

)
an IVDHF

element (IVDHFE) and denoted by α̃ =
(
h̃, g̃

)
.

To compare the IVDHFEs, Ju et al. [13] defined the score function and
accuracy function in the following manner.

Definition 4 [13] Score function of IVDHFE α̃ =
(
h̃, g̃

)
is defined as

H
(
α̃
)
=

1
2

*..
,

1
∆h̃

∑
[γl,γu]∈h̃

(
γl + γu

)
−

1
∆g̃

∑
[ηl,ηu]∈g̃

(
ηl + ηu

)+//
-
, (3)

and accuracy function of IVDHFE α̃ =
(
h̃, g̃

)
is defined as

A
(
α̃
)
=

1
2

*..
,

1
∆h̃

∑
[γl,γu]∈h̃

(
γl + γu

)
+

1
∆g̃

∑
[ηl,ηu]∈g̃

(
ηl + ηu

)+//
-
, (4)

where ∆h̃ and ∆g̃ is the number of intervals in h̃ and g̃ respectively.

Definition 5 Let α̃1 and α̃2 be any two IVDHFEs,

(i) If H
(
α̃1

)
> H

(
α̃2

)
then α̃1 > α̃2;

(ii) If H
(
α̃1

)
= H

(
α̃2

)
then if A

(
α̃1

)
> A

(
α̃2

)
then α̃1 > α̃2; if A

(
α̃1

)
=

A
(
α̃2

)
then α̃1 = α̃2.
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2.2. A t-CN&t-Ns

In this section, the definition of At-CN&t-Ns is displayed.

Definition 6 [16, 17] A function U : [0, 1] × [0, 1] → [0, 1] is called a t-CN if
it satisfies associativity, symmetricity, non-decreasing and U (x, 0) = x for all
x ∈ [0, 1]. If a binary operation I : [0, 1] × [0, 1] → [0, 1] satisfies associativity,
symmetricity, non-decreasing and I (x, 1) = x for all x ∈ [0, 1] then I is known
as a t-N.

Archimedean t-CN (At-CN) and Archimedean t-N (At-N) operations are
expressed as follows:
Definition 7 [33] An At-CN U is formulated using increasing function g as

U (x, y) = g(−1) (
g(x) + g(y)

)
, (5)

similarly, using decreasing function f , an At-N I is represented as

I (x, y) = f (−1) (
f (x) + f (y)

)
with g(t) = f (1−t) for all x, y, t ∈ [0, 1]. (6)

Several t-CNs and t-Ns are derived byKlement andMesiar [32] using different
forms of increasing and decreasing functions; and using these functions Sarkar
and Biswas [22] defined some operational rules for IVDHFEs based on algebraic,
Einstein, Hamacher, and Frank classes of t-CN and t-Ns.

Definition 8 [22] Let α̃i =
(
h̃i, g̃i

)
(i = 1, 2) and α̃ =

(
h̃, g̃

)
be any three

IVDHFEs, λ > 0 be any scalar. At-CN&t-Ns-based operational laws for the
IVDHFEs are presented bellow.
(1) α̃1 ⊕A α̃2 =

*.....
,

⋃
[γli,γ

u
i ]∈h̃i

,i=1,2

{ [
U

(
γl

1, γ
l
2

)
,U

(
γu

1, γ
u
2

)] }
,

⋃
[ηli,η

u
i ]∈g̃i,

i=1,2

{ [
I
(
ηl

1, η
l
2

)
, I

(
ηu

1, η
u
2

)] }+/////
-

=

*.....
,

⋃
[γli,γ

u
i ]∈h̃i,

i=1,2

{ [
g−1

(
g

(
γl

1

)
+ g

(
γl

2

))
, g−1

(
g

(
γu

1

)
+ g

(
γu

2

))] }
,

⋃
[ηli,η

u
i ]∈g̃i,

i=1,2

{ [
f −1

(
f
(
ηl

1

)
+ f

(
ηl

2

))
, f −1

(
f
(
ηu

1

)
+ f

(
ηu

2

))] }+/////
-

;
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(2) α̃1 ⊗A α̃2 =

*.....
,

⋃
[γli,γ

u
i ]∈h̃i,

i=1,2

{ [
I
(
γl

1, γ
l
2

)
, I

(
γu

1, γ
u
2

)] }
,

⋃
[ηli,η

u
i ]∈g̃i,

i=1,2

{ [
U

(
ηl

1, η
l
2

)
,U

(
, ηu

1, η
u
2

)] }+/////
-

=

*.....
,

⋃
[γli,γ

u
i ]∈h̃i,

i=1,2

{ [
f −1

(
f
(
γl

1

)
+ f

(
γl

2

))
, f −1

(
f
(
γu

1

)
+ f

(
γu

2

))] }
,

⋃
[ηli,η

u
i ]∈g̃i,

i=1,2

{ [
g−1

(
g

(
ηl

1

)
+ g

(
ηl

2

))
, g−1

(
g

(
ηu

1

)
+ g

(
ηu

2

))] }+/////
-

;

(3) λα̃ =

*..
,

⋃
[γl,γu]∈h̃

{ [
g−1

(
λg

(
γl

))
, g−1 (

λg
(
γu))] }

,

⋃
[ηl,ηu]∈g̃

{ [
f −1

(
λ f

(
ηl

))
, f −1 (

λ f
(
ηu))] }+/

-
;

(4) α̃λ =

*..
,

⋃
[γl,γu]∈h̃

{ [
f −1

(
λ f

(
γl

))
, f −1 (

λ f
(
γu))] }

,

⋃
[ηl,ηu]∈g̃

{ [
g−1

(
λg

(
ηl

))
, g−1 (

λg
(
ηu))] }+/

-
.

2.3. PA Operator

PA operator for MCDM problems was introduced by Yager [23], which is
defined in the following manner:
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Definition 9 [23] Let {Ci} (i = 1, 2, . . . , n) be a collection of criteria, and their
priority is expressed by the linear ordering C1 � C2 � . . . � Cn. This ordering
indicates criteria Cj has a higher priority than Ck if j < k. The value Cj (z) is the
performance of any alternative z under criteria Cj , and satisfies Cj (z) ∈ [0, 1].

If PA
(
Cj (z)

)
=

n∑
j=1

w jCj (z), where w j =
Tj

n∑
j=1

Tj

, Tj =

j−1∏
k=1

Ck (z)

( j = 2, . . . , n), T1 = 1. Then PA is called the PA operator.

In the following section, a new score function of IVDHFEs is introduced. The
drawback of score function defined by Ju et al. [9] is that the score value may be
negative.

3. Score value of IVDHFE

Definition 10 Score function of IVDHFE α̃ =
(
h̃, g̃

)
is defined as

S
(
α̃
)
=

*.
,

*.
,

1
2

*.
,

1
∆h̃

*.
,

∑
[γl,γu]∈h

(
γl + γu

)+/
-
−

1
∆g̃

*.
,

∑
[ηl,ηu]∈g

(
ηl + ηu

)+/
-

+/
-

+/
-
+ 1+/

-

/
2, (7)

where ∆h̃ and ∆g̃ denote the number of intervals in h̃ and g̃, respectively.

To compare among the IVDHFEs, a comparative rule is presented as follows:

Definition 11 Let α̃1 and α̃2 be any two IVDHFEs, then
If S

(
α̃1

)
> S

(
α̃2

)
then α̃1 > α̃2.

4. Development of At-CN&t-Ns-based IVDHF prioritized weighted
aggregation operators

In this section, the IVDFEs are fused with PA operator based on At-CN&t-Ns
and proposed the AIVDHFPWA and AIVDHFPWG operators.

Definition 12 Let α̃i =
(
h̃i, g̃i

)
(i = 1, 2, . . . , n) be a collection of IVDHFEs and

let ω = (ω1, ω2, . . . , ωn) be the weight vectors of α̃i with ωi ∈ [0, 1], where

wi =
Ti

n∑
i=1

Ti

, Ti =

i−1∏
k=1

S
(
α̃k

)
(i = 2, . . . , n)), T1 = 1 and S

(
α̃i

)
is the score of α̃i.
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Then, AIVDHFPWA operator is a mapping Ω̃n → Ω̃, where

AIVDHFPWA
(
α̃1, α̃2, . . . , α̃n

)
=

n⊕
A

i=1

*....
,

Ti
n∑

i=1
Ti

α̃i

+////
-

.

⊕
A conveys the meaning as described in Definition 8.

Theorem 1 Let α̃i =
(
h̃i, g̃i

)
(i = 1, 2, . . . , n) be a collection of IVDHFEs, then

the aggregated value by using AIVDHFPWA operator is also an IVDHFE and

AIVDHFPWA
(
α̃1, α̃2, . . . , α̃n

)
=

n⊕
A

i=1

*....
,

Ti
n∑

i=1
Ti

α̃i

+////
-

=

*.....
,

⋃
[γli,γ

u
i ]∈h̃i,

i=1,2,...,n






g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γl

i

)+////
-

, g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γu

i

)+////
-






,

⋃
[ηli,η

u
i ]∈g̃i,

i=1,2,...,n






f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηl

i

)+////
-

, f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηu

i

)+////
-






+/////
-

. (8)

Proof. The theorem will be proved using the mathematical induction method.
The theorem is obvious for n = 1.
Assume that theorem is valid for n = p, it will prove that it is also valid for

n = p + 1.
when n = p,

AIV DHFPW A
(
α̃1, α̃2, . . . , α̃p

)
=

=

*.....
,

⋃
[γli,γ

u
i ]∈h̃i,

i=1,2,...,p






g−1
*....
,

p∑
i=1

Ti
n∑

i=1
Ti

g
(
γl

i

)+////
-

, g−1
*....
,

p∑
i=1

Ti
n∑

i=1
Ti

g
(
γu

i

)+////
-






,
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⋃
[ηli,η

u
i ]∈g̃i,

i=1,2,...,p






f −1
*....
,

p∑
i=1

Ti
n∑

i=1
Ti

f
(
ηl

i

)+////
-

, f −1
*....
,

p∑
i=1

Ti
n∑

i=1
Ti

f
(
ηu

i

)+////
-






+/////
-

.

Now when n = p + 1,

AIV DHFPW A
(
α̃1, α̃2, . . . , α̃p, α̃p+1

)
=

= AIV DHFPW A
(
α̃1, α̃2, . . . , α̃p

) ⊕
A

*....
,

Tp+1
n∑

i=1
Ti

α̃p+1

+////
-

,

=

*.....
,

⋃
[γli,γ

u
i ]∈h̃i,

i=1,2,...,p






g−1
*....
,

p∑
i=1

Ti
n∑

i=1
Ti

g
(
γl

i

)+////
-

, g−1
*....
,

p∑
i=1

Ti
n∑

i=1
Ti

g
(
γu

i

)+////
-






,

⋃
[ηli,η

u
i ]∈g̃i,

i=1,2,...,p






f −1
*....
,

p∑
i=1

Ti
n∑

i=1
Ti

f
(
ηl

i

)+////
-

, f −1
*....
,

p∑
i=1

Ti
n∑

i=1
Ti

f
(
ηu

i

)+////
-






+/////
-

⊕
A

*....
,

⋃
[γl

p+1,γ
u
p+1]∈h̃p+1






g−1
*....
,

Tp+1
n∑

i=1
Ti

g
(
γl

p+1

)+////
-

, g−1
*....
,

Tp+1
n∑

i=1
Ti

g
(
γu

p+1

)+////
-






,

⋃
[ηl

p+1,η
u
p+1]∈g̃p+1






f −1
*....
,

Tp+1
n∑

i=1
Ti

f
(
ηl

p+1

)+////
-

, f −1
*....
,

Tp+1
n∑

i=1
Ti

f
(
ηu

p+1

)+////
-






+////
-

,

=

*.....
,

⋃
[γli,γ

u
i ]∈h̃i,

i=1,2,...,p,p+1






g−1
*....
,

p∑
i=1

Ti
n∑

i=1
Ti

g
(
γl

i

)
+ f racTp+1

n∑
i=1

Tig
(
γl

p+1

)+////
-

,

g−1
*....
,

p∑
i=1

Ti
n∑

i=1
Ti

g
(
γu

i

)
+

Tp+1
n∑

i=1
Ti

g
(
γu

p+1

)+////
-
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⋃
[ηli,η

u
i ]∈g̃i,

i=1,2,...,p,p+1






f −1
*....
,

p∑
i=1

Ti
n∑

i=1
Ti

f
(
ηl

i

)
+

Tp+1
n∑

i=1
Ti

f
(
ηl

p+1

)+////
-

,

f −1
*....
,

p∑
i=1

Ti
n∑

i=1
Ti

f
(
ηl

i

)
+

Tp+1
n∑

i=1
Ti

f
(
ηl

p+1

)+////
-






+////
-

,

=

*.....
,

⋃
[γli,γ

u
i ]∈h̃i,

i=1,2,...,p,p+1






g−1
*....
,

p+1∑
i=1

Ti
n∑

i=1
Ti

g
(
γl

i

)+////
-

, g−1
*....
,

p+1∑
i=1

Ti
n∑

i=1
Ti

g
(
γu

i

)+////
-






,

⋃
[ηli,η

u
i ]∈g̃i,

i=1,2,...,p,p+1






f −1
*....
,

p+1∑
i=1

Ti
n∑

i=1
Ti

f
(
ηl

i

)+////
-

, f −1
*....
,

p+1∑
i=1

Ti
n∑

i=1
Ti

f
(
ηu

i

)+////
-






+/////
-

,

=

p+1⊕
A

i=1

*....
,

Ti
n∑

i=1
Ti

α̃i

+////
-

= AIV DHFPW A
(
α̃1, α̃2, . . . , α̃p, α̃p+1

)
.

Hence the theorem is proved for p + 1 and thus true for all n.
Hence AIV DHFPW A

(
α̃1, α̃2, . . . , α̃n

)
is an IVDHFE.

This completes the proof.

Theorem 2 (Boundary) Let α̃i =
(
h̃i, g̃i

)
(i = 1, 2, . . . , n) be a collection of

IVDHFEs, and let for all i = 1, 2, . . . , n.

γl
min = min




min
[γli,γ

u
i ]∈h̃i

{
γl

i

}

, γu

min = min



min
[γli,γ

u
i ]∈h̃i

{
γu

i

}

,

γl
max = max




max
[γli,γ

u
i ]∈h̃i

{
γl

i

}

, γu

max = max



max
[γli,γ

u
i ]∈h̃i

{
γu

i

}

,

ηl
min = min




min
[ηli,η

u
i ]∈g̃i

{
ηl

i

}

, ηu

min = min



min
[ηli,η

u
i ]∈g̃i

{
ηu

i

}

,

ηl
max = max




max
[ηli,η

u
i ]∈g̃i

{
ηl

i

}

, ηu

max = max



max
[ηli,η

u
i ]∈g̃i

{
ηu

i

}

.



224 A. SARKAR, A. BISWAS

Then if α̃− =
( [
γl

min, γ
u
min

]
,

[
ηl

max, η
u
max

] )
and α̃+ =

( [
γl

max, γ
u
max

]
,

[
ηl

min, η
u
min

] )
,

α̃− ¬ AIV DHFPW A
(
α̃1, α̃2, . . . , α̃n

)
¬ α̃+ . (9)

Proof. . For any i = 1, 2, . . . , n, it is clear that γl
min ¬ γ

l
i ¬ γ

l
max and γu

min ¬ γ
u
i ¬

γu
max. Since g(t) (t ∈ [0, 1]) is a monotonic increasing function,

g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γl

min

)+////
-

¬ g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γl

i

)+////
-

¬ g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γl

max
)+////

-

,

which implies that

γl
min ¬ g−1

*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γl

i

)+////
-

¬ γl
max . (10)

Similarly, find that

γu
min ¬ g−1

*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γu

i

)+////
-

¬ γu
max , (11)

for any i = 1, 2, . . . , n, ηl
min ¬ η

l
i ¬ η

l
max.

Since f (t) (t ∈ [0, 1]) is a decreasing function,

f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηl

max
)+////

-

¬ f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηl

i

)+////
-

¬ f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηl

min

)+////
-

,

which implies that

ηl
max ¬ f −1

*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηl

i

)+////
-

¬ ηl
min . (12)

Similarly,

ηu
max ¬ f −1

*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηu

i

)+////
-

¬ ηu
min . (13)
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From (10) and (12), it is obtained that

γl
min − η

l
min ¬ g−1

*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γl

i

)+////
-

− f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηl

i

)+////
-

¬ γl
max − η

l
max .

Also, from (11) and (13), it is found that

γu
min − η

u
min ¬ g−1

*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γu

i

)+////
-

− f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηu

i

)+////
-

¬ γu
max − η

u
max ,

i.e., S
(
α̃−

)
¬ S

(
AIV DHFPW A

(
α̃1, α̃2, . . . , α̃n

))
¬ S

(
α̃+

)
.

Therefore, α̃− ¬ AIV DHFPW A
(
α̃1, α̃2, . . . , α̃n

)
¬ α̃+.

Theorem 3 Let α̃i (i = 1, 2, . . . , n be a collection of IVDHFEs, ωi =
Ti

n∑
i=1

Ti

(i = 1, 2, . . . , n) be their corresponding weight vectors, if α̃ be an IVDHFE, then

AIV DHFPW A
(
α̃1 ⊕A α̃, α̃2 ⊕A α̃, . . . , α̃n ⊕A α̃

)
=

= AIV DHFPW A
(
α̃1, α̃2, . . . , α̃n

)
⊕A α̃.

Proof.

α̃i ⊕A α̃ =

*.........
,

⋃
[γli,γ

u
i ]∈h̃i,

[γl,γu]∈h̃
(i=1,2,...,n)

{ [
g−1

(
g

(
γl

i

)
+ g

(
γl

))
, g−1

(
g

(
γu

i

)
+ g

(
γu))] }

,

⋃
[ηli,η

u
i ]∈g̃i,

[ηl,ηu]∈g̃
(i=1,2,...,n)

{ [
f −1

(
f
(
ηl

i

)
+ f

(
ηl

))
, f −1

(
f
(
ηu

i

)
+ f

(
ηu))] }

+/////////
-

.

So,
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AIV DHFPW A
(
α̃1 ⊕A α̃, α̃2 ⊕A α̃, . . . , α̃n ⊕A α̃

)

=

*.........
,

⋃
[γli,γ

u
i ]∈h̃i,

[γl,γu]∈h̃
(i=1,2,...,n)






g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
g−1

(
g

(
γl

i

)
+ g

(
γl

)))+////
-

,

g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
g−1

(
g

(
γu

i

)
+ g

(
γu)))+////

-




⋃
[ηli,η

u
i ]∈g̃i,

[ηl,ηu]∈g̃
(i=1,2,...,n)






f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(

f −1
(

f
(
ηl

i

)
+ f

(
ηl

)))+////
-

+/////////
-

f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(

f −1
(

f
(
ηl

i

)
+ f

(
ηl

)))+////
-






+////
-

,

=

*.........
,

⋃
[γli,γ

u
i ]∈h̃i,

[γl,γu]∈h̃
(i=1,2,...,n)






g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γl

i

)
+ g

(
γl

)+////
-

,

g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γu

i

)
+ g

(
γu)+////

-






⋃
[ηli,η

u
i ]∈g̃i,

[ηl,ηu]∈g̃
(i=1,2,...,n)






f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηl

i

)
+ f

(
ηl

)+////
-

f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηu

i

)
+ f

(
ηu)+////

-






+////
-

.
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Now,

AIV DHFPW A
(
α̃1, α̃2, . . . , α̃n

)
⊕A α̃ =

=

*.....
,

⋃
[γli,γ

u
i ]∈h̃i

(i=1,2,...,n)






g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γl

i

)+////
-

, g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γu

i

)+////
-






,

⋃
[ηli,η

u
i ]∈g̃i

(i=1,2,...,n)






f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηl

i

)+////
-

, f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηu

i

)+////
-






+/////
-

⊕A
({ [

γl, γu
] }
,

{ [
ηl, ηu

] })

=

*.........
,

⋃
[γli,γ

u
i ]∈h̃i,

[γl,γu]∈h̃
(i=1,2,...,n)






g−1
*....
,

g

*....
,

g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γl

i

)+////
-

+////
-

+ g
(
γl

)+////
-

,

g−1
*....
,

g

*....
,

g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γu

i

)+////
-

+////
-

+ g
(
γu)+////

-






,

⋃
[ηli,η

u
i ]∈g̃i,

[ηl,ηu]∈g̃
(i=1,2,...,n)






f −1
*....
,

f
*....
,

f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηl

i

)+////
-

+////
-

+ f
(
ηl

)+////
-

,

f −1
*....
,

f
*....
,

f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηu

i

)+////
-

+////
-

+ f
(
ηu)+////

-






+////
-

,

=

*.........
,

⋃
[γli,γ

u
i ]∈h̃i,

[γl,γu]∈h̃
(i=1,2,...,n)






g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γl

i

)
+g

(
γl

)+////
-

, g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γu

i

)
+g

(
γu)+////

-
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⋃
[ηli,η

u
i ]∈g̃i,

[ηl,ηu]∈g̃
(i=1,2,...,n)






f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηl

i

)
+ f

(
ηl

)+////
-

, f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηu

i

)
+ f

(
ηu)+////

-






+////
-

.

Therefore,

AIV DHFPW A
(
α̃1 ⊕A α̃, α̃2 ⊕A α̃, . . . , α̃n ⊕A α̃

)
=

= AIV DHFPW A
(
α̃1, α̃2, . . . , α̃n

)
⊕A α̃.

Hence the theorem is proved.

Theorem 4 (Idempotency) If all α̃i (i = 1, 2, . . . , n) are equal and let α̃i =({ [
γl, γu

] }
,

{ [
ηl, ηu

] })
for all (i = 1, 2, . . . , n), then

AIV DHFPW A
(
α̃1, α̃2, . . . , α̃n

)
=

({ [
γl, γu

] }
,

{ [
ηl, ηu

] })
.

Proof.

AIV DHFPW A
(
α̃1, α̃2, . . . , α̃n

)
=

=

*.....
,

⋃
[γl,γu]∈h̃i,
i=1,2,...,n






g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γl

i

)+////
-

, g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
γu

i

)+////
-






,

⋃
[ηl,ηu]∈g̃i,
i=1,2,...,n






f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηl

i

)+////
-

, f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
ηu

i

)+////
-






+////
-

.

Now, since α̃i =
({ [

γl, γu
] }
,

{ [
ηl, ηu

] })
for all (i = 1, 2, . . . , n), γl

i = γl ,
γu

i = γ
u, ηl

i = η
l and ηu

i = η
u for all (i = 1, 2, . . . , n).

Therefore,

AIV DHFPW A
(
α̃1, α̃2, . . . , α̃n

)
=

=

*.....
,

⋃
[γl,γu]∈h̃i,
i=1,2,...,n






g−1
*....
,

g
(
γl

) n∑
i=1

Ti
n∑

i=1
Ti

+////
-

, g−1
*....
,

g
(
γu) n∑

i=1

Ti
n∑

i=1
Ti

+////
-






,
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⋃
[ηl,ηu]∈g̃i,
i=1,2,...,n






f −1
*....
,

f
(
ηl

) n∑
i=1

Ti
n∑

i=1
Ti

+////
-

, f −1
*....
,

f
(
ηu) n∑

i=1

Ti
n∑

i=1
Ti

+////
-






+////
-

=

*.....
,

⋃
[γl,γu]∈h̃i
i=1,2,...,n

{ [
γl, γu

] }
,

⋃
[ηl,ηu]∈g̃i
i=1,2,...,n

{ [
ηl, ηu

] } +/////
-

,

=
({ [

γl, γu
] }
,

{ [
ηl, ηu

] })
.

Hence the theorem is proved.
At-CN&t-N-based IVDHF prioritized WG (AIVDHFPWG) operator is de-

fined as follows.

Definition 13 Let α̃i =
(
h̃i, g̃i

)
(i = 1, 2, . . . , n) be a collection of IVDHFEs and

Ti
n∑

i=1
Ti

indicates preference degree of α̃i, where Ti =

i−1∏
k=1

S
(
α̃k

)
(i = 2, . . . , n),

T1 = 1 and S
(
α̃i

)
is the score value of α̃i. If

AIV DHFPWG
(
α̃1, α̃2, . . . , α̃n

)
=

n⊗
A

i=1

*....
,

Ti
n∑

i=1
Ti

α̃i

+////
-

,

then AIV DHFPWG is called the IVDHF prioritized WG (AIVDHFPWG) oper-
ator.

⊗A conveys the meaning as described in Definition 8.

Theorem 5 Let α̃i =
(
h̃i, g̃i

)
(i = 1, 2, . . . , n) be a collection of IVDHFEs, then

the aggregated value using AIVDHFPWG operator is also an IVDHFE and

AIV DHFPWG
(
α̃1, α̃2, . . . , α̃n

)
=

*.....
,

⋃
[γli,γ

u
i ]∈h̃i,

i=1,2,...,n






f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
γl

i

)+////
-

, f −1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

f
(
γu

i

)+////
-






,
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⋃
[ηli,η

u
i ]∈g̃i,

i=1,2,...,n






g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
ηl

i

)+////
-

, g−1
*....
,

n∑
i=1

Ti
n∑

i=1
Ti

g
(
ηu

i

)+////
-






+/////
-

. (14)

Proof. The proof is similar to Theorem 1.
The proposed AIVDHFPWA and AIVDHFPWG operators provide a general

expression with the generators f (x) and g(x). Some particular cases of the
proposed PA operators are presented as follows:

Case 1 If f (x) = − log x is considered, then the AIVDHFPWA and AIVD-
HFPWG operators reduced to the IVDHF prioritizedWA (IVDHFPWA) andWG
(IVDHFPWG) operators, respectively, which are shown as follows:

IV DHFPW A
(
α̃1, α̃2, . . . , α̃n

)
=

=

*.....
,

⋃
[γli,γ

u
i ]∈h̃i,

i=1,2,...,n





1 −

n∏
i=1

(
1 − γl

i

) Ti
n∑
i=1

Ti
, 1 −

n∏
i=1

(
1 − γu

i

) Ti
n∑
i=1

Ti





,

⋃
[ηli,η

u
i ]∈g̃i,

i=1,2,...,n






n∏
i=1

(
ηl

i

) Ti
n∑
i=1

Ti
,

n∏
i=1

(
ηu

i

) Ti
n∑
i=1

Ti






+/////
-

, (15)

and

IV DHFPWG
(
α̃1, α̃2, . . . , α̃n

)
=

=

*.....
,

⋃
[γli,γ

u
i ]∈h̃i,

i=1,2,...,n






n∏
i=1

(
γl

i

) Ti
n∑
i=1

Ti
,

n∏
i=1

(
γu

i

) Ti
n∑
i=1

Ti





,

⋃
[ηli,η

u
i ]∈g̃i,

i=1,2,...,n





1 −

n∏
i=1

(
1 − ηl

i

) Ti
n∑
i=1

Ti
,1 −

n∏
i=1

(
1 − ηu

i

) Ti
n∑
i=1

Ti






+/////
-

. (16)

Case 2 For adopting the Einstein operations, the AIVDHFPWA operator
turned to the IVDHF prioritized Einstein WA (IVDHFPEWA), and IVDHF pri-
oritized Einstein WG (IVDHFPEWG) operators, sequentially, defined as:
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IV DHFPEW A
(
α̃1, α̃2, . . . , α̃n

)
=

=

*.......
,

⋃
[γli,γ

u
i ]∈h̃i,

i=1,2,...,n






n∏
i=1

(
1 + γl

i

) Ti
n∑
i=1

Ti
−

n∏
i=1

(
1 − γl

i

) Ti
n∑
i=1

Ti

n∏
i=1

(
1 + γl

i

) Ti
n∑
i=1

Ti
+

n∏
i=1

(
1 − γl

i

) Ti
n∑
i=1

Ti

,

n∏
i=1

(
1 + γu

i

) Ti
n∑
i=1

Ti
−

n∏
i=1

(
1 − γu

i

) Ti
n∑
i=1

Ti

n∏
i=1

(
1 + γu

i

) Ti
n∑
i=1

Ti
+

n∏
i=1

(
1 − γu

i

) Ti
n∑
i=1

Ti






,

⋃
[ηli,η

u
i ]∈g̃i,

i=1,2,...,n






2
n∏

i=1

(
ηl

i

) Ti
n∑
i=1

Ti

n∏
i=1

(
2 − ηl

i

) Ti
n∑
i=1

Ti
+

n∏
i=1

(
ηl

i

) Ti
n∑
i=1

Ti

,

2
n∏

i=1

(
ηl

i

) Ti
n∑
i=1

Ti

n∏
i=1

(
2 − ηl

i

) Ti
n∑
i=1

Ti
+

n∏
i=1

(
ηl

i

) Ti
n∑
i=1

Ti






+///////
-

, (17)

and

IV DHFEPWG
(
α̃1, α̃2, . . . , α̃n

)
=

*.......
,

⋃
[γli,γ

u
i ]∈h̃i,

i=1,2,...,n






2
n∏

i=1

(
γl

i

) Ti
n∑
i=1

Ti

n∏
i=1

(
2 − γl

i

) Ti
n∑
i=1

Ti
+

n∏
i=1

(
γl

i

) Ti
n∑
i=1

Ti

,

2
n∏

i=1

(
γu

i

) Ti
n∑
i=1

Ti

n∏
i=1

(
2 − γu

i

) Ti
n∑
i=1

Ti
+

n∏
i=1

(
γu

i

) Ti
n∑
i=1

Ti






,

⋃
[ηli,η

u
i ]∈g̃i,

i=1,2,...,n






n∏
i=1

(
1 + ηl

i

) Ti
n∑
i=1

Ti
−

n∏
i=1

(
1 − ηl

i

) Ti
n∑
i=1

Ti

n∏
i=1

(
1 + ηl

i

) Ti
n∑
i=1

Ti
+

n∏
i=1

(
1 − ηl

i

) Ti
n∑
i=1

Ti

,

n∏
i=1

(
1 + ηu

i

) Ti
n∑
i=1

Ti
−

n∏
i=1

(
1 − ηu

i

) Ti
n∑
i=1

Ti

n∏
i=1

(
1 + ηu

i

) Ti
n∑
i=1

Ti
+

n∏
i=1

(
1 − ηu

i

) Ti
n∑
i=1

Ti






+///////
-

. (18)
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Case 3 When putting f (x) = log
(
σ + (1 − σ)x

x

)
, σ > 0, i.e., for con-

sideration of Hamacher operations, the AIVDHFPWA and AIVDHFPWA op-
erators converted, respectively, to the IVDHF prioritized Hamacher WA (IVD-
HFPHWA), and IVDHF prioritized Hamacher WG (IVDHFPHWG) operators,
which are described as:

IV DHFPHW A
(
α̃1, α̃2, . . . , α̃n

)
=

=

*.......
,

⋃
[γli,γ

u
i ]∈h̃i,

i=1,2,...,n






n∏
i=1

(
1 + (σ − 1) γl

i

) Ti
n∑
i=1

Ti
−

n∏
i=1

(
1 − γl

i

) Ti
n∑
i=1

Ti

n∏
i=1

(
1 + (σ − 1) γl

i

) Ti
n∑
i=1

Ti
+ (σ − 1)

n∏
i=1

(
1 − γl

i

) Ti
n∑
i=1

Ti

,

n∏
i=1

(
1 + (σ − 1) γu

i

) Ti
n∑
i=1

Ti
−

n∏
i=1

(
1 − γu

i

) Ti
n∑
i=1

Ti

n∏
i=1

(
1 + (σ − 1) γu

i

) Ti
n∑
i=1

Ti
+ (σ − 1)

n∏
i=1

(
1 − γu

i

) Ti
n∑
i=1

Ti






⋃
[ηli,η

u
i ]∈g̃i,

i=1,2,...,n






σ
n∏

i=1

(
ηl

i

) Ti
n∑
i=1

Ti

n∏
i=1

(
1 + (σ − 1)

(
1 − ηl

i

)) Ti
n∑
i=1

Ti
+ (σ − 1)

n∏
i=1

(
ηl

i

) Ti
n∑
i=1

Ti

,

σ
n∏

i=1

(
ηu

i

) Ti
n∑
i=1

Ti

n∏
i=1

(
1 + (σ − 1)

(
1 − ηu

i

)) Ti
n∑
i=1

Ti
+ (σ − 1)

n∏
i=1

(
ηu

i

) Ti
n∑
i=1

Ti






+///////
-

, (19)

and,

IV DHFHPWG
(
α̃1, α̃2, . . . , α̃n

)
=

=

*.......
,

⋃
[γli,γ

u
i ]∈h̃i,

i=1,2,...,n






σ
n∏

i=1

(
γl

i

) Ti
n∑
i=1

Ti

n∏
i=1

(
1 + (σ − 1)

(
1 − γl

i

)) Ti
n∑
i=1

Ti
+ (σ − 1)

n∏
i=1

(
γl

i

) Ti
n∑
i=1

Ti

,
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σ
n∏

i=1

(
γu

i

) Ti
n∑
i=1

Ti

n∏
i=1

(
1 + (σ − 1)

(
1 − γu

i

)) Ti
n∑
i=1

Ti
+ (σ − 1)

n∏
i=1

(
γu

i

) Ti
n∑
i=1

Ti






⋃
[ηli,η

u
i ]∈g̃i,

i=1,2,...,n






n∏
i=1

(
1 + (σ − 1) ηl

i

) Ti
n∑
i=1

Ti
−

n∏
i=1

(
1 − ηl

i

) Ti
n∑
i=1

Ti

n∏
i=1

(
1 + (σ − 1) ηl

i

) Ti
n∑
i=1

Ti
+ (σ − 1)

n∏
i=1

(
1 − ηl

i

) Ti
n∑
i=1

Ti

,

n∏
i=1

(
1 + (σ − 1) ηu

i

) Ti
n∑
i=1

Ti
−

n∏
i=1

(
1 − ηu

i

) Ti
n∑
i=1

Ti

n∏
i=1

(
1 + (σ − 1) ηu

i

) Ti
n∑
i=1

Ti
+ (σ − 1)

n∏
i=1

(
1 − ηu

i

) Ti
n∑
i=1

Ti






+///////
-

. (20)

Case 4 The AIVDHFPWA and AIVDHFPWG operators switched to the
IVDHF prioritized Frank WA (IVDHFPFWA), and IVDHF prioritized Frank
WG (IVDHFPFWG) operators for calculating with the Frank t-CN and t-N,

f (x) = log
(
τ − 1
τx − 1

)
, τ > 1, respectively, which are expressed as:

IV DHFPFW A
(
α̃1, α̃2, . . . , α̃n

)
=

*.......
,

⋃
[γli,γ

u
i ]∈h̃i,

i=1,...,n






1− logτ

*.......
,

1+

n∏
i=1

(
τ1−γli−1

) Ti
n∑
i=1

Ti

τ − 1

+///////
-

, 1− logτ

*.......
,

1+

n∏
i=1

(
τ1−γui −1

) Ti
n∑
i=1

Ti

τ−1

+///////
-






,

⋃
[ηli,η

u
i ]∈g̃i,

i=1,...,n






logτ

*.......
,

1+

n∏
i=1

(
τη

l
i−1

) Ti
n∑
i=1

Ti

τ−1

+///////
-

, logτ

*.......
,

1+

n∏
i=1

(
τη

u
i −1

) Ti
n∑
i=1

Ti

τ−1

+///////
-






+///////
-

, (21)

and
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IV DHFFPWG
(
α̃1, α̃2, . . . , α̃n

)
=

=

*.......
,

⋃
[γli,γ

u
i ]∈h̃i,

i=1,2,...,n






logτ

*.......
,

1 +

n∏
i=1

(
τγ

l
i − 1

) Ti
n∑
i=1

Ti

τ − 1

+///////
-

, logτ

*.......
,

1 +

n∏
i=1

(
τγ

u
i − 1

) Ti
n∑
i=1

Ti

τ − 1

+///////
-






,

⋃
[ηli,η

u
i ]∈g̃i,

i=1,2,...,n






1 − logτ

*.......
,

1 +

n∏
i=1

(
τ1−ηli − 1

) Ti
n∑
i=1

Ti

τ − 1

+///////
-

,

1 − logτ

*.......
,

1 +

n∏
i=1

(
τ1−ηui − 1

) Ti
n∑
i=1

Ti

τ − 1

+///////
-






+///////
-

. (22)

AIVDHFPWG operator also obeys the above properties as like AIVDHFPWA
operator.

In the following sections, the methodological development of the MCDM
method is incorporated and are described subsequently.

5. An approach to MCDM with the prioritization under IVDHF environment

In this section, the proposed AIVDHFPWA and AIVDHFPWG operators are
applied on MCDM with IVDHFEs, in which the criteria are in different priority
level. Let {z1, z2, . . . , zm} be a set of alternatives, {C1,C2, . . . ,Cn} be a set of
criteria, and there prioritization relationship is C1 � C2 � . . . � Cn. Suppose that
D̃ =

[
α̃i j

]
m×n

be an IVDHF decision matrix (IVDHFDM), where α̃i j =
(
h̃i j, g̃i j

)
is provided by the DM for the alternative zi satisfying the criteria c j . Then, the
proposed AIVDHFPWA (or AIVDHFPWG) operators are used to develop an
approach for solving MCDM problems in IVDHF environment. The proposed
methodology is described through the following steps:

Step 1. In general, criteria are categorized into two types: one is benefit
criteria, and the other one is cost criteria. If the IVDHFDM possesses cost
type criteria, the matrix D̃ =

[
α̃i j

]
m×n

can be converted into the normalized
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IVDHFDM form as R̃ =
(
r̃i j

)
m×n

in the following way,

r̃i j =



α̃i j for benefit criteria Cj ,

α̃c
i j for cost criteria Cj ,

(23)

i = 1, 2, . . . ,m and j = 1, 2, . . . , n. Where α̃c
i j is the complement α̃i j .

Step 2. Calculate the values of Ti j (i = 1, 2, . . . ,m; j = 1, 2, . . . , n) based on
the following equations,

Ti j =

j−1∏
k=1

S
(
r̃ik

)
(i = 1, 2, . . . ,m; j = 2, . . . , n); (24)

Ti1 = 1, i = 1, 2, . . . ,m. (25)

Step 3. Aggregate the IVDHFEs r̃i j (i = 1, 2, . . . ,m; j = 1, 2, . . . , n) for each
alternative zi using the IVDHFPHWA (or IVDHFPHWG) or IVDHFPFWA (or
IVDHFPFWG) operator as follows:

r̃i = IV DHFPHW A
(
r̃i1, r̃i2, . . . . . . , r̃in

)

=

*.........
,

⋃
[γli j,γ

u
ij ]∈h̃i j






n∏
j=1

(
1 + (σ − 1) γl

i j

) Tij
n∑
j=1

Tij

−
n∏

j=1

(
1 − γl

i j

) Tij
n∑
j=1

Tij

n∏
j=1

(
1 + (σ − 1) γl

i j

) Tij
n∑
j=1

Tij

+ (σ − 1)
n∏

j=1

(
1 − γl

i j

) Tij
n∑
j=1

Tij

,

n∏
j=1

(
1 + (σ − 1) γu

i j

) Tij
n∑
j=1

Tij

−
n∏

i=1

(
1 − γu

i j

) Tij
n∑
j=1

Tij

n∏
j=1

(
1 + (σ − 1) γu

i j

) Tij
n∑
j=1

Tij

+ (σ − 1)
n∏

j=1

(
1 − γu

i j

) Tij
n∑
j=1

Tij






⋃
[ηli j,η

u
ij ]∈g̃i j






σ
n∏

j=1

(
ηl

i j

) Tij
n∑
j=1

Tij

n∏
j=1

(
1 + (σ − 1)

(
1 − ηl

i j

)) Tij
n∑
j=1

Tij

+ (σ − 1)
n∏

j=1

(
ηl

i j

) Tij
n∑
j=1

Tij

,
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σ
n∏

j=1

(
ηu

i j

) Tij
n∑
j=1

Tij

n∏
j=1

(
1 + (σ − 1)

(
1 − ηu

i j

)) Tij
n∑
j=1

Tij

+ (σ − 1)
n∏

j=1

(
ηu

i j

) Tij
n∑
j=1

Tij






+/////////
-

, (26)

or utilizing the proposed operator IVDHFPHWG, which is presented above by
Eq. (16), aggregate the IVDHFEs elements as:

r̃i = IV DHFPHWG
(
r̃i1, r̃i2, . . . , r̃in

)
or

r̃i = IV DHFPFW A
(
r̃i1, r̃i2, . . . , r̃in

)

=

*.........
,

⋃
[γli j,γ

u
ij ]∈h̃i j






1 − logτ

*.........
,

1 +

n∏
j=1

(
τ1−γli j − 1

) Tij
n∑
j=1

Tij

τ − 1

+/////////
-

,

1 − logτ

*.........
,

1 +

n∏
j=1

(
τ1−γuij − 1

) Tij
n∑
j=1

Tij

τ − 1

+/////////
-






,

⋃
[ηli j,η

u
ij ]∈g̃i j






logτ

*.........
,

1 +

n∏
j=1

(
τη

l
i j − 1

) Tij
n∑
j=1

Tij

τ − 1

+/////////
-

, logτ

*.........
,

1 +

n∏
j=1

(
τη

u
ij − 1

) Tij
n∑
j=1

Tij

τ − 1

+/////////
-






+/////////
-

,

or aggregating the IVDHFEs using IVDHFPFWG operator already shown by
Eq. (17).

Step 4. Using the proposed score function as in Definition 11, the rank of all
alternatives are evaluated.
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6. Illustrative example

In this section, an academic field related problem, adapted from an example
previously studied by Jin et al. [30], is considered to illustrate the application of
the proposedmethod and demonstrate its feasibility and effectiveness in a realistic
scenario. For strengthening the academic environment of a Chinese university,
the best alternative is to select among five alternatives, {A1, A2, A3, A4, A5}, by
considering four criteria: C1: morality; C2: research capability; C3: teaching skill;
and C4: education background. The prioritization relationship for the criteria is
C1 � C2 � C3 � C4. The alternatives are evaluated by the expert on the basis
of the criteria under IVDHF environment, and the IVDHFDM is constructed as
given in Table 1.

Table 1: IVDHFDM

C1 C2

A1 ({[0.3, 0.4], [0.5, 0.8]} , {[0.17, 0.2]}) ({[0.3, 0.4], [0.4, 0.7]} , {[0.2, 0.3]})

A2 ({[0.3, 0.5]} , {[0.3, 0.4]}) ({[0.2, 0.3], [0.4, 0.5]} , {[0.3, 0.4], [0.4, 0.5]})

A3 ({[0.3, 0.4], [0.5, 0.7]} , {[0.05, 0.1], [0.1, 0.2]}) ({[0.3, 0.5]} , {[0.1, 0.2]})

A4 ({[0.3, 0.4], [0.4, 0.5], [0.5, 0.6]} , {[0.01, 0.1]}) ({[0.5, 0.7]} , {[0.05, 0.1], [0.1, 0.15]})

A5 [{[0.3, 0.6], [0.7, 0.9]} , {[0.05, 0.1]}] ({[0.4, 0.6]} , {[0.01, 0.1], [0.1, 0.15]})

C3 C4

A1 ({[0.6, 0.8]} , {[0.05, 0.1]}) ({[0.3, 0.4], [0.5, 0.6]} , {[0.2, 0.3], [0.3, 0.4]})

A2 {[0.5, 0.6], [0.7, 0.8]} , {[0.15, 0.2]} ({[0.4, 0.5]} , {[0.1, 0.2], [0.2, 0.3], [0.3, 0.4]})

A3 ({[0.7, 0.8], [0.8, 0.9]} , {[0.02, 0.1]}) ({[0.6, 0.7]} , {[0.05, 0.1], [0.1, 0.2]})

A4 ({[0.3, 0.5], [0.6, 0.8]} , {[0.06, 0.1], [0.1, 0.2]}) ({[0.8, 0.9]} , {[0.04, 0.1]})

A5 ({[0.5, 0.7], [0.8, 0.9]} , {[0.01, 0.06]}) ({[0.7, 0.8]} , {[0.01, 0.1], [0.1, 0.2]})

To obtain the ranking results among the alternative(s), the developed AIVD-
HFPWA and AIVDHFPWG operators are used, and step by step execution of
the proposed method is described below. In this context, it is to be noted here
that three types of At-CN&t-N, viz., Hamacher, Dombi and Frank Classes are
considered. Algebraic and Einstein classes can be derived as particular cases of
Hamacher class of t-CN&t-Ns.

Step 1. Since all the criteria Cj ( j = 1, 2, 3, 4) are of the benefit type, then the
criteria values do not need normalization and take

[
r̃i j

]
m×n
=

[
α̃i j

]
m×n

.
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Step 2. Calculating the values of Ti j (i = 1, 2, . . . , 5; j = 1, 2, 3, 4)) based on
the Eqs. (24) and (25) as follows:

Ti j =



1 0.6575 0.3945 0.3205
1 0.5250 0.2494 0.1839
1 0.6821 0.4263 0.3709
1 0.6975 0.5231 0.3753
1 0.7750 0.5464 0.4617



.

Step 3. Utilizing the IVDHPFWA, IVDHPFEWA, IVDHFPHWA, and IVD-
HFPFWA operators, to aggregate all the preference values r̃i j , and get the overall
preference values r̃i, which are shown in Tables 2–5.

Table 2: Overall preference values of r̃i utilizing IVDHFPWA operator

r̃1 =
({
[0.3622,0.5002], [.3905,.5268], [.3889,.5875], [.4160,.6095], [0.4465,0.6854],

[0.4711,0.7022], [0.4697,0.7404], [0.4932,0.7542]
}
,
{
[0.1483,0.2107],

[0.1567,0.2190]
})

r̃2 =
({
[0.3149,0.4681], [.3581,.5131], [.3658,.5140], [.4057,.5551]

}
,
{
[.2477,.3431],

[0.2644,0.3564], [0.2747,0.3662], [0.2676,0.3643], [0.2856,0.3784], [0.2967,0.3888]
})

r̃3 =
({
[0.4435,0.5741], [0.4810,0.6220], [0.51410.6780], [0.5468,0.7142]

}
,{

[0.0684,0.1600], [0.0758,0.1775], [0.0904,0.1885], [0.1003,0.2091]
})

r̃4 =
({
[0.4664,0.6295], [.5233,.6919], [.4972,.6546], [.5508,.7128], [0.5313,0.6831],

[0.5813,0.7365]
}
,
{
[0.0656,0.1306], [0.0727,0.1502], [0.0790,0.1573],

[0.0876,0.1809]
})

r̃5 =
({
[0.4546,0.6630], [0.5444,0.7284], [0.5977,0.7952], [0.6640,0.8350]

}
,{

[0.0178,0.0905], [0.0261,0.1015], [0.0339,0.1013], [0.0496,0.1136]
})

Table 3: Overall preference values of r̃i utilizing IVDHFPEWA operator

r̃1 =
({
[0.3569,0.4899], [.3848,.517], [.3842,.5776], [.4114,0.6013], [0.4417,0.6753],

[0.4674,0.6946], [0.4668,0.7367], [0.4918,0.753]
}
,
{
[0.1494,0.2123],

[0.1583,0.2214]
})

r̃2 =
({
[0.3114,0.4647], [.3475,.5042], [.3639,.5136], [.3985,.5506]

}
,
{
[.2497,.3457],

[0.2654,0.3583], [0.2756,0.3680], [0.2708,0.3683], [0.2877,0.3815], [0.2986,0.3917]
})

r̃3 =
({
[0.4324,0.5653], [0.4642,0.6075], [0.5076,0.6748], [0.5366,0.7083]

}
,

[0.0687,0.1607], [0.0762,0.1780], [0.0918,0.1905], [0.1017,0.2107]
})

r̃4 =
({
[0.4527,0.6168], [.5119,.6807], [.4869,.6459], [.5436,0.7059], [0.5230,0.677],

[0.5768,0.7326]
}
,
{
[0.0657,0.1312], [0.0729,0.1509], [0.0792,0.1580],

[0.0878,0.1814]
})

r̃5 =
({
[0.4470,0.6610], [0.5290,0.7227], [0.5924,0.7912], [0.6579,0.8316]

}
,{

[0.0179,0.0905], [0.0263,0.1019], [0.0341,0.1015], [0.0500,0.1142]
})
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Table 4: Overall preference values of r̃i utilizing IVDHFPHWA operator

r̃1 =
({
[0.3541,0.4853], [.3818,.5126], [.3817,0.5729], [0.409,0.5975], [.4391,.6704],

[0.4654,0.691], [0.4653,.735], [0.491,0.7524]
}
,
{
[0.1498,0.2129], [0.1589,0.2223]

})
r̃2 =

({
[0.3094,0.4629], [.3422,.5], [.3629,.5134], [.395,.5487]

}
,
{
[.2505,.3467],

[0.2659,0.359], [0.276,0.3687], [0.2721,0.37], [0.2885,0.3828], [0.2993,0.3929]
})

r̃3 =
({
[0.4267,0.5613], [0.4560,0.6011], [0.5043,0.6734], [0.5316,0.7059]

}
,{

[0.0689,0.1610], [0.0764,0.1782], [0.0923,0.1913], [0.1022,0.2113]
})

r̃4 =
({
[0.446,.6111], [.5063,0.6756], [.4821,.6422], [.5404,.7029], [0.519,0.6745],

[0.5749,0.731]
}
,
{
[0.0658,0.1314], [0.073,0.1511], [0.0793,0.1583], [0.0878,0.1815]

})
r̃5 =

({
[0.4432,0.6602], [0.5215,0.7205], [0.5898,0.7895], [0.655,0.8302]

}
,{

[0.0179,0.0906], [0.0264,0.102], [0.0342,0.1016], [0.0501,0.1144]
})

Table 5: Overall preference values of r̃i utilizing IVDHFPFWA operator

r̃1 =
({
[0.3584,0.4919], [.3865,.5190], [.3855,0.5795], [0.4128,0.6029], [.4431,.677],

[0.4685,0.6958], [0.4676,.7373], [0.4921,0.7531]
}
,
{
[0.1494,0.2122],

[0.1583,0.2212]
})

r̃2 =
({
[0.3127,0.4657], [.3506,.5062], [.3645,.5137], [.4004,.5514]

}
,
{
[.2496,.3453],

[0.2654,0.3580], [0.2755,0.3677], [0.2706,0.3677], [0.2875,0.3810], [0.2984,0.3912]
})

r̃3 =
({
[0.4353,0.5670], [0.4681,0.6097], [0.5093,0.6753], [0.5388,0.7090]

}
,{

[0.0687,0.1607], [0.0763,0.1780], [0.0918,0.1905], [0.1017,0.2106]
})

r̃4 =
({
[0.4559,.6187], [.5145,0.6824], [.4891,.6470], [.5450,.7067], [0.5247,0.6777],

[0.5776,0.7329]
}
,
{
[0.0657,0.1312], [0.0729,0.1509], [0.0792,0.158],

[0.0878,0.1814]
})

r̃5 =
({
[0.4489,0.6613], [0.5324,0.7232], [0.5935,0.7914], [0.6590,0.8318]

}
,{

[0.0179,0.0905], [0.0263,0.1019], [0.0341,0.1015], [0.0500,0.1142]
})

Step 4. Calculating the score functions S
(
r̃i
)
of the overall IVDHFEs.

Step 5.Rank all the candidates Ai (i = 1, 2, . . . , 5) in accordancewith the score
values S

(
r̃i
)
of the overall IVDHFEs. From the Fig. 1–4, it is clear that when

IVDHFPHWA, IVDHFPHWG, IVDHFPFWA and IVDHFPFWG operators are
utilized, the same ordering of the candidates is obtained, and the most desirable
candidate is A5.

The overall IVDHFvalues r̃i (i = 1, 2, . . . , 5 of the candidates Ai are derived by
aggregating IVDHFEs r̃i j ( j = 1, 2, . . . , 5)) for all i with prioritized aggregation
operator IVDHFPWA, and is presented in Table 2, whereas Table 3 represents
the aggregating values of each candidate Ai using Einstein-based aggregation
operator IVDHFPEWA instead of IVDHFPWA.

Subsequently, Hamacher (σ = 3) and Frank (τ = 3) based aggregation opera-
tors IVDHFPHWA and IVDHFPFWA are utilized to aggregate the performance
values of the alternatives Ai and is demonstrated in Tables 4 and 5, respectively.
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The score values and the ranking results by varying parameters, σ and τ, in
the IVDHFPHWA, IVDHFPHWG, IVDHFPFWA and IVDHFPFWG operators,
are shown in Tables 6–9, respectively.

Table 6: Ranking results for different parameters of the IVDHFPHWA operator

Parameter S(z1) S(z2) S(z3) S(z4) S(z5) Ordering
σ = 1 0.6752 0.5587 0.7190 0.7447 0.7968 A5 � A4 � A3 � A1 � A1

σ = 2 0.6714 0.5550 0.7136 0.7401 0.7935 A5 � A4 � A3 � A1 � A1

σ = 3 0.6696 0.5533 0.7112 0.7381 0.7920 A5 � A4 � A3 � A1 � A1

Table 7: Ranking results for different parameters of the IVDHFPHWA operator

Parameter S(z1) S(z2) S(z3) S(z4) S(z5) Ordering
σ = 1 0.6462 0.5370 0.6812 0.7039 0.7687 A5 � A4 � A3 � A1 � A1

σ = 2 0.6502 0.5398 0.6858 0.7090 0.7724 A5 � A4 � A3 � A1 � A1

σ = 3 0.6526 0.5414 0.6886 0.7121 0.7747 A5 � A4 � A3 � A1 � A1

Table 8: Ranking results for different parameters of the IVDHFPFWA operator

Parameter S(z1) S(z2) S(z3) S(z4) S(z5) Ordering
τ = 2 0.6732 0.5568 0.7162 0.7422 0.7950 A5 � A4 � A3 � A1 � A1

τ = 3 0.6721 0.5558 0.7146 0.7409 0.7941 A5 � A4 � A3 � A1 � A1

τ = 4 0.6714 0.5552 0.7136 0.7400 0.7934 A5 � A4 � A3 � A1 � A1

Table 9: RRanking results for different parameters of the IVDHFPFWG operator

Parameter S(z1) S(z2) S(z3) S(z4) S(z5) Ordering
τ = 2 0.6479 0.5383 0.6833 0.7151 0.7703 A5 � A4 � A3 � A1 � A1

τ = 3 0.6489 0.5390 0.6844 0.7160 0.7712 A5 � A4 � A3 � A1 � A1

τ = 4 0.6495 0.5394 0.6851 0.7167 0.7717 A5 � A4 � A3 � A1 � A1

Now, based on the DMs’ preferences, the parameter can take different values.
Based on the Hamacher (or Frank) parameter σ (or τ) between 0 to 20 (or 1 to
20), the score values and ranking of the five alternatives are shown in Fig. 1–4.

From Fig. 1, when the given problem is solved with IVDHFPHWA operator,
it is perceived that the ordering of the alternatives does not change. Still, with
varying the Hamacher parameter σ the score value of the alternatives decreases
monotonically.
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Figure 1: Changes of the score values applying

Similarly, if IVPHFHWG operator is used, the score value of alternatives are
computed by varying the Hamacher parameter σ ∈ [0, 20], the obtained results
are advertised in the following Fig. 2. It is to be noted here that the ranking of

Figure 2: Changes of the score values applying IVDHFPHWG
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alternatives does not modify as like using IVDHFPHWA operator. But the score
value of the alternatives increases monotonically.

If IVDHFPFWAand IVDHFPFWGoperators are used for the Frank parameter
τ between 1 to 20, individually, the score values are presented in Fig. 3 and
Fig. 4, respectively. As like the above cases, the equivalent observations are seen
corresponding to averaging and geometric operators.

Figure 3: Changes of the score values applying IVDHFPFWA

It is decent tomention here that no changes in the ranking of the alternatives Ai
(i = 1, 2, . . . , 5) are found while making the decision using different PA operators.
Thus it persists that the suggested methodology has a durable consistency.

It is worthy tomention here that, same ranking results of alternatives are found
using the proposed method and which also covers the result of Jin et al. [30].
The technique developed by Jin et al. [30] is based on Einstein operation under
DHF environment, whereas the proposed approach is based on At-CN&t-Ns
under IVDHF information. Because IFS, and DHFS are the particular cases of
IVDHFS and also At-CN&t-Ns contains an adjustable parameter. So it is claimed
that the approach of Jin et al. [30] is a special case of the proposed method. Thus,
the proposed methodology is more consistent than the technique developed by
Jin et al. [30].



INTERVAL-VALUED DUAL HESITANT FUZZY PRIORITIZED AGGREGATION OPERATORS
BASED ON ARCHIMEDEAN T -CONORM AND T -NORM AND THEIR APPLICATIONS

TO MULTI-CRITERIA DECISION MAKING 243

Figure 4: Changes of the score values applying IVDHFPFWG

7. Conclusion

The main contributions of this article is to define a score function of IVD-
HFE and to propose two prioritized aggregation operators AIVDHFPWA and
AIVDHFPWG based on At-CN&t-Ns under the IVDHF context. Most of the
prioritized-based aggregation operators can be constructed from AIVDHFPWA
and AIVDHFPWG operators. Some desirable properties, such as idempotency,
monotonicity, and boundedness of the proposed operators, are investigated. An
approach for solving MCDM problem is presented in which the criteria are in
different preference level. Through the illustrative example, it has been estab-
lished the fact that the proposed method not only captures the existing Einstein
operation based aggregation operators for IVHFEs [30] but also extends the scope
of using aggregation operators in IVDHF environment. In future, the proposed
operators may be extended to other domains, viz., q-rung orthopair fuzzy [34],
Neutrosophic set [35,36], cubic bipolar fuzzy [37] and Pythagorean fuzzy [38–42]
environments. Several types of AOs based on Schweizer-Sklar [43], Yager [44]
and many other classes of t-CN&t-Ns can also be developed in IVDHF contexts.
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Abstract

In this paper, Bonferroni mean (BM) and Dombi

t‐conorms and t‐norms (Dt‐CN&t‐Ns) are combined un-

der dual hesitant q‐rung orthopair fuzzy (DHq‐ROF) en-
vironment to produce DHq‐ROF‐Dombi BM, weighted

Dombi BM, Dombi geometric BM, and Dombi weighted

geometric BM aggregation operators (AOs). Using these

operators, the decision making processes would become

more flexible and also would possess the capabilities of

capturing interrelationships among input arguments un-

der imprecise decision making environments. Apart from

those, a large number of AOs either already developed or

not yet developed may also be derived from the proposed

AOs. In the process of developing the AOs, some opera-

tional laws of DHq‐ROF numbers based on Dt‐CN&t‐Ns
are defined first. Several important properties of the de-

veloped operators are discussed. The proposed AOs are

used to frame a new methodology to solve multicriteria

group decision making problems under DHq‐ROF con-

texts. Several illustrative examples are solved to demon-

strate effectiveness and benefits of the developed method.

Sensitivity analysis is performed to show the variations of

ranking values with the change of different parameters in

the decision making contexts. Finally, the introduced

method is compared with several existing techniques to
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establish superiority and effectiveness of the proposed

method.

KEYWORD S

Bonferroni mean, Dombi operations, dual hesitant q‐rung
orthopair fuzzy set, multicriteria group decision making

1 | INTRODUCTION

Multicriteria group decision making (MCGDM) is a decision‐making process to select the best
one from a set of possible alternatives which are assessed with respect to a set of criteria by a
group of decision‐makers (DMs). Since decision‐making problems are becoming more complex,
most of the data associated with MCGDM are becoming enormously complex and possibilis-
tically uncertain. To handle such uncertain phenomena, Zadeh1 introduced the concept of
fuzzy sets (FSs). Since then a large number of research works have been performed by pioneer
researchers2–5 using FSs and its extensions. Afterwards, Atanassov6 presented intuitionistic
fuzzy (IF) sets (IFSs) by adding the nonmembership grade along with membership grade by
satisfying the condition that the sum of membership and nonmembership degrees is less than
or equals to 1. Sometimes, violation of the condition for IFSs is observed in capturing un-
certainties associated with several decision making problems. In those cases DMs wish to
provide membership and nonmembership degrees in such a manner that the sum of those
membership and nonmembership degrees may become greater than 1. To deal such situations,
Yager7,8 proposed the concept of Pythagorean fuzzy (PF) set (PFS) by extending IF space. For
PFS, the square sum of membership and nonmembership degrees is bounded by 1. After the
inception of PFS, a large number of research works have already been studied.9–16

Although, PFS has established its potentiality to solve MCGDM problems, but in some
decision making situations, it is observed that the sum of the square of membership and
nonmembership degrees go beyond the value 1. In such contexts, DMs cannot provide their
decision values using PFSs. To tackle such situations, in 2017, Yager17 further defined a novel
concept of q‐rung orthopair fuzzy (q‐ROF) set (q‐ROFS). The q‐ROFS consists of a pair of
membership and nonmembership degrees satisfying the condition that the sum of the
qth power of membership and nonmembership degrees lies within a unit closed interval. So,
DMs can describe the space of uncertain information with broader horizon. Due to the flex-
ibility of q‐ROFSs, DMs can adjust their judgment values by the parameter q to evaluate related
information more accurately in the process of decision‐making. So q‐ROFSs are more efficient
to deal MCDM problems. For better understanding of the satisfying region of intuitionistic
fuzzy numbers, PFNs and q‐ROFNs, the Figure 1 has been incorporated.

In tackling extremely complex real‐life decision‐making problems, DMs, sometimes, be-
come confused to put single judgment value corresponding to some alternatives. Under this
situation the concept of dual hesitant fuzzy sets18 (DHFSs) came into account. Combining the
concept of DHFSs18 with q‐ROFSs,17 Xu et al.,19 proposed dual hesitant q‐ROF (DHq‐ROF) sets
(DHq‐ROFSs) as a more generalized form of q‐ROFSs. The DHq‐ROFS is formulated by two
sets of membership degrees and nonmembership degrees with the condition that the sum of
qth power of the greatest membership and nonmembership values is less than or equals to 1.
This provides more freedom to the DMs for expressing their evaluation values. It can easily be
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realized that DHq‐ROFS possesses efficient capability to resolve hesitancy involved with the
decision making processes than other variants of FSs, like q‐ROFS, PFS, DHFS, and so on. In
intelligent systems the information is generally aggregated using fuzzy reasoning and fuzzy rule
base. Those systems are usually used in expert systems, computer vision, robotics, fuzzy con-
trol, decision support systems, and so on. With the advancement of the variants of fuzzy sets,
different aggregation operators (AOs) under those imprecise environments have been devel-
oped which had been subsequently used to enrich the domain of intelligent systems.

In PF environments, Prof. R. R. Yager7,8 introduced weighted averaging (WA) and weighted
geometric (WG) AOs, namely, PFWA, PFWG, weighted PF power average and weighted PF
power geometric AOs by extending the concept of AOs under fuzzy and IF domains.20–24 Peng
and Yuan25 introduced generalized PFWA and generalized PF point AOs. In most of the above
mentioned cases biasness of using membership and nonmembership degrees are observed
under PF contexts. For removing that biasness, Ma and Xu26 introduced symmetric PFWG, and
symmetric PFWA operators to aggregate PFNs. Based on Einstein operations, Rahman et al.27

developed PF Einstein WG operator to aggregate PFNs. Further, Garg28,29 proposed generalized
PFWA and PFWG AOs. Apart from those, various AOs are also presented by the re-
searchers30–32 to solve MCDM problems under PF decision making contexts.

Following the concept of PFSs, several AOs for q‐ROFSs are developed.33–35 Liu and Wang36

presented q‐ROF WA and WG operators. Peng et al.37 proposed exponential operational laws
on q‐ROF numbers (q‐ROFNs), and using those laws, derived q‐ROF weighted exponential AO.
Darko and Liang38 introduced some q‐ROF Hamacher AOs.

It is the fact that uncertainty handling capabilities to intelligent systems became more
powerful with the development of DHq‐ROFSs. Wang et al.39 developed several WA and WG
AOs based on Hamacher t‐conorm and t‐norms (t‐CN&t‐Ns) for aggregating DHq‐ROF num-
bers (DHq‐ROFNs). Wang et al.40 further presented some Muirhead mean (MM), and dual MM
(DMM) operators under DHq‐ROF contexts.

In the existing literature, a major part of the research works concentrates on the isolated
aggregation arguments. But, in some practical applications, the arguments may have

FIGURE 1 Satisfying spaces of IFNs, PFNs, and q‐ROFNs. IFN, intuitionistic fuzzy number; PFN, Pythagorean
fuzzy number; q‐ROFN, q‐rung orthopair fuzzy number [Color figure can be viewed at wileyonlinelibrary.com]
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heterogeneous connections. As a consequence, more conjunctional correlations among the
various attributes are required. Hence, some decision making problems which are engaged
with these types of input arguments cannot be solved by usual independent argument‐based
AOs. The BM41 operator can successfully perform this task by producing a flexible function to
aggregate the correlation values with the consideration of the interrelationship between two
arguments. Following the concept of BM and geometric BM (GBM) various research works
have been performed in various domains of fuzzy sets.42–45

Further, Dombi t‐CN&t‐Ns46 (Dt‐CN&t‐Ns) have the properties of general t‐CN&t‐Ns,
which can make information aggregation process more flexible by varying Dombi parameter.
As a powerful tool, Dombi operations are applied to develop AOs in various environments. Jana
et al.47 introduced PF Dombi AOs, namely, PF Dombi‐WA, OWA, hybrid WA, and corre-
sponding geometric AOs. Based on Dombi operations, Jana et al.48 further proposed several
AOs to aggregate q‐ROFNs, namely, q‐ROF Dombi‐WA, OWA, hybrid WA, along with their
geometric variants. Considering priority level of each criterion in real‐life MCDM problems,
Aydemir and Gündüz49 developed q‐ROF Dombi prioritized WA and WG operators.

Thus, by taking the advantages of BM for considering interrelationship among input ar-
guments, and Dt‐CN&t‐Ns for providing flexibility in decision making processes, it would be
convenient to develop an efficient tool to manage higher level of imprecision in MCGDM
problems under DHq‐ROF environment.

From that view point, in this paper DHq‐ROF Dombi BM (DHq‐ROFDBM) and DHq‐ROF
Dombi GBM (DHq‐ROFDGBM) operators along with their weighted variants, namely, DHq‐
ROF weighted Dombi BM (DHq‐ROFWDBM) and DHq‐ROF weighted Dombi GBM (DHq‐
ROFWDGBM) AOs are proposed. Those operators not only consider the interrelationship
between input arguments through DHq‐ROF BM, but also focus on hesitant circumstances.
The proposed operators would be advantageous in the sense that those contain four para-
meters, namely, rung parameter, Dombi parameter, and two BM parameters. Based on pre-
ferences of the DMs, as well as different decision making situations, the proposed model would
become very much flexible by changing values of those associated parameters. The proposed
operators would also possess the inherent capability to capture various existing operators as
their special cases. A flexible MCGDM method based on those operators under DHq‐ROF
environment is presented for solving real‐life decision making problems.

The remaining part of this paper is designed in a manner that in Section 2, a brief review on
basic concepts of DHq‐ROFSs, BM operator, and Dt‐CN&t‐Ns are discussed. Section 3 describes
some operations of DHq‐ROFNs based on Dt‐CN&t‐Ns. In Section 4, DHq‐ROFDBM, DHq‐
ROFWDBM, DHq‐ROFDGBM, and DHq‐ROFWDGBM AOs are introduced, and their prop-
erties are investigated. Also, some special cases of those operators by varying associated
parametric values are discussed. Section 5 presents MCGDM method based on the proposed
DHq‐ROFWDBM and DHq‐ROFWDGBM operators. In Section 6, four examples to illustrate
and validate effectiveness of the proposed MCGDM method are solved and compared with
existing methods. Section 7 presents novelty of the proposed method. Finally, the conclusions
and scope for future studies are discussed in Section 8.

2 | PRELIMINARIES

In this section, some basic concepts which are required to develop the proposed methodology
are briefly reviewed.
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2.1 | q‐ROFS

Definition 1 (Yager17). Let X be a universe of discourse. A q‐ROFS, P on X is given by
∈│P x μ x ν x x X= {( , ( ), ( )) }P P , where →μ X: [0,1]P and →ν X: [0,1]P indicate the

membership and nonmembership functions, respectively, to represent the respective
degree of belongingness and nonbelongingness of the element ∈x X to the set P,
satisfying the condition that

≤ ≤ ≥μ x ν x q0 ( ( )) + ( ( )) 1, 1.P
q

P
q

The degree of indeterminacy is formulated by

π x μ x ν x μ x ν x( ) = [( ( )) + ( ( )) − ( ( )) ( ( )) ] .P P
q

P
q

P
q

P
q q

1

For convenience, Yager17 named μ x ν x( ( ), ( ))P P as a q‐ROFN and is denoted by p μ ν= ( , ).
For q‐ROFNs, Liu and Wang36 introduced score and accuracy functions in the following

manners.

Definition 2 (Liu and Wang36). For any q‐ROFN, p μ ν= ( , ), the score function of p is
defined by

∈S p μ ν S p( ) =
1

2
(1 + − ), where ( ) [0, 1],q q

and the accuracy function of p is defined by

A p μ ν( ) = + .q q

Ranking method of q‐ROFNs:
Liu and Wang36 proposed a ranking method of q‐ROFNs as follows.
Let p1 and p2 be any two q‐ROFNs, then the ordering of those q‐ROFNs is done by the

following principles:

• ≻p p1 2 when S p S p( ) > ( )1 2 ;
• For S p S p( ) = ( )1 2 :

(1) ≻p p1 2 when A p A p( ) > ( )1 2 ;
(2) and ≈p p1 2 for A p A p( ) = ( )1 2 .

Four fundamental operations32 on q‐ROFNs are presented as follows:

Definition 3 (Liu and Wang36). Let p μ ν= ( , ), p μ ν= ( , )1 1 1 , and p μ ν= ( , )2 2 2 be three
q‐ROFNs, and λ > 0 be any scalar. Then four basic operations are defined as follows:

(1) ⊕p p μ μ μ μ ν ν= ( + − , )q q q q
1 2 1 2 1 2 1 2

q ;

(2) ⊗p p μ μ ν ν ν ν= ( , + − )q q q q
1 2 1 2 1 2 1 2

q ;

(3) λp μ ν= ( 1 − (1 − ) , )q λ λq ;

(4) p μ ν= ( , 1 − (1 − ) )λ λ q λq .
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2.2 | DHq‐ROFS

Based on q‐ROFSs17 and DHFSs,18,50 Xu et al.19 proposed the concept of DHq‐ROFSs and
defined basic operations on them.

Definition 4 (Xu et al.19). Let  be a fixed set. A DHq‐ROFS ̃ on  is described as:

̃ 〈 ̃ ̃ 〉 ∈̃ ̃x h x x x= ( , ( ), ( ) | ),  g

where ̃ ̃h x( ) and ̃ ̃ x( )g are two sets of real numbers in [0,1], representing the possible mem-
bership degrees and nonmembership degrees, respectively, of the element ∈x  to the set ̃
satisfying the conditions:

≤ ≤ ≤ ≤∈ ∈( ) ( )γ η max γ max η0 , 1 and 0 { } + { } 1,γ h x
q

η x
q~

( ) ~ ( )~ ~
 g

where ∈ ̃ ̃γ h x( ) , ∈ ̃ ̃η x( )g for all ∈x  .
For convenience, Xu et al.19 called the pair ̃ ̃ ̃̃ ̃h x x= ( ( ), ( ))  g as a DHq‐ROFN, and de-

noted it by ̃ ̃ ̃κ h= ( , )g .

Definition 5 (Xu et al.19). Let ̃ ̃ ̃κ h= ( , )g be a DHq‐ROFN. The score function of ̃κ,
denoted by ̃S κ( ), is given by

∑ ∑̃
̃ ∈ ̃

̃ ∈ ̃
S κ

l
γ

l
η( ) =

1

2
1 +

1
−

1
.

h
γ h

q

η

q

g
g

⎛
⎝⎜

⎞
⎠⎟ (1)

Also, the accuracy function of ̃κ, denoted by ̃A κ( ), and is given by

∑ ∑
∈ ∈

A κ
l

γ
l

η( ˜) =
1

+
1

,
h γ h

q

g η g

q

˜ ˜ ˜ ˜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ (2)

where ̃lh and ̃lg are the number of elements in ̃h and g̃, respectively.
The ordering of DHq‐ROFNs is done as follows:
Let ̃ ̃ ̃κ h= ( , )i i ig i( = 1,2) be any two DHq‐ROFNs,

• If ̃ ̃S κ S κ( ) > ( )1 2 , then ̃κ1 is superior to ̃κ2, denoted by ̃ ≻ ̃κ κ1 2;
• If ̃ ̃S κ S κ( ) = ( )1 2 , then

(1) If ̃ ̃A κ A κ( ) > ( )1 2 , then ̃ ≻ ̃κ κ1 2;
(2) If ̃ ̃A κ A κ( ) = ( )1 2 , then ̃κ1 is equivalent to ̃κ2, denoted by ̃ ≈ ̃κ κ1 2.

2.3 | The BM operator

A mean type AO, namely, BM operator, initially introduced by Bonferroni,41 is defined as
follows.

Definition 6 (Bonferroni41). Let ≥θ ϕ, 0 be any two numbers, and i i n( = 1,2, …, ) be a
collection of nonnegative real numbers. If

6 | SARKAR AND BISWAS



∑

≠

BM
n n

( , , …, ) =
1

( − 1)
,θ ϕ

n

i j

i j

n

i
θ

j
ϕ,

1 2

, =1

θ ϕ
1
+⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
(3)

then BMθ ϕ, is called the BM operator.
Considering both BM operator and geometric mean, Zhu et al.51 explored GBM operator as

follows.

Definition 7 (Zhu et al.51). Let ≥θ ϕ, 0, and i i n( = 1,2, …, ) be a collection of
nonnegative real numbers. A GBM operator is defined as follows:

∏

≠

GBM
θ ϕ

θ ϕ( , , …, ) =
1

+
( + ) .θ ϕ

n

i j

i j

n

i j
,

1 2

, =1

n n
1

( −1) (4)

2.4 | Dt‐CN&t‐Ns

Definition 8 (Dombi46). For any two real numbers, α and β, Dombi t‐conorm, UD, and
Dombi t‐norm, ID, are defined, respectively, as follows:

( )( )( )
U α β( , ) = 1 −

1

1 + +

,D
α

α

τ β

β

τ τ

1− 1−

1/
(5)

( )( )( )
I α β( , ) =

1

1 + +

,D
α

α

τ β

β

τ τ
1− 1−

1/
(6)

where τ > 0 and ∈α β( , ) [0,1] × [0,1].

3 | OPERATIONS ON DHq‐ROFNs BASED ON Dt‐CN&t‐Ns

In this section, the concept of Dt‐CN&t‐Ns would be imposed on DHq‐ROFNs to present
operational laws on DHq‐ROFNs. Suppose ̃κ1, ̃κ2, and ̃κ are any three DHq‐ROFNs. The
operational laws, namely, addition, multiplication, scalar multiplication, and exponent of
DHq‐ROFNs based on Dt‐CN&t‐Ns are presented (for λ τ, > 0) as follows:

(1) Addition: ⊕ ∪ ∪∈ ∈κ κ˜ ˜ = 1 − ,D γ h η g1 2 ˜
1

1 + +

˜
1

1 + +

i i
i γ q

γ q

τ
γ q

γ q

τ τq
i i
i

η q

η q

τ
η q

η q

τ τ
q

=1,2 1
1 − 1

2
1 − 2

1

=1,2
1 − 1

1

1 − 2

2

1

⎛

⎝

⎜⎜⎜⎜⎜

⎧
⎨
⎪⎪

⎩
⎪⎪

⎫
⎬
⎪⎪

⎭
⎪⎪

⎧

⎨
⎪⎪

⎩
⎪⎪

⎫

⎬
⎪⎪

⎭
⎪⎪

⎞

⎠

⎟⎟⎟⎟⎟
⎛
⎝
⎜⎜
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

;

(2) Multiplication: ⊗ ∪ ∪∈ ∈κ κ˜ ˜ = , 1 −D γ h η g1 2 ˜
1

1 + +

˜
1

1 + +

i i
i γ

q

γ
q

τ
γ
q

γ
q

τ τ
q

i i
i η

q

η
q

τ
η
q

η
q

τ τq=1,2 1 − 1

1

1 − 2

2

1
=1,2 1

1 − 1

2

1 − 2

1

⎛

⎝

⎜⎜⎜⎜⎜

⎧
⎨
⎪⎪

⎩
⎪⎪

⎫
⎬
⎪⎪

⎭
⎪⎪

⎧
⎨
⎪⎪

⎩
⎪⎪

⎫
⎬
⎪⎪

⎭
⎪⎪

⎞

⎠

⎟⎟⎟⎟⎟⎛
⎝
⎜⎜
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

;
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(3) Scalar multiplication: ∪ ∪∈ ∈( ) ( )( ) ( )λκ λ λ˜ = 1 − 1 1 + , 1 1 +γ h
γ

γ

τ

η g
η

η

τ
˜

1 − ˜
1 −q

q

τ
q

q

q

τ
q

1 1

⎪ ⎪

⎪ ⎪
⎛

⎝
⎜⎜⎜

⎧
⎨⎪
⎩⎪

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟
⎞
⎠
⎟⎟

⎫
⎬⎪
⎭⎪

⎧
⎨
⎩

⎫
⎬
⎭

⎞

⎠
⎟⎟⎟;

(4) Exponent: ∪ ∪∈ ∈( ) ( )( ) ( )κ λ λ˜ = 1 1 + , 1 − 1 1 +γ h
γ

γ

τ

η g
η

η

τ
λ ˜

1−
˜ 1−

q

q

τ
q

q

q

τ
q

1 1

⎪ ⎪

⎪ ⎪
⎛

⎝
⎜⎜

⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨⎪
⎩⎪

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟
⎞
⎠
⎟⎟

⎫
⎬⎪
⎭⎪

⎞

⎠
⎟⎟.

For better understanding of the above operations, the following example is provided.

Example 1. Let 〈 〉κ~ = {0.8,0.9}, {0.4,0.5}1 , 〈 〉κ~ = {0.6,0.7,0.8}, {0.2,0.3}2 be two
DHq‐ROFNs. Now, assuming q = 3, τ = 2 and λ = 4, the above operations are
performed on ̃κ1 and ̃κ2, and the following results are obtained:

(i) ̃ ⊕ ̃ ⋃

⋃

∈

∈

∈

∈

κ κ = 1 − ,

= ({0.7213, 0.7346, 0.7729, 0.8544, 0.8559, 0.8618},

{0.1995, 0.2927, 0.1999, 0.2982})

D γ

γ

η

η

1 2 {0.8,0.9},

{0.6,0.7,0.8}

1

1 + +

{0.4,0.5}

{0.2,0.3}

1

1 + +

γ

γ

γ

γ

η

η

η

η

1

2
1
3

1 − 1
3

2

2
3

1 − 2
3

2
1
2

3

1

2
1 − 1

3

1
3

2
1 − 2

3

2
3

2
1
2

3

⎛

⎝

⎜⎜⎜⎜⎜

⎧
⎨
⎪⎪

⎩
⎪⎪

⎫
⎬
⎪⎪

⎭
⎪⎪

⎧

⎨
⎪⎪

⎩
⎪⎪

⎫

⎬
⎪⎪

⎭
⎪⎪

⎞

⎠

⎟⎟⎟⎟⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

(ii) ̃ ⊗ ̃ ⋃

⋃

∈

∈

∈

∈

κ κ = ,

1 −

= ({0.5948, 0.6829, 0.7524, 0.5992, 0.6972, 0.7907},

{0.2538, 0.2621, 0.3538, 0.3564})

D γ

γ

η

η

1 2 {0.8,0.9},

{0.6,0.7,0.8}

1

1 + +

{0.4,0.5}

{0.2,0.3}

1

1 + +

γ

γ

γ

γ

η

η

η

η

1

2 1 − 1
3

1
3

2
1 − 2

3

2
3

2
1
2

3

1

2 1
3

1 − 1
3

2

2
3

1 − 2
3

2
1
2

3

⎛

⎝

⎜⎜⎜⎜⎜

⎧

⎨
⎪⎪

⎩
⎪⎪

⎫

⎬
⎪⎪

⎭
⎪⎪

⎧

⎨
⎪⎪

⎩
⎪⎪

⎫

⎬
⎪⎪

⎭
⎪⎪

⎞

⎠

⎟⎟⎟⎟⎟

⎛

⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟

⎛

⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟

(iii) ̃ ⋃

⋃

∈

∈

( )

( )

κ4 = 1 − 1 1 + 4 ,

1 1 + 4

= ({0.8782, 0.9448}, {0.0361, 0.2963})

γ
γ

γ

η
η

η

1 {0.8,0.9} 1−

2

{0.4,0.5}
1− 2

1

1
3

1
3

1
2

3

1

1
3

1
3

1
2

3

⎜ ⎟

⎜ ⎟
⎪

⎪

⎪

⎪

⎛

⎝
⎜⎜⎜

⎧
⎨⎪
⎩⎪

⎛
⎝
⎜⎜

⎛
⎝⎜⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟⎟

⎞
⎠
⎟⎟

⎫
⎬⎪
⎭⎪

⎧
⎨
⎩

⎛
⎝

⎞
⎠

⎫
⎬
⎭

⎞

⎠
⎟⎟⎟
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(iv) ̃ ⋃

⋃

∈

∈

( )

( )

κ = 1 1 + 4 ,

1 − 1 1 + 4

= ({0.0407, 0.1887}, {0.4937, 0.6057})

γ
γ

γ

η
η

η

1
4

{0.8,0.9}
1− 2

{0.4,0.5} 1−

2

1

1
3

1
3

1
2

3

1

1
3

1
3

1
2

3

⎜ ⎟

⎜ ⎟

⎪

⎪

⎪

⎪

⎛

⎝
⎜⎜⎜

⎧
⎨
⎩

⎛
⎝

⎞
⎠

⎫
⎬
⎭

⎧
⎨⎪
⎩⎪

⎛
⎝
⎜⎜

⎛
⎝⎜⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟⎟

⎞
⎠
⎟⎟

⎫
⎬⎪
⎭⎪

⎞

⎠
⎟⎟⎟

4 | DEVELOPMENT OF DOMBI OPERATION ‐BASED BM
OPERATORS UNDER DHq‐ROF ENVIRONMENT

The advantages of Dt‐CN&t‐Ns, BM and GBM operations in the context of MCDM have already
been discussed. Considering those advantages, several AOs under DHq‐ROF environment
would now be developed based on Dt‐CN&t‐Ns and BM.

4.1 | Construction of DHq‐ROFDBM and DHq‐ROFWDBM operators

Based on the operations on DHq‐ROFNs, as defined in the previous section, DHq‐ROFDBM
AO is now generated to combine a finite number of DHq‐ROFNs using Dombi operations and
BM. This operator is defined as follows:

Definition 9. Let ̃ ̃ ̃κ h= ( , )i i ig , i n( = 1,2, …, ) be a collection of DHq‐ROFNs. Also, let
θ ϕ, > 0 be any two numbers. If

⊕ ⊗

≠

DHq ROFDBM κ κ κ
n n

κ κ‐ (~ , ~ , …, ~ ) =
1

( − 1)
~ ~ ,θ ϕ

n Di j

i j

n
i
θ

D j
ϕ,

1 2 , =1

θ ϕ
1
+⎛

⎝
⎜⎜

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎞

⎠
⎟⎟

then DHq ROFDBM κ κ κ‐ (~ , ~ , …, ~ )θ ϕ
n

,
1 2 is called DHq‐ROFDBM operator.

The operator, as defined above, satisfies some properties which are presented through the
following theorems.

Theorem 1. Let ̃ ̃ ̃κ h= ( , )i i ig i n( = 1,2, …, ) be a collection of DHq‐ROFNs, and θ ϕ, > 0.
The number which is obtained by using DHq‐ROFDBM operator is still a DHq‐ROFN,
that is,

⊕ ⊗

≠

DHq ROFDBM κ κ κ
n n

κ κ‐ (~ , ~ , …, ~ ) =
1

( − 1)
(
~ ~

)
θ ϕ

n
D
i j

i j

n
i
θ

D j
ϕ,

1 2 , =1

θ ϕ
1
+⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
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∑∪
∈

∈ ≠

n n

θ ϕ
θ

γ

γ
ϕ

γ

γ
= 1 1 +

( − 1)

+
1 1

1 −
+

1 −
,

γ h

γ h

i j

i j

n
i
q

i
q

τ
j
q

j
q

τ

˜ ,

˜
, =1i i

j j

τ

q

1⎛

⎝

⎜⎜⎜⎜⎜⎜

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛

⎝

⎜⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜

⎛

⎝
⎜⎜

⎛

⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟
⎞

⎠
⎟⎟

⎞

⎠

⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟

⎫

⎬
⎪⎪

⎭
⎪⎪

∑∪
∈

∈
≠

n n

θ ϕ
θ

η

η
ϕ

η

η
1 − 1 1 +

( − 1)

+
1 1

1 −
+

1 −η g

η g
i j

i j

n
i
q

i
q

τ
j
q

j
q

τ

˜ ,

˜
, =1i i

j j

τ

q

1⎧

⎨
⎪⎪

⎩
⎪⎪

⎛

⎝

⎜⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜

⎛

⎝
⎜⎜

⎛

⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟
⎞

⎠
⎟⎟

⎞

⎠

⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟

⎫

⎬
⎪⎪

⎭
⎪⎪

⎞

⎠

⎟⎟⎟⎟⎟⎟
(7)

Proof. From operations of DHq‐ROFNs based on Dt‐CN&t‐N, it follows that

∪ ∪

∪ ∪

∈ ∈

∈ ∈

κ θ
γ

γ
θ

η

η

κ ϕ
γ

γ
ϕ

η

η

˜ = 1 1 +
1 −

, 1 − 1 1 +
1 −

,

˜ = 1 1 +
1 −

, 1 − 1 1 +
1 −

.

i
θ

γ h

i
q

i
q

τ τ

η g

i
q

i
q

τ τ

j
ϕ

γ h

j
q

j
q

τ τ

η g

j
q

j
q

τ τ

˜

1/

˜

1/

˜

1/

˜

1/

i i

q

i i

q

j j

q

j j

q

⎛

⎝

⎜⎜⎜

⎧
⎨⎪
⎩⎪

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟

⎫
⎬⎪
⎭⎪

⎧
⎨⎪

⎩⎪
⎛

⎝
⎜⎜

⎛

⎝
⎜⎜

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟
⎞

⎠
⎟⎟

⎫
⎬⎪

⎭⎪

⎞

⎠

⎟⎟⎟
⎛

⎝

⎜⎜⎜⎜

⎧
⎨⎪

⎩⎪
⎛

⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟

⎫
⎬⎪

⎭⎪

⎧
⎨⎪

⎩⎪

⎛

⎝
⎜⎜⎜

⎛

⎝
⎜⎜⎜

⎛

⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟

⎞

⎠
⎟⎟⎟
⎞

⎠
⎟⎟⎟

⎫
⎬⎪

⎭⎪

⎞

⎠

⎟⎟⎟⎟

Then ⊗ ∪ ∈
∈

( )κ κ θ ϕ˜ ˜ = 1 1 + + ,i
θ

D j
ϕ

γ h
γ

γ

τ γ

γ

τ

˜ ,
1− 1−

i i
γj hj

i
q

i
q

j
q

j
q

τ

q

˜

1⎪
⎪

⎪
⎪

⎜ ⎟
⎛

⎝
⎜⎜

⎧
⎨
⎩

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎫
⎬
⎭

∪
∈
∈

θ
η

η
ϕ

η

η
1 − 1 1 +

1 −
+

1 −
.

η g

i
q

i
q

τ
j
q

j
q

τ

˜ ,i i
ηj gj

τ

q

˜

1⎧
⎨⎪

⎩⎪

⎛

⎝
⎜⎜⎜

⎛

⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟

⎞

⎠
⎟⎟⎟

⎫
⎬⎪

⎭⎪

⎞

⎠

⎟⎟⎟

Now, using mathematical induction, it is necessary to prove that

∑

∑

⊕ ⊗ ∪

∪

∈

≠

∈

≠

≠
∈

∈

( )κ κ θ
γ

γ
ϕ

γ

γ

θ
η

η
ϕ

η

η

˜ ˜ = 1 − 1 1 + 1
1 −

+
1 −

,

1 1 + 1
1 −

+
1 −

.

Di j
n

i
θ

D j
ϕ

γ h i j

i j

n
i
q

i
q

τ
j
q

j
q

τ

η g i j

i j

n
i
q

i
q

τ
j
q

j
q

τ

, =1
˜ , , =1

˜ , , =1

i j i i
γj hj

τ

q

i i
ηj gj

τ

q

˜

1

˜

1

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛

⎝

⎜⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜

⎛

⎝
⎜⎜

⎛

⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟
⎞

⎠
⎟⎟

⎞

⎠

⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟

⎫

⎬
⎪⎪

⎭
⎪⎪

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛

⎝

⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜

⎛

⎝
⎜⎜

⎛

⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟
⎞

⎠
⎟⎟

⎞

⎠

⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟

⎫

⎬
⎪⎪

⎭
⎪⎪

⎞

⎠

⎟⎟⎟⎟⎟
(8)

For n = 2,

⊕ ̃ ⊗ ̃ ̃ ⊗ ̃ ⊕ ̃ ⊗ ̃

≠

( ) ( ) ( )κ κ κ κ κ κ=Di j

i j

i
θ

D j
ϕ θ

D
ϕ

D
θ

D
ϕ

, =1
2

1 2 2 1
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∑∪
∈

≠
∈

θ
γ

γ
ϕ

γ

γ
= 1 − 1 1 + 1

1 −
+

1 −
,

γ h i j

i j

i
q

i
q

τ
j
q

j
q

τ

˜ , , =1

2

i i
γj hj

τ

q

˜

1⎛

⎝

⎜⎜⎜⎜⎜

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛

⎝

⎜⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜

⎛

⎝
⎜⎜

⎛

⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟
⎞

⎠
⎟⎟

⎞

⎠

⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟

⎫

⎬
⎪⎪

⎭
⎪⎪

∑∪
∈

≠
∈

θ
η

η
ϕ

η

η
1 1 + 1

1 −
+

1 −
.

η g i j

i j

i
q

i
q

τ
j
q

j
q

τ

˜ , , =1

2

i i
ηj gj

τ

q

˜

1⎧

⎨
⎪⎪

⎩
⎪⎪

⎛

⎝

⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜

⎛

⎝
⎜⎜

⎛

⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟
⎞

⎠
⎟⎟

⎞

⎠

⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟

⎫

⎬
⎪⎪

⎭
⎪⎪

⎞

⎠

⎟⎟⎟⎟⎟
Assume now that Equation (8) is valid for n m= , that is,

∑

∑

⊕ ⊗ ∪

∪

∈

≠

∈

≠

≠
∈

∈

( )κ κ θ
γ

γ
ϕ

γ

γ

θ
η

η
ϕ

η

η

˜ ˜ = 1 − 1 1 + 1
1 −

+
1 −

,

1 1 + 1
1 −

+
1 −

.

D i j
m

i
θ

D j
ϕ

γ h i j

i j

m
i
q

i
q

τ
j
q

j
q

τ

η g i j

i j

m
i
q

i
q

τ
j
q

j
q

τ

, =1
˜ , , =1

˜ , , =1

i j i i
γj hj

τ

q

i i
ηj gj

τ

q

˜

1

˜

1

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛

⎝

⎜⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜

⎛

⎝
⎜⎜

⎛

⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟
⎞

⎠
⎟⎟

⎞

⎠

⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟

⎫

⎬
⎪⎪

⎭
⎪⎪

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛

⎝

⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜

⎛

⎝
⎜⎜

⎛

⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟
⎞

⎠
⎟⎟

⎞

⎠

⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟

⎫

⎬
⎪⎪

⎭
⎪⎪

⎞

⎠

⎟⎟⎟⎟⎟
(9)

Then, if n m= + 1,

⊕ ̃ ⊗ ̃ ⊕ ̃ ⊗ ̃ ⊕ ⊕ ̃ ⊗ ̃

⊕ ⊕ ̃ ⊗ ̃

≠ ≠

( )

( )

( ) ( ) ( )

( )

κ κ κ κ κ κ

κ κ

=

.

Di j

i j

m
i
θ

D j
ϕ

Di j

i j

m
i
θ

D j
ϕ

D Di
m

i
θ

D m
ϕ

D D j
m

m
θ

D j
ϕ

, =1
+1

, =1 =1 +1

=1 +1 (10)

To prove the above Equation (10), it is necessary to prove that

∑⊕ ⊗ ∪
∈ ( )( )

( )κ κ

θ ϕ

˜ ˜ = 1 − 1 1 +
1

+

,D i
m

i
θ

D m
ϕ

γ h
i

m

γ

γ

τ γ

γ

τ=1 +1
˜

=1
1− 1−

i i i
q

i
q

m
q

m
q

τ

q

+1

+1

1⎛

⎝

⎜⎜⎜⎜⎜
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⎩
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⎛

⎝

⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟

⎫

⎬
⎪⎪

⎭
⎪⎪
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∈

θ
η

η
ϕ

η

η
1 1 + 1
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+

1 −
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i

m
i
q
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q

τ

m
q

m
q
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q

1⎧
⎨⎪

⎩⎪
⎛

⎝
⎜⎜⎜

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟
⎞
⎠
⎟⎟

⎞

⎠
⎟⎟⎟

⎫
⎬⎪

⎭⎪

⎞

⎠

⎟⎟⎟
(11)

It can easily be shown that Equation (11) is true for m = 1,2.
Let Equation (11) be true for m v= , that is,
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∑⊕ ⊗ ∪
∈ ( )( )

( )κ κ

θ ϕ
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Then for m v= + 1,
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⎟⎟⎟

Thus, Equation (11) is true for m v= + 1, and so Equation (11) holds for all m.
Similarly, it can be proved that
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(12)

Using Equations (9), (11) and (12), the Equation (10) takes the form as follows:

∑

⊕ ⊗

∪

∈
≠

≠
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θ
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γ
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˜ ˜
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⎛

⎝

⎜⎜⎜⎜⎜

⎧

⎨
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⎩
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⎛

⎝
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⎝
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⎜⎜⎜⎜
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⎝
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⎝
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⎠
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⎝
⎜⎜

⎞
⎠
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⎞

⎠
⎟⎟
⎞

⎠
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⎞

⎠

⎟⎟⎟⎟
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⎠
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⎪⎪
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∑∪
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that is, Equation (10) is valid for all n.
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τ
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Finally, the aggregated value using DHq‐ROFDBM is obtained as follows:

∑

⊕ ⊗

∪

∈
≠

≠

∈

( )n n
κ κ

n n

θ ϕ
θ

γ

γ
ϕ

γ

γ

1

( − 1)
˜ ˜

= 1 1 +
( − 1)

+
1 1

1 −
+

1 −
,

D i
θ

D j
ϕ

γ h
i j

i j

n
i
q

i
q

τ
j
q

j
q

τ

τ

˜ , =1

1/

i j
i j
n

θ ϕ

j j

γi hi
q

, =1

1
+

˜ ,

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛

⎝

⎜⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜

⎛

⎝
⎜⎜

⎛

⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟
⎞

⎠
⎟⎟

⎞

⎠

⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟

⎫

⎬
⎪⎪

⎭
⎪⎪

∑∪
∈

≠

∈

n n

θ ϕ
θ

η

η
ϕ

η

η
1 − 1 1 +

( − 1)

+
1 1

1 −
+

1 −
,

η g i j

i j

n
i
q

i
q

τ
j
q

j
q

τ

τ

˜ , =1

1/

j j

ηi gi
q

˜ ,

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛

⎝

⎜⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜

⎛

⎝
⎜⎜

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟
⎞

⎠
⎟⎟

⎞

⎠

⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟

⎫

⎬
⎪⎪

⎭
⎪⎪

⎞

⎠

⎟⎟⎟⎟⎟⎟

which is also a DHq‐ROFN.
Hence the theorem is proved. □
To show the usefulness of the above theorem, the following example is considered.

Example 2. Let 〈 〉 〈 〉 〈 〉P = { {0.6,0.7,0.8}, {0.2,0.3} , {0.7,0.9}, {0.3,0.5} , {0.6,0.75}, {0.5,0.6} }

and 〈 〉 〈 〉 〈 〉Q = { {0.6,0.8}, {0.4,0.6} , {0.7,0.8}, {0.3,0.4} , {0.8,0.9}, {0.5} } be two sets of
DHq‐ROFNSs, each of which contains three elements. Now utilize the proposed
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DHq‐ROFDBM operator to aggregate those three input arguments of P and Q as follows
(suppose q = 3, τ = 2, θ ϕ= = 1):

Let the aggregated value of the elements contained in P and Q is denoted by ̃p and ̃q,
respectively. Thus
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So, 〈p~ = {0.5398, 0.5914, 0.5537, 0.6491, 0.5772, 0.6295, 0.6118, 0.6794, 0.6017,

〉0.6626, 0.6917, 0.7294}, {0.3819, 0.3852, 0.5440, 0.5844, 0.4163, 0.4226, 0.5461, 0.5863}

〈

〉

q~ = {0.6017, 0.6118, 0.6556, 0.6917, 0.6833, 0.7121, 0.7226, 0.7519}, {0.4852,0.5122,

0.5863, 0.5957} .

Based on the score function defined in Definition 5 the score value of ̃p and ̃q are obtained
as ̃S p( ) = 0.5642, ̃S q( ) = 0.5762, so ̃ ≻ ̃q p.

It is important to note that several forms of AOs can also be derived from the proposed
DHq‐ROFDBM operator by varying θ, ϕ as follows:

(i) When →ϕ 0, DHq‐ROFDBM operator reduces to generalized DHq‐ROF Dombi averaging
(GDHq‐ROFDA) operator. Thus
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(ii) Now, if θ = 1 and →ϕ 0, then
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which is the DHq‐ROF Dombi averaging (DHq‐ROFDA) operator.
(iii) Again, for θ ϕ= = 1, DHq‐ROFDBM leads to the following operator:
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Theorem 2 (Idempotency). Let ̃ ̃ ̃κ h= ( , )i i ig i n( = 1,2, …, ) be a collection of DHq‐ROFNs.
If all ̃κi are equal to ̃ ̃ ̃κ h= ( , )g , that is, ̃ ̃κ κ=i for all i n= 1,2, …, , then

DHq ROFDBM κ κ κ κ‐ (~ , ~ , …, ~ ) = ~.θ ϕ
n

,
1 2
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Proof. From Definition 9 it is found that
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Theorem 3 (Monotonicity). Let ̃ ̃ ̃κ h= ( , )i i ig and ̃ ̃ ̃κ h′ = ( ′, ′)i i ig i n( = 1,2, …, ) be two sets of
DHq‐ROFNs, if ≤γ γ′i i and ≤η η′

i i for all i n= 1,2, …, , then
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it is found that ≥ ( )( )θ θ
γ

γ

τ γ

γ

τ
1− 1− ′

′

i
q

i
q

i
q

i
q and ≥ϕ ϕ

γ

γ

τ γ

γ

τ
1− 1− ′

′

j
q

j
q

j
q

j
q

⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ,

that is, ≥ ( )( )θ ϕ θ ϕ+ +
γ

γ

τ γ

γ

τ
γ

γ

τ γ

γ

τ
1− 1− 1− ′

′

1− ′

′

i
q

i
q

j
q

j
q

i
q

i
q

j
q

j
q

⎜ ⎟⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟,

that is, ≤ ( )( )θ ϕ θ ϕ1 + 1/ +
γ

γ

τ γ

γ

τ
γ

γ

τ γ

γ

τ
1− 1− 1− ′

′

1− ′

′

i
q

i
q

j
q

j
q

i
q

i
q

j
q

j
q

⎜ ⎟⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟,

that is,∑ ≤ ∑

≠ ≠

( )( )θ ϕ θ ϕ1 + 1 +i j

i j

n γ

γ

τ γ

γ

τ

i j

i j

n γ

γ

τ γ

γ

τ

, =1

1− 1−

, =1

1− ′

′

1− ′

′

i
q

i
q

j
q

j
q

i
q

i
q

j
q

j
q

⎜ ⎟⎜ ⎟
⎛
⎝⎜

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎞
⎠⎟,

∑

≤

∑

≠

≠

( )

n n

θ ϕ

n n

θ ϕ

i. e. , 1 1 +
( − 1)

+

1

1 1 +
( − 1)

+

1
.

i j

i j

n

θ ϕ

i j

i j

n

θ ϕ

, =1
1

+

, =1
1

+

γi
q

γi
q

τ γj
q

γj
q

τ

τ

γi
q

γi
q

τ γ j
q

γ j
q

τ

τ

1 − 1 −

1

1 − ′

′

1 − ′

′

1

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎛

⎝
⎜⎜⎜

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎞

⎠
⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎞

⎠

⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎜ ⎟

⎜ ⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

(15)

SARKAR AND BISWAS | 17



Again, since ≤η η′
i i for all i n= 1,2, …, , in a similar way, the following inequality can be

proved:

∑

≤

∑

≠

≠ ( )

n n

θ ϕ

n n

θ ϕ

1 − 1 1 +
( − 1)

+

1

1 − 1 1 +
( − 1)

+

1
.

i j

i j

n

θ ϕ

i j

i j

n

θ ϕ

, =1
1

+

, =1
1

+

ηi
q

ηi
q

τ ηj
q

ηj
q

τ

τ

ηi
q

ηi
q

τ ηj
q

ηj
q

τ

τ

′

1 − ′

′

1 − ′

1

1 − 1 −

1

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎜ ⎟

⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

(16)

From Definition 5, Equations (15) and (16), the following inequality is found with respect to
the score function of the aggregated DHq‐ROFNs as follows:

≤S DHq ROFDBM κ κ κ S DHq ROFDBM κ κ κ( ‐ (~ , ~ , …, ~ )) ( ‐ (~ , ~ , …, ~ )).θ ϕ
n

θ ϕ
n

,
1 2

,
1
′

2
′ ′

Hence the theorem is proved. □
On the basis of boundary conditions of the associated membership and nonmembership

values of a collection of DHq‐ROFNs, the boundary condition of the resultant DHq‐ROFN,
achieved using DHq‐ROFDBM, is shown through the following theorem.

Theorem 4 (Boundary). Let ̃ ̃ ̃κ h= ( , )i i ig i n( = 1, 2, …, ) be a collection of DHq‐ROFNs.
Also, let for all i n= 1,2, …, ,

γ max γ= { }imax
⁎ , where ∈ ̃γ max γ= { }imax γ h ii i

;
γ min γ= { }imin# , where ∈ ̃γ min γ= { }imin γ h ii i

;
η max η= { }imax
⁎ , where ∈ ̃η max η= { }imax η ii ig ;

and η min η= { }imin# , where ∈ ̃η min η= { }imin η ii ig .
Now, if ̃κ γ η= ( , )− #

⁎ and ̃κ γ η= ( , )+
⁎

# ,
then ≤ ≤κ DHq ROFDBM κ κ κ κ~ ‐ (~ , ~ , …, ~ ) ~θ ϕ

n−
,

1 2 +.

Proof. Since ≤ ≤γ γ γi#
⁎ and ≤ ≤η η ηi#

⁎ for all i n= 1,2, …, , then

̃ ≤ ̃κ κi− for all i n= 1, 2, …, , and, therefore, from monotonicity,

≤DHq ROFDBM κ κ κ DHq ROFDBM κ κ κ‐ (~ , ~ , …, ~ ) ‐ (~ , ~ , …, ~ ).θ ϕ θ ϕ
n

,
− − −

,
1 2
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So, by idempotency,

≤κ DHq ROFDBM κ κ κ~ ‐ (~ , ~ , …, ~ ).θ ϕ
n−

,
1 2 (17)

Similarly, it can be shown that

≤DHq ROFDBM κ κ κ κ‐ (~ , ~ , …, ~ ) ~ .θ ϕ
n

,
1 2 + (18)

Now, combining Equation (17) and (18), it is obtained that

≤ ≤κ DHq ROFDBM κ κ κ κ~ ‐ (~ , ~ , …, ~ ) ~ .θ ϕ
n−

,
1 2 + □

It is worthy to mention here that DHq‐ROFDBM operator can consider the interrelationship
between the input parameters. However, it does not take into account the self‐importance of
parameters. In MCGDM problems, the importance of parameters is equivalent to attribute
weights or experts' weights. Obviously, it is a shortcoming of the developed DHq‐ROFDBM
operator, which can be overcome by defining weighted variant of the developed DHq‐ROFDBM
operator, namely, DHq‐ROFWDBM operator as follows.

Definition 10. Let ̃κi i n( = 1,2, …, ) be a collection of DHq‐ROFNs and let
ω ω ω ω= ( , , …, )n

T
1 2 be the weight vector with ∈ω [0,1]i and ∑ ω = 1

i

n
i=1

. Let θ ϕ, > 0
be any two numbers. If

⊕ ⊗

≠

DHq ROFWDBM κ κ κ
n n

ω κ ω κ‐ (~ , ~ , …, ~ ) =
1

( − 1)
(( ~ ) ( ~ ) ) ,ω

θ ϕ
n Di j

i j

n
i i

θ
D j j

ϕ,
1 2 , =1

θ ϕ
1
+⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

then DHq ROFWDBM κ κ κ‐ (~ , ~ , …, ~ )ω
θ ϕ

n
,

1 2 is called DHq‐ROFWDBM.
As like DHq‐ROFDBM operator, several properties of DHq‐ROFWDBM are also hold.

Theorem 5. Let ̃ ̃ ̃κ h= ( , )i i ig i n( = 1,2, …, ) be a collection of DHq‐ROFNs, whose weight
vector is ω ω ω ω= ( , , …, )n

T
1 2 , and satisfies ∈ω [0,1]i ,∑ ω = 1

i

n
i=1

. Also, let θ ϕ, > 0 be any
two numbers. The aggregated value by using DHq‐ROFWDBM operator is also a DHq‐
ROFN, and is expressed as follows:

⊕ ⊗

≠

DHq ROFWDBM κ κ κ κ κ‐ (~ , ~ , …, ~ ) = ((ω ~ ) (ω ~ ) )ω
θ ϕ

n n n Di j

i j

n
i i

θ
D j j

ϕ,
1 2

1

( − 1) , =1

θ ϕ
1
+⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

∑∪

∈
≠

∈

n n

θ ϕ

θ

ω

γ

γ

ϕ

ω

γ

γ
= 1 1 +

( − 1)

+
1 1

1 −
+

1 −
,

γ h
i j

i j

n

i

i
q

i
q

τ

j

j
q

j
q

τ

τ

˜ , =1

1/

j j

γi hi
q

˜ ,

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛

⎝

⎜⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜

⎛

⎝
⎜⎜

⎛

⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟
⎞

⎠
⎟⎟

⎞

⎠

⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟

⎫

⎬
⎪⎪

⎭
⎪⎪

∑∪
∈

≠

∈

n n

θ ϕ

θ

ω

η

η

ϕ

ω

η

η
1 − 1 1 +

( − 1)

+
1 1

1 −
+

1 −
.

η g i j

i j

n

i

i
q

i
q

τ

j

j
q

j
q

τ

τ

˜ , =1

1/

j j

ηi gi
q

˜ ,

⎧

⎨
⎪⎪

⎩
⎪⎪

⎛

⎝

⎜⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜

⎛

⎝
⎜⎜

⎛

⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠
⎟⎟
⎞

⎠
⎟⎟

⎞

⎠

⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟

⎫

⎬
⎪⎪

⎭
⎪⎪

⎞

⎠

⎟⎟⎟⎟⎟⎟
(19)
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Proof. The proof is similar to the proof of Theorem 1. □

As like previous, the following example is considered for a better understanding of the
above theorem.

Example 3. In Example 2, if the weights of three elements associated with P andQ are
taken as 0.1, 0.25 and 0.65, respectively, and if DHq‐ROFWDBM operator is operated on
P and Q for the values q = 3, τ = 2, θ ϕ= = 1, the following results are obtained:

⊕ ⊗

≠

( )
DHq ROFWDBM x x x ω κ ω κ‐ ( , , ) =

1

3(3 − 1)
( ~ ~ )ω Di j

i j

i i D j j
1,1

1 2 3 , =1
3

1/ 1+1⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⋃

∑

∈ ̃

∈ ̃

≠

= 1 1 + 3
1

,γ h

γ h

i j

i j

n

,

, =1
1

+

1/2

i i

j j

γi

γi

γj

γj

1 − 3

3

2 1 − 3

3

2

3

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎧

⎨

⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜⎜

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎫

⎬

⎪⎪⎪⎪⎪⎪

⎭

⎪⎪⎪⎪⎪⎪

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎛

⎝
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⎛
⎝⎜

⎞
⎠⎟
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⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
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⎟⎟⎟

⋃
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≠

1 − 1 1 +
3(3 − 1)
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1
.η

η
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i j

,
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3 1

+
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j j

ηi

ηi

ηj

ηj

3

1 − 3

2 3

1 − 3

2

3

g

g

⎧

⎨

⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪

⎛

⎝
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⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
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⎝
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⎞
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⎬
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⎭

⎪⎪⎪⎪⎪

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

So, 〈P = {0.5234, 0.5635, 0.5530, 0.6775, 0.5572, 0.5911, 0.5837, 0.6864, 0.5935, 0.6371,

〉0.6385, 0.7119}, {0.3986, 0.4075, 0.5253, 0.5794, 0.4509, 0.4717, 0.5354, 0.5839} ; and
〈Q = {0.5691, 0.5740, 0.6495, 0.6693, 0.6442, 0.6507, 0.6929, 0.7067}, {0.5127, 0.5315,

〉0.5635, 0.5898}

Based on the score function defined in Equation (5), the score values are obtained as
̃S p( ) = 0.5526, ̃S q( ) = 0.5523. So, ̃ ≻ ̃p q.
It is to be mentioned here that the ordering of P and Q is reversed for the consideration of

weights of the associated elements of DHq‐ROFSs.

4.2 | Development of DHq‐ROFDGBM and DHq‐ROFWDGBM
operators

In this section, GBM is combined with Dombi operations to generate DHq‐ROFDGBM and
DHq‐ROFWDGBM AOs.
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Definition 11. Let ̃κi i n( = 1,2, …, ) be a collection of DHq‐ROFNs, and θ ϕ, > 0 be any
numbers. If

⊗ ⊕

≠

DHq‐ROFDGBM κ κ κ θκ ϕκ(~ , ~ , …, ~ ) = (( ~ ) ( ~ )) ,
( )

θ ϕ
n θ ϕ Di j

i j

n
i D j

,
1 2

1

+ , =1

n n

1

−1⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

then DHq ROFDGBM κ κ κ‐ (~ , ~ , …, ~ )θ ϕ
n

,
1 2 is called DHq‐ROFDGBM operator.

Theorem 6. Let ̃ ̃ ̃κ h= ( , )i i ig i n( = 1,2, …, ) be a collection of DHq‐ROFNs and θ ϕ, > 0

be any two numbers. The aggregated value using DHq‐ROFDGBM operator is also a DHq‐
ROFN and is stated as follows:
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Proof. The proof is similar to Theorem 1. □

Now, some special cases of the above‐defined DHq‐ROFDGBM operator are investigated by
considering several values of θ, ϕ.

(i) When →ϕ 0, DHq‐ROFDGBM operator reduces to generalized DHq‐ROF Dombi geo-
metric (GDHq‐ROFDG) operator as follows:
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(ii) Further, if θ = 1, →ϕ 0 is considered for DHq‐ROFDGBM operator, DHq‐ROF Dombi
geometric (DHq‐ROFDG) operator is found as follows:

SARKAR AND BISWAS | 21



DHq ROFDGBM κ κ κ‐ (~ , ~ , …, ~ )n
1,0

1 2

∑∪

∈
∈

γ

γ
= 1 − 1 1 + 1 1

1 −
,

γ h i

n
i
q

i
q

τ

˜ =1
j j

γi hi

τ

q
˜ ,

1⎛

⎝

⎜⎜⎜⎜

⎧
⎨⎪

⎩⎪

⎛

⎝
⎜⎜⎜

⎛

⎝
⎜⎜⎜

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜
⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟
⎞
⎠
⎟⎟
⎞
⎠
⎟⎟

⎞

⎠
⎟⎟⎟
⎞

⎠
⎟⎟⎟

⎫
⎬⎪

⎭⎪

∑∪
∈
∈

η

η
1 1 + 1 1

1 −
.

η g i

n
i
q

i
q

τ

˜ =1j j

ηi gi

τ

q
˜ ,

1⎧
⎨⎪

⎩⎪

⎛

⎝
⎜⎜⎜

⎛

⎝
⎜⎜

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜
⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟
⎞
⎠
⎟⎟
⎞
⎠
⎟⎟
⎞

⎠
⎟⎟

⎞

⎠
⎟⎟⎟

⎫
⎬⎪

⎭⎪

⎞

⎠

⎟⎟⎟⎟

(iii) Also, for θ ϕ= = 1 in DHq‐ROFDGBM operator, the following operator is found.
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Adopting the concept of weighted GBM, DHq‐ROFWDGBM operator is defined as
follows.

Definition 12. Let ̃κi i n( = 1,2, …, ) be a collection of DHq‐ROFNs and let
ω ω ω ω= ( , , …, )n

T
1 2 be the weight vector with ∈ω [0,1]i ,∑ ω = 1

i

n
i=1

. Also, let θ ϕ, > 0

be any two numbers. Now, if
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then DHq ROFWDGBM κ κ κ‐ (~ , ~ , …, ~ )ω
θ ϕ

n
,

1 2 is called DHq‐ROFWDGBM operator.

Theorem 7. Let ̃ ̃ ̃κ h= ( , )i i ig i n( = 1,2, …, ) be a collection of DHq‐ROFNs, whose weight
vectors is ω ω ω ω= ( , , …, )n

T
1 2 , with ∈ω [0,1]i and ∑ ω = 1

i

n
i=1

. Let θ ϕ, > 0 be any two
numbers. Then the aggregated value by using DHq‐ROFWDGBM operator is also a DHq‐
ROFN, and is given by
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Proof. Analogous to the proof of Theorem 1. □

Note: By changing the values of parameter, q, some special cases of DHq‐ROFWDBM and
DHq‐ROFWDGBM operators are given as follows:

Case 1. If q = 1 is considered, then DHq‐ROFWDBM and DHq‐ROFWDGBM operators
reduce to DHF weighted Dombi BM (DHFWDBM) and DHF weighted Dombi GBM
(DHFWDGBM) operators, respectively.

Case 2. Again, for q = 2, DHq‐ROFWDBM and DHq‐ROFWDGBM operators are converted
into DHPF weighted Dombi BM (DHPFDBM) and DHPF weighted Dombi GBM
(DHPFDGBM) operators, respectively.

5 | AN APPROACH TO MCGDM WITH DHq‐ROF
INFORMATION

In this section, methodologies using DHq‐ROFWDBM and DHq‐ROFWDGBM operators are
developed to solve MCGDM problems. An MCGDM problem under DHq‐ROF environment is
described below.

Let X x x x= { , , …, }m1 2 be a set of alternatives, which are assessed on the basis of a set of
criteria, C C C C= { , , …, }n1 2 by a group of DMs, E e e e= { , , …, }p1 2 . Also let, w w w w= ( , , …, )p1 2

be the weight vector of the DMs, and ω ω ω ω= ( , , …, )n1 2 be the weight vector of criteria. The
individual DM put his/her decision values in the form of DHq‐ROFNs and the DHq‐ROF

decision matrix (DHq‐ROFDM) is presented as ̃ ̃ ̃ ̃K κ h= [ ] = [( , )]m n
l

ij
l

m n ij
l

ij
l

m n×
( ) ( )

×
( ) ( )

×g

l p( = 1,2, …, ). Each ̃κij
l( ) designates the decision value of the alternative, ∈x Xi , on the basis of

criteria, ∈C Cj , provided by the DM, ∈e El . Also, ̃hij
l( ) represents the membership degree

of the alternative, xi that satisfies the criterion, Cj expressed by the DM, el

(i m j n l p= 1,2, …, ; = 1,2, …, ; = 1,2, …, ); and ̃ij
l( )g indicates corresponding degree of

nonmembership.
Now, the developed DHq‐ROFWDBM and DHq‐ROFWDGBM operators are used to de-

scribe an approach for solving MCGDM problems. The proposed methodology is presented
through the following steps:
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Step 1. If DHq‐ROFDM possesses cost type criteria, matrices ̃ ̃K κ= [ ]m n
l

ij
l

m n×
( ) ( )

× are re-

quired to be converted into the normalized matrix DHq‐ROFDM, ̃ ̃R r= ( )m n
l

ij
l

m n×
( ) ( )

× by the

following way;

( )
r

κ C

κ C

~ =

~ for benefit attribute ,

~ for cost attribute ,
ij
l

ij
l

j

ij
c l

j

( )

( )⎧
⎨⎪
⎩⎪

(22)

i m= 1, 2, …, and j n= 1, 2, …, . Where ̃κij
c is the complement of ̃κij.

Then goto the next step.
But, if all the criteria are of benefit type, skip this step and go to Step 2.
Step 2. To aggregate all the individual DHq‐ROFDMs, ̃R r= ( )m n

l
ij
l

m n×
( ) ( )

× l p( = 1,2, …, )

into the collective DHq‐ROFDM, ̃ ̃R r= [ ]ij m n× , i m= 1,2, …, ; j n= 1,2, …., , the following DHq‐
ROFWDBM or DHq‐ROFWDGBM operator is used. The weight vector, w w w w= ( , , …, )n

T
1 2

corresponding to the DMs is considered in this context.

Using DHq‐ROFWDBM operator, the collective DHq‐ROFN is found, using Definition 9, as

( )r DHq ROFWDBM r r r~ = ‐ ~ , ~ , …, ~ .ij ω
θ ϕ

ij ij ij
p, (1) (2) ( ) (23)

Similar cases are observed for DHq‐ROFWDGBM operator, and the collective DHq‐ROFN is
found as

( )r DHq ROFWDGBM r r r~ = ‐ ~ , ~ , …, ~ .ij ω
θ ϕ

ij ij ij
p′ , (1) (2) ( ) (24)

Step 3. The resulting decision information, as found in matrix ̃R in the form of DHq‐ROFNs,
the criteria value of each alternative is aggregated by considering the criteria weight vector,
ω ω ω ω= ( , , …, )n

T
1 2 using DHq‐ROFWDBM (or DHq‐ROFWDGBM) operator, to get ag-

gregated criteria value of each alternative using Definition 9 (or Definition 11), as

r DHq ROFWDBM r r r~ = ‐ (~ , ~ , …, ~ )i ω
θ ϕ

i i in
,

1 2 (25)

or

r DHq ROFWDGBM r r r~ = ‐ (~ , ~ , …, ~ )i ω
θ ϕ

i i in
′ ,

1 2 (26)

i m j n= 1, 2, …, ; = 1, 2, …, .

Step 4. Calculate the score values ̃S r( )i (or ′̃S r( )i ) i m( = 1,2, …, ) of the aggregated DHq‐
ROFNs, for finding ranking values of the alternatives, xi. Through score functions, the ag-
gregated decision values corresponding to each alternative in the form of DHq‐ROFN are
converted into crisp values for ranking purpose.

Step 5. Rank the alternatives.

6 | ILLUSTRATIVE EXAMPLES

To illustrate the proposed method and to establish the application potentiality of it, the fol-
lowing four examples are solved and compared with the existing approaches.
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6.1 | Illustrative Example 1

To show effectiveness of the developed method, an example about investment to a suitable com-
pany among five possible companies, A A A A A, , , ,1 2 3 4 5, adapted from two articles24,42 is con-
sidered. Three DMs, namely, D l( ) l( = 1,2,3) with weight vector, w = (0.35,0.40,0.25)T , are
involved with the assessment process to evaluate the alternatives based on four criteria, namely,
risk analysis (ξ1), growth analysis (ξ2), social‐political impact analysis (ξ3) and environmental im-
pact analysis (ξ4), with their weight vector ω = (0.2,0.1,0.3,0.4)T . The judgment values corre-
sponding to the alternatives are put in the form of DHq‐ROFNs and the following three decision
matrices, ̃ ̃K κ= [ ]l

ij
l( ) ( )
5×4 l( = 1,2,3), are constructed which are presented as Tables 1–3.

The developed methodology is applied on this modified problem to find the best company
for investment. The problem is solved using the proposed DHq‐ROFWDBM and DHq‐
ROFWDGBM operators, consecutively, considering rung parameter, q = 3; Dombi parameter,
τ = 2; and BM parameter, θ ϕ= = 1, for convenience. The solution process is presented in the
following section.

TABLE 1 DHq‐ROFDM K̃ 1( ) provided by D 1( )

ξ1 ξ2 ξ3 ξ4

A1 ({0.5}, {0.4}) ({0.5}, {0.3}) ({0.2,0.3}, {0.6}) ({0.4}, {0.4})

A2 ({0.7}, {0.3}) ({0.7}, {0.3}) ({0.6}, {0.2}) ({0.6,0.9}, {0.2,0.3})

A3 ({0.4,0.5}, {0.4,0.6}) ({0.5,0.6}, {0.4,0.9}) ({0.6}, {0.2}) ({0.5}, {0.3})

A4 ({0.8}, {0.2}) ({0.7}, {0.2}) ({0.4,0.6}, {0.2}) ({0.5}, {0.2})

A5 ({0.4,0.5,0.7}, {0.3,0.4}) ({0.4}, {0.2}) ({0.4}, {0.5}) ({0.4,0.6}, {0.6,0.7})

TABLE 2 DHq‐ROFDM K̃ 2( ) given by D 2( )

ξ1 ξ2 ξ3 ξ4

A1 ({0.4,0.6}, {0.5,0.6}) ({0.6}, {0.2}) ({0.5}, {0.4}) ({0.5}, {0.3,0.5})

A2 ({0.5}, {0.4}) ({0.6}, {0.2}) ({0.6,0.7,0.8}, {0.3}) ({0.7}, {0.3})

A3 ({0.4}, {0.5}) ({0.3}, {0.5}) ({0.4}, {0.4}) ({0.2,0.3}, {0.6,0.8})

A4 ({0.5}, {0.4}) ({0.7,0.8}, {0.2,0.3}) ({0.4,0.6}, {0.4}) ({0.6}, {0.2})

A5 ({0.6}, {0.3}) ({0.7}, {0.2}) ({0.4}, {0.2}) ({0.7}, {0.2,0.3})

TABLE 3 DHq‐ROFDM K̃ 3( ) provided by D 3( )

ξ1 ξ2 ξ3 ξ4

A1 ({0.4}, {0.2}) ({0.5}, {0.2}) ({0.5}, {0.3,0.6}) ({0.5}, {0.2})

A2 ({0.5}, {0.3}) ({0.5,0.6,0.8}, {0.2,0.3}) ({0.6}, {0.2}) ({0.7}, {0.2})

A3 ({0.4}, {0.4}) ({0.3}, {0.4}) ({0.4}, {0.3}) ({0.3,0.4}, {0.3,0.5,0.7})

A4 ({0.5,0.6,0.7}), ({0.3,0.4}) ({0.5}, {0.3}) ({0.3}, {0.5}) ({0.5}, {0.2})

A5 ({0.6}, {0.2}) ({0.6}, {0.4}) ({0.4,0.5}, {0.3,0.4}) ({0.6}, {0.3})
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6.1.1 | Solution process using DHq‐ROFWDBM operator

The steps for solving the problem using DHq‐ROFWDBM operator is presented below.
Step 1. As all the criteria, ξj j( = 1,2,3,4), in this example, represent benefit criteria, the

original decision matrices K̃ l( ) l( = 1,2,3) need not be normalized. Thus ̃ ̃K R=l l( ) ( ) l( = 1,2,3)

for this example. Hence ̃ ̃κ r[ ] = [ ]ij
l

ij
l( )

5×4
( )

5×4.
Step 2. To aggregate all the individual normalized decision matrices, ̃R(1), ̃R(2), and ̃R(3) into a

collective DHq‐ROFDM, ̃R, with associated weight vector, w = (0.35,0.40,0.25)T , utilize
DHq‐ROFWDBM operator, as presented in Equation (23). The resultant DHq‐ROFDM, ̃R is
presented below.

{ }

{ }
{ }

{ }

R̃ =

{0.3535, 0.4076},

{0.4721, 0.4906}

{0.4406},

{0.2768}

{0.3532, 0.3610},

{0.4970, 0.6579}

{0.3877},

{0.3628, 0.4721}

{0.4519},

{0.3984}

{0.5038, 0.5373, 0.6049},

{0.2768, 0.3385}

{0.5138, 0.5343, 0.5427},

{0.2771}

{0.5748, 0.6492},

{0.2771, 0.3287}

{0.3346, 0.3535},

{0.5136, 0.5905}

{0.4548, 0.5028, 0.5656},

{0.3783, 0.4411}

{0.4484, 0.4783, 0.5373},

{0.3287, 0.3628}

{0.2697, 0.2707},

{0.5136, 0.5905}

{0.5511, 0.5801},

{0.2729, 0.3352}

{0.4670},

{0.2800}

{0.3599},

{0.3783}

0.3027, 0.3256,

0.3307, 0.4476
,

{ 0.4730}

{0.3346, 0.3582},

{0.3961, 0.4911}

0.2314, 0.2957,

0.2697, 0.3144
,

0.4304, 0.5959, 0.6825,

0.4337, 0.6351, 0.7920

{0.4406},

{0.2408}

{0.4670, 0.5343},

0.4006, 0.4275,

0.4020, 0.4296

⎡

⎣
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Step 3. Considering weight vector, ω = (0.2,0.1,0.3,0.4)T corresponding to four attributes, ξj

j( = 1,2,3,4), utilize DHq‐ROFWDBM operator, as shown in Equation (19), to derive the overall
evaluation values, ̃ ̃ ̃r h= ( , )i ij ijg of each alternative, Ai, considering the same parameter values as in
Step 2. The calculated overall evaluation value of the alternatives is presented as follows:

{ }A = {0.3127, 0.3108, 0.3007, 0.2988},
0.5826, 0.5165, 0.5504, 0.5001,
0.5757, 0.5129, 0.5450, 0.4968

,1

⎛
⎝⎜

⎞
⎠⎟

A =

0.4405, 0.4320, 0.4377, 0.4298, 0.4310, 0.4241,
0.4222, 0.4146, 0.4192, 0.4123, 0.4118, 0.4065,
0.4150, 0.4071, 0.4117, 0.4046, 0.4039, 0.3986

, {0.4282, 0.4059, 0.4042, 0.3856} ,2

⎛

⎝
⎜⎜

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪

⎞

⎠
⎟⎟

A =

0.2550, 0.2423, 0.2498, 0.2321,
0.2549, 0.2421, 0.2497, 0.2320,
0.2503, 0.2377, 0.2452, 0.2272,
0.2502, 0.2376, 0.2451, 0.2271

,

0.7404, 0.6986, 0.5948, 0.7145, 0.6832, 0.5929,
0.7101, 0.6752, 0.5853, 0.6889, 0.6617, 0.5835,
0.6978, 0.6669, 0.5796, 0.6796, 0.6539, 0.5780,
0.6747, 0.6476, 0.5708, 0.6590, 0.6361, 0.5693

,3
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A =

0.4009, 0.3770, 0.3764, 0.3740, 0.3945, 0.3695,
0.3688, 0.3662, 0.3895, 0.3642, 0.3635, 0.3607,
0.3843, 0.3585, 0.3578, 0.3547, 0.3786, 0.3519,
0.3511, 0.3478, 0.3740, 0.3472, 0.3463, 0.3429

, {0.4981, 0.4490, 0.4753, 0.4351} ,4

⎛

⎝

⎜⎜⎜⎜

⎧
⎨
⎪⎪

⎩
⎪⎪

⎫
⎬
⎪⎪

⎭
⎪⎪

⎞

⎠

⎟⎟⎟⎟

{ }A =
0.3692, 0.3562, 0.3653, 0.3517, 0.3516, 0.3446,
0.3469, 0.3396, 0.3427, 0.3376, 0.3375, 0.3323

,

0.4882, 0.4783, 0.4874, 0.4778,
0.4624, 0.4541, 0.4618, 0.4537,
0.4746, 0.4649, 0.4738, 0.4645,
0.4510, 0.4429, 0.4504, 0.4425

,5
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Step 4. Use the score function, as displayed in Equation (1), to find the score value of ̃ri
i( = 1,2, …, 5). The score values are found as ̃S r( ) = 0.43701 , ̃S r( ) = 0.50302 , ̃S r( ) = 0.36883 ,
̃S r( ) = 0.47434 , and ̃S r( ) = 0.47095 .
Step 5. Rank the alternatives based on the above score values, ̃r( )i i( = 1,2, …, 5), using

Definition 5. The ranking of the alternatives are obtained as ≻ ≻ ≻ ≻A A A A A2 4 5 1 3. So, the
best alternative, that is, the best company for investment is identified as A2.

6.1.2 | Alternative solution process using DHq‐ROFWDGBM operator

Again, this problem is solved by utilizing DHq‐ROFWDGBM operator. The steps for solving
this problem are analogous to the steps as described in Section 6.1.1. The steps are presented
briefly as follows:

Step 1′. is similar to Step 1 as above.
Step 2′. Utilize DHq‐ROFWDGBM operator to aggregate the decision matrices ̃R l( )

l( = 1,2,3), with weight vector w = (0.35,0.40,0.25)T , into collective DHq‐ROFDM, ′̃R as.

{ }
{ }

{ }

R̃ =

{0.5147, 0.5923},

{0.3093, 0.3158}

{0.6224},

{0.1785}

{0.5468, 0.5488},

{0.3307, 0.4474}

{0.5587},

{0.2395, 0.3093}

{0.6543},

{0.2636}

{0.6949, 0.7245, 0.7962},

{0.1785, 0.2168}

{0.6883, 0.7233, 0.7562},

{0.1767}

{0.7602, 0.8442},

{0.1767, 0.2202}

{0.4751, 0.5147},

{0.3511, 0.4113}

{0.4204, 0.4275},

{0.3511, 0.4113}

{0.5425},

{0.2283}

0.3961, 0.4911,

0.4204, 0.4956
,

0.2675, 0.3780, 0.4748,

0.2677, 0.3858, 0.5497

{0.6695, 0.7358, 0.7971},

{0.2283, 0.2805}

{0.7417, 0.7815},

{0.1821, 0.2170}

{0.4418, 0.5026, 0.4970, 0.6380},

{0.3100}

{0.6224},

{0.1660}

{0.6528, 0.6634, 0.7245},

{0.2202, 0.2395}

{0.6985},

{0.1845}

{0.4751, 0.5135},

{0.2314, 0.2957}

{0.6985, 0.7233},

0.2320, 0.2707,

0.2322, 0.2709

′

⎡

⎣
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Step 3′. Obtain the collective preference values of each alternative using DHq‐ROFWDGBM
operator as follows:

{ }r~′ = {0.7005, 0.6999, 0.6764, 0.6759},
0.2452, 0.2191, 0.2323, 0.2114,
0.2432, 0.2164, 0.2305, 0.2096

,1

⎛
⎝⎜

⎞
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r~′ =

0.8651, 0.8427, 0.8571, 0.8345, 0.8493, 0.8266,
0.8512, 0.8300, 0.8437, 0.8224, 0.8365, 0.8152,
0.8447, 0.8238, 0.8372, 0.8163, 0.8300, 0.8091

, {0.1673, 0.1561, 0.1608, 0.1482} ,2
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r~′ =

0.6108, 0.5987, 0.6099, 0.5963,
0.6087, 0.5960, 0.6077, 0.5934,
0.5992, 0.5858, 0.5981, 0.5831,
0.5970, 0.5832, 0.5959, 0.5803

,

0.2950, 0.2809, 0.2493, 0.2917, 0.2794, 0.2493,
0.2809, 0.2663, 0.2341, 0.2774, 0.2647, 0.2340,
0.2731, 0.2652, 0.2394, 0.2715, 0.2643, 0.2394,
0.2551, 0.2499, 0.2291, 0.2541, 0.2492, 0.2290

,3
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r~′ =

0.8145, 0.7773, 0.7782, 0.7704, 0.8092, 0.7738,
0.7747, 0.7672, 0.8023, 0.7687, 0.7695, 0.7624,
0.7973, 0.7652, 0.7660, 0.7592, 0.7843, 0.7536,
0.7543, 0.7479, 0.7799, 0.7504, 0.7511, 0.7450

, {0.1834, 0.1792, 0.1662, 0.1599} ,4
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{ }r~′ =
0.8002, 0.7912, 0.7991, 0.7896, 0.7824, 0.7741,
0.7809, 0.7722, 0.7789, 0.7707, 0.7772, 0.7687

,

0.1951, 0.1839, 0.1951, 0.1839,
0.1792, 0.1739, 0.1792, 0.1738,
0.1904, 0.1786, 0.1904, 0.1785,
0.1738, 0.1691, 0.1738, 0.1690

.5
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Step 4′. Calculate the score value of r~′i i( = 1,2, …, 5) as S r(~′) = 0.65731 , S r(~′) = 0.78792 ,
S r(~′) = 0.59733 , S r(~′) = 0.72774 , S r(~′) = 0.73645 .

Step 5′. Rank the alternatives based on the score values, r~′i i( = 1,2, …, 5). The ordering of the
alternatives are obtained as ≻ ≻ ≻ ≻A A A A A2 4 5 1 3. So, the best company for investment is
identified as the same as A2.

It is worthy to mention here that the ranking of alternatives, achieved by Liu et al.,42 is
≻ ≻ ≻ ≻A A A A A2 4 5 1 3 using IF weighted Dombi‐BM and GBM operators. But using the

proposed approach, different ranking results of alternatives are found, which also covers the
said result.42 The technique developed by Liu et al.42 is based on IFS, whereas the proposed
approach is considered using DHq‐ROF information. Since, it is already mentioned that IFS can
be treated as a special case of IFS, it appears that the proposed methodology is more general
and consistent than the technique developed by Liu et al.42

6.1.3 | The influence of BM parameters on decision‐making results

Here, the influence of BM parameters, θ and ϕ on decision‐making results based on
DHq‐ROFWDBM and DHq‐ROFWDGBM operators are discussed. It is observed that the
parameters, θ and ϕ play a vital role in the ranking method of alternatives. Different score
values are obtained by assigning different values to θ and ϕ. The ranking results are shown in
Tables 4 and 5 by changing the values of θ and ϕ, and by keeping the fixed values of the
parameters q (=3), and τ (=2). It is observed from the achieved result that if DHq‐ROFWDBM
operator is used, score values increase with variation of parameter θ or ϕ in between 0 and 20,
which is displayed in Table 4. The ranking result is found as ≻ ≻ ≻ ≻A A A A A2 4 5 1 3. The best
alternative is identified as A2 and the worst choice is A3.

Further, Table 5 shows that when θ or ϕ increases, the score values based on
DHq‐ROFWDGBM operator decreases. By using this AO, the ordering of the alternatives are
slightly differ as ≻ ≻ ≻ ≻A A A A A2 5 4 1 3, when the values q = 3, and τ = 2 are considered. It is
also observed that the position of two alternatives, A4 and A5 are just interchanging when
DHq‐ROFWDGBM operator is used instead of DHq‐ROFWDBM operator. However, the best
and the worst alternatives remain the same for both the operators. Geometrically, this fact is
clearly visible in Figures 2 and 3, in which all the figures are symmetric with respect to the line
segment joining two points (0,0,0) and (1,1,1), that is, when θ ϕ= , for both the operators, the
score values and the ranking results remain the same.

6.1.4 | The influence of the Dombi parameter, τ on decision‐making results

Now, the influence of the Dombi parameter, τ on decision‐making results based on
DHq‐ROFWDBM and DHq‐ROFWDGBM operators are discussed. In this case, considering
θ ϕ= 1 = and q = 3, the graphical interpretation of the score values of the alternatives for the
different values of τ are shown in Figures 4 and 5, respectively. Utilizing DHq‐ROFWDBM and
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TABLE 4 Ranking results using DHq‐ROFWDBM operator by varying θ and ϕ (q = 3, τ = 2)

Varying θ and ϕ A1 A2 A3 A4 A5 Ranking order

θ ϕ= 0, = 1 0.4918 0.5680 0.4813 0.5331 0.5168 ≻ ≻ ≻ ≻A A A A A2 4 5 1 3

θ ϕ= 1, = 1 0.4370 0.5030 0.3688 0.4743 0.4709 ≻ ≻ ≻ ≻A A A A A2 4 5 1 3

θ ϕ= 1, = 2 0.4411 0.5056 0.3743 0.4782 0.4734 ≻ ≻ ≻ ≻A A A A A2 4 5 1 3

θ ϕ= 1, = 5 0.4549 0.5156 0.3952 0.4917 0.4819 ≻ ≻ ≻ ≻A A A A A2 4 5 1 3

θ ϕ= 1, = 10 0.4657 0.5258 0.4158 0.5030 0.4894 ≻ ≻ ≻ ≻A A A A A2 4 5 1 3

θ ϕ= 1, = 15 0.4709 0.5319 0.4276 0.5088 0.4935 ≻ ≻ ≻ ≻A A A A A2 4 5 1 3

θ ϕ= 5, = 5 0.4370 0.5030 0.3688 0.4743 0.4709 ≻ ≻ ≻ ≻A A A A A2 4 5 1 3

θ ϕ= 5, = 15 0.4466 0.5093 0.3820 0.4835 0.4767 ≻ ≻ ≻ ≻A A A A A2 4 5 1 3

θ ϕ= 5, = 20 0.4512 0.5127 0.3891 0.4880 0.4796 ≻ ≻ ≻ ≻A A A A A2 4 5 1 3

θ ϕ= 10, = 15 0.4384 0.5039 0.3707 0.4757 0.4718 ≻ ≻ ≻ ≻A A A A A2 4 5 1 3

θ ϕ= 15, = 20 0.4377 0.5035 0.3698 0.4750 0.4714 ≻ ≻ ≻ ≻A A A A A2 4 5 1 3

θ ϕ= 20, = 0. 5 0.4800 0.5458 0.4513 0.5193 0.5018 ≻ ≻ ≻ ≻A A A A A2 4 5 1 3

θ ϕ= 20, = 1 0.4741 0.5362 0.4354 0.5124 0.4962 ≻ ≻ ≻ ≻A A A A A2 4 5 1 3

TABLE 5 Ranking results using DHq‐ROFWDGBM operator by varying θ and ϕ (q = 3, τ = 2)

Varying θ and ϕ A1 A2 A3 A4 A5 Ranking order

θ ϕ= 0, = 1 0.5487 0.7423 0.5109 0.6052 0.6119 ≻ ≻ ≻ ≻A A A A A2 5 4 1 3

θ ϕ= 1, = 1 0.6573 0.7879 0.5973 0.7277 0.7364 ≻ ≻ ≻ ≻A A A A A2 5 4 1 3

θ ϕ= 1, = 2 0.6534 0.7867 0.5947 0.7221 0.7286 ≻ ≻ ≻ ≻A A A A A2 5 4 1 3

θ ϕ= 1, = 5 0.6390 0.7761 0.5844 0.7013 0.7008 ≻ ≻ ≻ ≻A A A A A2 5 4 1 3

θ ϕ= 1, = 10 0.6246 0.7663 0.5734 0.6809 0.6764 ≻ ≻ ≻ ≻A A A A A2 5 4 1 3

θ ϕ= 1, = 15 0.6157 0.7610 0.5665 0.6690 0.6639 ≻ ≻ ≻ ≻A A A A A2 5 4 1 3

θ ϕ= 5, = 5 0.6573 0.7879 0.5973 0.7277 0.7364 ≻ ≻ ≻ ≻A A A A A2 5 4 1 3

θ ϕ= 5, = 15 0.6480 0.7827 0.5910 0.7143 0.7180 ≻ ≻ ≻ ≻A A A A A2 5 4 1 3

θ ϕ= 5, = 20 0.6432 0.7791 0.5875 0.7073 0.7086 ≻ ≻ ≻ ≻A A A A A2 5 4 1 3

θ ϕ= 10, = 15 0.6559 0.7886 0.5964 0.7257 0.7337 ≻ ≻ ≻ ≻A A A A A2 5 4 1 3

θ ϕ= 15, = 20 0.6566 0.7891 0.5969 0.7267 0.7350 ≻ ≻ ≻ ≻A A A A A2 5 4 1 3

θ ϕ= 20, = 0. 5 0.5947 0.7513 0.5506 0.6434 0.6423 ≻ ≻ ≻ ≻A A A A A2 5 4 1 3

θ ϕ= 20, = 1 0.6094 0.7577 0.5616 0.6608 0.6563 ≻ ≻ ≻ ≻A A A A A2 5 4 1 3

DHq‐ROFWDGBM operators, Figures 4 and 5 indicate that the score values may be different
for the different values of the parameter, τ . However, the best alternative is A2. The DMs can
choose the appropriate value of the parameter, τ by their preferences. Furthermore, from
Figures 4 and 5, it can be easily seen that the score values according to the DHq‐ROFWDBM
operator becomes greater when the parameter τ increases. On the contrary, the DHq‐
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ROFWDGBM operator produces decreasing order of score values with the increase of the
parameter, τ . Also, it is observed from those figures that, if the value of τ is taken away from the
origin, differences of the score values of the consecutively ranked alternatives increase. Thus
the ranking of alternatives become more prominent with the increasing value of the Dombi
parameter, τ .

6.1.5 | The influence of the q‐ROFNs parameter, q on decision‐making
result

In this section, the influence of the parameter, q, associated with q‐ROFNs, on decision making
results based on the DHq‐ROFWDBM and DHq‐ROFWDGBM operators is discussed by taking
θ ϕ= = 1 and τ = 2, for convenience. The ranking results using those two operators, with
different values of q are shown, respectively, in Figures 6 and 7.

Figures 6 and 7 perceive that the achieved ranking results are different for the variations of
q from 1 to 10 using both DHq‐ROFWDBM and DHq‐ROFWDGBM operators. For using
DHq‐ROFWDBM operator, ranking result is obtained as ≻ ≻ ≻ ≻A A A A A2 4 5 1 3. Whereas,
while the DHq‐ROFWDGBM operator is used, the ranking result becomes different for dif-
ferent values of q from 1 to 10. If q is taken in the open interval (1,2.1049), the ordering of
alternatives is found as ≻ ≻ ≻ ≻A A A A A2 4 5 1 3, which is the same as using DHq‐ROFWDBM
operator. For ∈q (2.1049,10), the ranking result slightly differs as ≻ ≻ ≻ ≻A A A A A2 5 4 1 3.
Whereas, for q = 2.1049, the ranking result becomes ≻ ≈ ≻ ≻A A A A A2 4 5 1 3. However, it is
evident that the best alternative is identified as A2 by applying both the AOs.

FIGURE 2 Score values of alternatives for different values of θ and ϕ using DHq‐ROFWDBM operator
[Color figure can be viewed at wileyonlinelibrary.com]

30 | SARKAR AND BISWAS

http://wileyonlinelibrary.com


Again, from Figure 6, it is clear that the score values of the alternatives based on
DHq‐ROFWDBM operator become higher when the parameter q increases. Whereas, from
Figure 7, it is observed that the score values based on DHq‐ROFWDGBM operator become
smaller, when the parameter q increases. Thus the DMs can choose the appropriate parameter
value of q on the basis of their preferences.

FIGURE 3 Score values of the alternatives for different values of θ and ϕ using DHq‐ROFWDGBM operator
[Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 Variation of τ using DHq‐ROFWDBM operator when q = 3, θ ϕ= = 1 [Color figure can be
viewed at wileyonlinelibrary.com]

SARKAR AND BISWAS | 31

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


6.1.6 | Comparison with other approaches

To examine the effectiveness of the established method, the illustrative example as considered
above, is solved by using several existing MCDM methods using different AOs, based on
weighted hesitant PF MSM (WHPFMSM),52 DHPF WA (DHPFWA53), DHPF weighted BM
(DHPFWBM45), DHPF geometric weighted HM (DHPFGWHM),54 DHPF weighted Hamy

FIGURE 5 Variation of τ using DHq‐ROFWDGBM operator when q = 3, θ ϕ= = 1 [Color figure can be
viewed at wileyonlinelibrary.com]

FIGURE 6 Variation of q using DHq‐ROFWDBM operator when τ = 2, θ ϕ= = 1 [Color figure can be
viewed at wileyonlinelibrary.com]
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mean,55 DHq‐ROF WA (DHq‐ROFWA39), DHq‐ROFWMM,40 and q‐rung DHF weighted HM
(q‐RDHFWHM19). The comparisons are performed in two different ways.

At first, the comparisons are performed on the basis of characteristic of the operators, and
subsequently, on the basis of achieved results.

In comparing the method by the characteristic of the operator, it is worthy to mention here
that all the above mentioned existing operators, including the developed operators, can capture
HF information. The operators45,52–55 which are developed in HPF environments can be treated
as a special case of corresponding operators in DHq‐ROF contexts by considering q = 2. Except
the developed operators, none of the above‐mentioned operators consider Dombi operations,
which make the decision aggregation process more flexible. Combining BM with Dombi op-
erations in DHq‐ROF environment, the developed operators become more flexible and pow-
erful than the existing operators, by also considering interrelationships among input
arguments. The characteristics of the existing operators are summarized in Table 6. This table
reflects the wide coverage of the existing methods by the proposed method.

Now, the existing methods,19,39,40,45,52–55 under consideration, would be compared on the
basis of achieved results. It is important to note that the ranking of alternatives corresponding
to different methods is the same as the ranking through the developed method, for some
specific values of the parameters associated with it. Table 7 displays the achieved score values
and rankings obtained by applying all the existing methods, under consideration, together with
the proposed method with the values θ ϕ= = 1, q = 3, and τ = 2.

Thus, it can be claimed that existing methods now appear as some special cases of the
developed process. However, different ranking results of the alternatives can be obtained by
varying the Dombi parameter τ ; BM parameters θ ϕ, ; and the rung parameter q.

To show the robustness of the proposed method, three other problems,33,35,56 considered
previously, are further solved and compared with the existing methods.

FIGURE 7 Variation of q using DHq‐ROFWDGBM operator when τ = 2, θ ϕ= = 1 [Color figure can be
viewed at wileyonlinelibrary.com]

SARKAR AND BISWAS | 33

http://wileyonlinelibrary.com


6.2 | Illustrative Example 2

To meet the growing demand for charging piles in Shanghai, Ju et al.33 considered a problem
relating to a company to select appropriate place to set up a large electric vehicle charging
station from the four available areas, namely, A A A, ,1 2 3, and A4 by considering four criteria,
namely, ξ1; environment impact factor; ξ2: cost factor; ξ3: society impact factor; and ξ4: tech-
nology requirement, with weight vector ω = (0.2,0.25,0.3,0.25)T . The company invited three
experts, D l( ) l( = 1,2,3), with weight vector, w = (0.4,0.3,0.3)T , to evaluate four areas, by which
appropriate area for the charging station would be chosen. The experts evaluated the areas, Ai
i( = 1,2,3,4) with regard to the criteria, ξj j( = 1,2,3,4) and put judgment values in the form of
q‐ROFNs. To apply the proposed method, at first, the problem is adopted by considering input
arguments of the decision matrices as DHq‐ROFNs. The individual DHq‐ROF evaluation
matrices ̃ ̃K κ= [ ]l

ij
l( )
4×4 l( = 1,2,3) provided by three experts are shown in Tables 8–10.

This problem is then solved using the developed DHq‐ROFWDBM and DHq‐ROFWDGBM
operators. It is worthy to mention here that the ranking results achieved by Ju et al.33 are
≻ ≻ ≻A A A A2 3 4 1 and ≻ ≻ ≻A A A A2 4 3 1 using q‐ROF generalized power WA (q‐ROFGPWA)

and WG (q‐ROFGPWG) operators, respectively. But using the proposed approach, different
ranking results of alternatives are found by utilizing the proposed method, and which also
cover the result of Ju et al.33 The technique developed by Ju et al.33 is based on q‐ROFS,
whereas, the proposed approach is based on DHq‐ROF information. Thus, the proposed
methodology is more general and consistent than the technique developed by Ju et al.33

As like the previous example, this example is also solved by considering different parameter
values. Without loss of generality, the values of the BM parameters, θ and ϕ are primarily
assumed to be 1, along with rung parameter, q = 3, and Dombi parameter, τ = 2. The ordering
of the alternatives using the proposed DHq‐ROFWDBM operator is achieved as
≻ ≻ ≻A A A A2 3 4 1. However, the ranking changes when DHq‐ROFWDGBM operator is used.

The changes in ordering of the alternatives depend on the BM parameters, θ and ϕ, which is
shown in Table 11. When the parameters, θ and ϕ are changed between 1 and 20, the ranking

TABLE 6 Characteristics of different methods under considerations

Methods
Consideration of
interrelationships

Consideration of
hesitancy

Flexibility due
to Dombi
operation

Capturing
information by
q‐ROF

WHPFMSM52 Yes Yes No No

DHPFWA53 No Yes No No

DHPFWBM45 Yes Yes No No

DHPFGWHM54 Yes Yes No No

DHPF weighted
Hamy Mean55

Yes Yes No No

DHq‐ROFWA39 No Yes No Yes

DHq‐ROFWMM40 Yes Yes No Yes

q‐RDHFWHM19 Yes Yes No Yes

Proposed method Yes Yes Yes Yes

34 | SARKAR AND BISWAS



T
A
B
L
E

7
C
om

pa
ri
so
n
re
su
lt
s
w
it
h
th
e
ex
is
ti
n
g
m
et
h
od

s
in

te
rm

s
of

sc
or
e
va
lu
es

an
d
ra
n
ki
n
g
of

th
e
al
te
rn
at
iv
es

A
O
s
u
se
d

Sc
or
e
va

lu
es

R
an

k
in
g

W
H
P
F
M
SM

52
S
A(
)
=
0.
50
03

1
,S

A(
)
=
0.
61
24

2
,S

A(
)
=
0.
43
74

3
,S

A(
)
=
0.
56
32

4
,S

A(
)
=
0.
54
39

5
≻

≻
≻

≻
A

A
A

A
A

2
4

5
1

3

D
H
P
F
W
A
53

S
A(
)
=
0.
54
42

1
,S

A(
)
=
0.
69
83

2
,S

A(
)
=
0.
50
87

3
,S

A(
)
=
0.
63
16

4
,S

A(
)
=
0.
60
77

5
≻

≻
≻

≻
A

A
A

A
A

2
4

5
1

3

D
H
P
F
W
B
M

45
S
A(
)
=
0.
50
71

1
, S

A(
)
=
0.
63
58

2
, S

A(
)
=
0.
45
46

3
, S

A(
)
=
0.
57
37

4
, S

A(
)
=
0.
55
56

5
≻

≻
≻

≻
A

A
A

A
A

2
4

5
1

3

D
H
P
F
G
W
H
M

54
S
A(
)
=
0.
51
05

1
,S

A(
)
=
0.
52
63

2
,S

A(
)
=
0.
50
85

3
,S

A(
)
=
0.
51
67

4
,S

A(
)
=
0.
51
62

5
≻

≻
≻

≻
A

A
A

A
A

2
4

5
1

3

D
H
P
F
w
ei
gh

te
d
H
am

y
M
ea
n
55

S
A(
)
=
0.
93
15

1
, S

A(
)
=
0.
96
29

2
, S

A(
)
=
0.
92
07

3
, S

A(
)
=
0.
94
75

4
, S

A(
)
=
0.
94
46

5
≻

≻
≻

≻
A

A
A

A
A

2
4

5
1

3

D
H
q
‐R
O
F
W
A
39

S
A(
)
=
0.
52
96

1
,S

A(
)
=
0.
65
39

2
,S

A(
)
=
0.
50
83

3
,S

A(
)
=
0.
59
13

4
,S

A(
)
=
0.
57
72

5
≻

≻
≻

≻
A

A
A

A
A

2
4

5
1

3

D
H
q
‐R
O
F
W
M
M

40
S
A(
)
=
0.
48
81

1
,S

A(
)
=
0.
56
77

2
,S

A(
)
=
0.
43
19

3
,S

A(
)
=
0.
52
10

4
,S

A(
)
=
0.
50
68

5
≻

≻
≻

≻
A

A
A

A
A

2
4

5
1

3

q
‐R
D
H
F
W
H
M

19
S
A(
)
=
0.
50
49

1
, S

A(
)
=
0.
51
72

2
, S

A(
)
=
0.
50
39

3
, S

A(
)
=
0.
50
96

4
, S

A(
)
=
0.
50
91

5
≻

≻
≻

≻
A

A
A

A
A

2
4

5
1

3

P
ro
po

se
d
op

er
at
or

(D
H
q
‐R
O
F
W
D
B
M
)

S
A(
)
=
0.
43
70

1
,S

A(
)
=
0.
50
30

2
,S

A(
)
=
0.
36
88

3
,S

A(
)
=
0.
47
43

4
,S

A(
)
=
0.
47
09

5
≻

≻
≻

≻
A

A
A

A
A

2
4

5
1

3

SARKAR AND BISWAS | 35



results remain the same as ≻ ≻ ≻A A A A2 3 4 1, when DHq‐ROFWDBM operator is used; but
different ordering of alternatives, namely, ≻ ≻ ≻A A A A4 3 2 1, ≻ ≻ ≻A A A A2 3 4 1,
≻ ≻ ≻A A A A2 4 3 1, and ≻ ≻ ≻A A A A4 2 3 1 are found when DHq‐ROFWDGBM operator is

applied. Some simple values of the BM parameters are taken into account from the compu-
tational point of views, such as θ = 0, or ϕ = 0, or θ = 1, ϕ = 1. More details can be followed in
Figures 8 and 9.

Again, to show the influence of Dombi parameter τ , the score value is calculated with
varying the parameter from 0 to 20 by utilizing the DHq‐ROFWDBM and DHq‐ROFWDGBM
operators keeping the value of other parameters as θ ϕ= = 1, and q = 3. The effects of Dombi
parameter τ on ordering of the alternatives are shown details in Figures 10 and 11. From
Figure 10 it is observed that when DHq‐ROFWDBM operator is used, the ordering remains the
same as ≻ ≻ ≻A A A A2 3 4 1. On the other hand, different ordering, namely, ≻ ≻ ≻A A A A2 3 4 1

and ≻ ≻ ≻A A A A3 2 4 1 are found when τ is varying in DHq‐ROFWDGBM operator.
As like Dombi parameter τ , rung parameter q has also various impacts on ordering results.

To show that, this example is solved by the proposed method with varying parameter q between
1 and 10, and also by taking θ ϕ= = 1, and τ = 2. Figures 12 and 13 depict the ordering of the
alternatives based on the achieved score values by varying the rung parameter, q.

It is important to note that two different ranking results are found when the problem is
solved using the method of Ju et al.33 But if this problem is solved using the proposed method,

TABLE 8 DHq‐ROFDM K̃ 1( ) for Example 6.2

ξ1 ξ2 ξ3 ξ4

A1 〈 〉{0.6,0.8}, {0.2,0.4} 〈 〉{0.4,0.6}, {0.6} 〈 〉{0.3}, {0.5,0.7} 〈 〉{0.3,0.6}, {0.5}

A2 〈 〉{0.1}, {0.8} 〈 〉{0.4,0.5,0.6}, {0.3} 〈 〉{0.2,0.4}, {0.6,0.9} 〈 〉{0.3,0.5}, {0.4}

A3 〈 〉{0.3,0.4}, {0.6} 〈 〉{0.3,0.4}, {0.5} 〈 〉{0.4}, {0.5} 〈 〉{0.6}, {0.2,0.3,0.5}

A4 〈 〉{0.4,0.5,0.6}, {0.5} 〈 〉{0.5}, {0.4} 〈 〉{0.4,0.6}, {0.5,0.7} 〈 〉{0.4,0.6}, {0.6}

TABLE 9 DHq‐ROFDM K̃ 2( ) for Example 6.2

ξ2 ξ3 ξ4

A1 〈 〉{0.7,0.9}, {0.4,0.5} 〈 〉{0.4}, {0.5} 〈 〉{0.4,0.7}, {0.6} 〈 〉{0.4}, {0.5}

A2 〈 〉{0.3}, {0.5} 〈 〉{0.6}, {0.5,0.9} 〈 〉{0.2}, {0.5,0.8} 〈 〉{0.3}, {0.6,0.8}

A3 〈 〉{0.2}, {0.7,0.8} 〈 〉{0.4}, {0.7} 〈 〉{0.3,0.4}, {0.5,0.75} 〈 〉{0.3,0.5}, {0.3}

A4 〈 〉{0.4}, {0.5} 〈 〉{0.5,0.6}, {0.3,0.65} 〈 〉{0.4}, {0.6} 〈 〉{0.4}, {0.6,0.7}

TABLE 10 DHq‐ROFDM K̃ 3( ) for Example 6.2

ξ1 ξ2 ξ3 C4

A1 〈 〉{0.4}, {0.6} 〈 〉{0.3}, {0.3,0.5} 〈 〉{0.6}, {0.4} 〈 〉{0.3}, {0.3,0.6}

A2 〈 〉{0.4,0.5,0.7}, {0.2} 〈 〉{0.2}, {0.6} 〈 〉{0.2}, {0.8} 〈 〉{0.2}, {0.5,0.75}

A3 〈 〉{0.3}, {0.5} 〈 〉{0.4}, {0.6,0.7} 〈 〉{0.3}, {0.7,0.85} 〈 〉{0.2,0.4}, {0.6}

A4 〈 〉{0.5}, {0.4,0.6} 〈 〉{0.2,0.4}, {0.7} 〈 〉{0.2}, {0.6} 〈 〉{0.5}, {0.4,0.5,0.6}
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TABLE 11 Ranking order for different operational BM parameters θ and ϕ of Example 6.2 (q τ= 3, = 2)

Varying θ and ϕ
Ranking order using
DHq‐ROFWDBM operator

Ranking Order using Hq‐
ROFWDGBM operator

θ ϕ= 0, = 1 ≻ ≻ ≻A A A A2 3 4 1 ≻ ≻ ≻A A A A4 3 2 1

θ ϕ= 1, = 1 ≻ ≻ ≻A A A A2 3 4 1 ≻ ≻ ≻A A A A2 3 4 1

θ ϕ= 1, = 2 ≻ ≻ ≻A A A A2 3 4 1 ≻ ≻ ≻A A A A2 3 4 1

θ ϕ= 1, = 5 ≻ ≻ ≻A A A A2 3 4 1 ≻ ≻ ≻A A A A2 3 4 1

θ ϕ= 1, = 10 ≻ ≻ ≻A A A A2 3 4 1 ≻ ≻ ≻A A A A2 3 4 1

θ ϕ= 1, = 15 ≻ ≻ ≻A A A A2 3 4 1 ≻ ≻ ≻A A A A2 4 3 1

θ ϕ= 5, = 5 ≻ ≻ ≻A A A A2 3 4 1 ≻ ≻ ≻A A A A2 3 4 1

θ ϕ= 5, = 15 ≻ ≻ ≻A A A A2 3 4 1 ≻ ≻ ≻A A A A2 3 4 1

θ ϕ= 5, = 20 ≻ ≻ ≻A A A A2 3 4 1 ≻ ≻ ≻A A A A2 3 4 1

θ ϕ= 10, = 15 ≻ ≻ ≻A A A A2 3 4 1 ≻ ≻ ≻A A A A2 3 4 1

θ ϕ= 15, = 20 ≻ ≻ ≻A A A A2 3 4 1 ≻ ≻ ≻A A A A2 3 4 1

θ ϕ= 20, = 0. 5 ≻ ≻ ≻A A A A2 3 4 1 ≻ ≻ ≻A A A A4 2 3 1

θ ϕ= 20, = 1 ≻ ≻ ≻A A A A2 3 4 1 ≻ ≻ ≻A A A A4 2 3 1

FIGURE 8 Scores of alternatives Ai based on DHq‐ROFWDBM AO [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 9 Scores of alternative Ai based on DHq‐ROFWDGBM AO [Color figure can be viewed at
wileyonlinelibrary.com]
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three different ranking results are achieved, which also include Ju et al.'s33 result. Further, Ju
et al.33 used simple power AOs in q‐ROF environment. Those AOs do not consider the inter-
relationship of the attributes. On the contrary, the proposed method is based on BM operator
under DHq‐ROF context. So the developed operators successfully capture interrelationship
between any two attributes, and can handle such situation where DMs are preferred to express

FIGURE 10 Impact of τ on ordering using DHq‐ROFWDBM operator when q = 3, θ ϕ= = 1 [Color figure
can be viewed at wileyonlinelibrary.com]

FIGURE 11 Impact of τ on ordering using DHq‐ROFWDGBM operator when q = 3, θ ϕ= = 1 [Color
figure can be viewed at wileyonlinelibrary.com]
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membership and nonmembership values using HF elements. Again, the existing method33 is
based on simple algebraic operations, whereas, the proposed methodology is based on DtCN&t‐
Ns. So, the proposed approach provides more flexibility to the DMs based on decision making
situations by varying different parameters associated with it.

6.3 | Illustrative Example 3

Under HPF environment, Garg56 solved an example relating to find a market for best invest-
ment, among five major available markets, A1, A2, A3, A4, A5, following four major criteria,
G1,G2,G3,G4. Solving the method using HPFWA operator,56 the ranking results are appeared
as ≻ ≻ ≻ ≻A A A A A5 4 3 2 1. It is evident that the best alternative is A5. Now, that problem is
solved using the developed DHq‐ROFWDBM operator. By varying the Dombi parameter, τ ,
several ranking results are obtained. It is interesting to note here that among the rankings
achieved for some value of τ through the proposed method, coincide with the result of earlier
method.56 Thus it is appeared that the proposed method includes the existing method.56

Further, using the proposed DHq‐ROFWDBM operator, and by varying the Dombi parameter,
τ , between 0 and 20, the ordering of alternatives are found as follows:

(i) ≻ ≻ ≻ ≻A A A A A5 4 3 2 1 for ∈τ (0, 1.5362);
(ii) ≻ ≻ ≻ ≻A A A A A4 5 3 2 1 for ∈τ (1.5362, 3.3128); and
(iii) ≻ ≻ ≻ ≻A A A A A4 3 5 2 1 for ∈τ (3.3128, 20).

The change of score values corresponding to the change of Dombi parameter is presented in
Figure 14.

FIGURE 12 Impact of q on ordering using DHq‐ROFWDBM operator when τ = 2, θ ϕ= = 1 [Color figure
can be viewed at wileyonlinelibrary.com]
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It is worth mentioning here that though different ranking results of alternatives are
found using the proposed method but the best alternative remains the same.56 The HPFWA
operator56 is based on algebraic operations under hesitant PF environment, whereas, the
proposed approach is based on Dt‐CN&t‐Ns using DHq‐ROF information. Also, the existing
method56 cannot handle the situation that involves interrelationship among arguments. So,
it is claimed that the approach56 is a particular case of the proposed method. Thus, the
proposed methodology is more efficient than the technique developed by Garg.56

FIGURE 14 Impact of τ in DHq‐ROFWDBM for Example 6.2 [Color figure can be viewed at
wileyonlinelibrary.com]

FIGURE 13 Impact of q on ordering using DHq‐ROFWDGBM operator when τ = 2, θ ϕ= = 1 [Color
figure can be viewed at wileyonlinelibrary.com]
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6.4 | Illustrative Example 4

Garg and Chen35 presented an MADM problem under q‐ROF environment for assessing four
alternatives A1, A2, A3, A4 based on four criteria 1B , 2B , 3B , 4B , with weight vector
ω = (0.15,0.25,0.35,0.25). Utilizing q‐ROFWNA and q‐ROFOWNA AOs, the ranking results are
found as ≻ ≻ ≻A A A A2 4 3 1 and ≻ ≻ ≻A A A A2 4 1 3, respectively. Now, if the proposed op-
erators are used, same raking results are found as like the results achieved by Garg and Chen.35

It is worth mentioning that the existing method35 is developed in q‐ROF environment, whereas,
the proposed operators are developed under DHq‐ROF environment. Thus the q‐ROFWNA and
q‐ROFOWNA AOs35 fail to capture hesitancy in q‐ROFNs. But the proposed operator can
capture that hesitancy. Also using DHq‐ROFWDBM operator, the ordering of alternatives
remains the same as ≻ ≻ ≻A A A A2 4 1 3 by varying τ . Again, when DHq‐ROFWDGBM operator
is used, two different ranking results are found by varying τ , namely, ≻ ≻ ≻A A A A2 4 1 3 for
∈τ (0,1.7072); and ≻ ≻ ≻A A A A2 4 3 1 for ∈τ (1.7072,20]. The score values using the devel-

oped operator by varying τ are displayed through Figures 15 and 16.
From the above discussions, it is evidenced that the developed AOs possess higher cap-

ability, not only to cover the concepts of different existing operators, but also, a large number of
AOs can be developed based on those operators.

It is also to be noted here that different ranking results of alternatives are found using the
proposed method. The technique developed by Garg and Chen35 is based on algebraic opera-
tions under q‐ROF environment, whereas, the proposed approach is based on Dt‐CN&t‐Ns
using DHq‐ROF information. So, it is claimed that the approach of Garg and Chen35 is a
particular case of the proposed method. Again, it is worth mentioning that q‐ROFWNA and q‐
ROFOWNA operators,35 cannot consider the interrelationship between arguments. Thus, the
proposed methodology is advantageous than the existing techniques.

FIGURE 15 Impact of τ in DHq‐ROFWDBM for Example 6.3 [Color figure can be viewed at
wileyonlinelibrary.com]
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7 | NOVELTY OF THE PROPOSED METHOD

The proposed method meets the following requirements:

• By introducing Bonferroni mean in the aggregation operator, it can resolve the situations
where the interrelationship among the decision making attributes are needed to consider.
The proposed operator can successfully cope with the characteristics of interaction among
the input arguments.

• It provides the decision makers more freedom to put judgment values due to the use of DHq‐
ROF information. The proposed method can capture the hesitancy of decision making
processes in a more significant way than other variants of fuzzy sets.

• It makes the decision making process flexible using Dombi parameter. Decision makers can
dynamically adjust the parameter according to their risk managements.

• It also can reflect the pessimistic or optimistic attitude of the decision makers towards the
decision choices through selecting the Dombi parameters.

On the basis of the above discussions, it can be concluded that the development of DHq‐
ROF operators using Dombi Bonferroni mean parameters is a meaningful innovation for sol-
ving real life MCGDM problems.

8 | CONCLUSIONS

In this paper, an MCGDM method is developed to solve group decision making problems under
DHq‐ROF environment. From the perspective of interrelationship design among input argu-
ments, the developed AOs possess the greater capability of making the decision process flexible

FIGURE 16 Impact of τ in DHq‐ROFWDGBM for Example 6.3 [Color figure can be viewed at
wileyonlinelibrary.com]
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by considering preferences of the DMs. Further, since, DHPFS, DHFS, PFS, IFS, HFS, and other
variants of FSs are appeared as particular cases of DHq‐ROFS, the developed operators are
efficient enough not only to capture data during information processing phase by adapting rung
parameter q, but also, the proposed method can adjust the degree of hesitancy during the
investigation phases. Due to the presence of BM parameters, θ and ϕ, the proposed model is also
capable of solving the decision making problems having the risk preference of experts. Also, the
proposed method becomes more flexible by changing the Dombi parameter τ . Therefore, the
introduced MCGDM method is more general and flexible to handle the problems containing
correlated attributes. Several illustrative examples, adopted from different articles33,35,42,56 are
solved by the developed MCGDM method. Sensitivity analysis is performed to find the influence
of the parameters q, τ , θ, and ϕ on the decision making process. From sensitivity analysis and
comparison with other methods, it has already been established that the developed method can
capture most of the existing methods by varying different parameters associated with it. It also
absorbs the results of multiple number of decision making processes.

In future, the proposed method can be extended under DHq‐ROF environment by in-
tegrating other averaging operations, namely, MM,40 partitioned BM,57 power BM,58 HM,54

MSM,52 Hamy mean,55 and so on, with DHqROFNs to generate different efficient AOs
which may, subsequently, be used for solving MCDM problems. After introducing distance
measure on DHq‐ROF environment, several types of power AOs based on Frank, Ha-
macher, Schweizer‐Sklar,59 and many other classes of t‐CN&t‐Ns, can be developed. In-
spired by the concept of complex q‐ROFS,60 DHq‐ROFS can also be extended to develope
complex DHq‐ROFS. The presented method may also be extended to interval valued DHq‐
ROF19 contexts. As like theoretical developments, the proposed method may also be applied
to solve various real‐life MCDM problems. In the future, more intelligent algorithms may be
explored for development of a robust controller. However, it is hoped that the proposed
method may add a new direction in the context of solving MCDM problems under imprecise
decision making environments.

ACKNOWLEDGMENT
The authors remain very much grateful to the learned reviewers for their valuable comments
and suggestions to improve the quality of the manuscript.

ORCID
Arun Sarkar http://orcid.org/0000-0002-9263-4400
Animesh Biswas http://orcid.org/0000-0002-5813-1076

REFERENCES
1. Zadeh LA. Fuzzy sets. Inf Control. 1965;8(3):338‐356.
2. Kacprzyk J. Group decision making with a fuzzy linguistic majority. Fuzzy Sets Syst. 1986;18(2):105‐118.
3. Mendel JM. Advances in type‐2 fuzzy sets and systems. Inf. Sci. 2007;177(1):84‐110.
4. Yager RR, Zadeh LA. An introduction to fuzzy logic applications in intelligent systems, The Springer

International Series in Engineering and Computer Science. New York, NY: Springer; 2012.
5. Melin P, Castillo O, Kacprzyk J, Reformat M, Melek W, Fuzzy logic in intelligent system design: theory and

applications, Advances in Intelligent Systems and Computing. New York, NY: Springer; 2018.
6. Atanassov KT. Intuitionistic Fuzzy Sets. Fuzzy Sets Syst. 1986;20:87‐96.
7. Yager RR. Pythagorean fuzzy subsets. In: Pedrycz W, Reformat M, eds. Proc Joint IFSA World Congress and

NAFIPS Annual Meeting, Edmonton; 2013:57‐61. Canada: IEEE.

SARKAR AND BISWAS | 43

http://orcid.org/0000-0002-9263-4400
http://orcid.org/0000-0002-5813-1076


8. Yager RR. Pythagorean membership grades in multicriteria decision‐making. IEEE Trans Fuzzy Syst. 2014;
22(4):958‐965.

9. Zhang XL, Xu ZS. Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets.
Int J Intell Syst. 2014;29:1061‐1078.

10. Garg H. Confidence levels based Pythagorean fuzzy aggregation operators and its application to decision‐
making process. Comput Math Organ Theory. 2017;23(4):546‐571.

11. Biswas A, Sarkar B. Pythagorean fuzzy multicriteria group decision making through similarity measure
based on point operators. Int J Intell Syst. 2018;33(8):1731‐1744.

12. Biswas A, Sarkar B. Pythagorean fuzzy TOPSIS for multicriteria group decision‐making with unknown
weight information through entropy measure. Int J Intell Syst. 2019;34(6):1108‐1128.

13. Sarkar A, Biswas A. Multicriteria decision making using Archimedean aggregation operators in Pytha-
gorean hesitant fuzzy environment. Int J Intell Syst. 2019;34(7):1361‐1386.

14. Sarkar B, Biswas A. A unified method for Pythagorean fuzzy multicriteria group decision‐making using
entropy measure, linear programming and extended technique for ordering preference by similarity to ideal
solution. Soft Comput. 2020;24:5333‐5344.

15. Guleria A, Bajaj RK. A robust decision making approach for hydrogen power plant site selection utilizing
(R,S)‐norm Pythagorean fuzzy information measures based on VIKOR and TOPSIS method. Int J Hydrog
Energy. 2020;45(38):18802‐18816.

16. Fei L, Deng Y. Multi‐criteria decision making in Pythagorean fuzzy environment. Appl Intell. 2020;50:
537‐561.

17. Yager RR. Generalized orthopair fuzzy sets. IEEE Trans Fuzzy Syst. 2017;25(5):1222‐1230.
18. Zhu B, Xu ZS, Xia MM. Dual hesitant fuzzy sets. J Appl Math. 2012;2012. https://doi.org/10.1155/2012/

879629
19. Xu Y, Shang X, Wang J, Wu W, Huang H. Some q‐rung dual hesitant fuzzy Heronian mean operators with

their application to multiple attribute group decision‐making. Symmetry. 2018;10(10):472.
20. Yager RR. Aggregation operators and fuzzy systems modeling. Fuzzy Sets Syst. 1994;67(2):129‐145.
21. Xu Z, Yager RR. Some geometric aggregation operators based on intuitionistic fuzzy sets. Int J Gen Syst.

2006;35(4):417‐433.
22. Liu F, Mendel JM. Aggregation using the fuzzy weighted average as computed by the Karnik–Mendel

algorithms. IEEE Trans Fuzzy Syst. 2008;16(1):1‐12.
23. Sarkar A, Biswas A. Hesitant‐intuitionistic trapezoidal fuzzy prioritized operators based on Einstein op-

erations with their application to multi‐criteria group decision‐making. Studies Comput Intell. 2020;870:
1‐24.

24. Yager RR, Kacprzyk J. The Ordered Weighted Averaging Operators: Theory and Applications. New York, NY:
Springer Science & Business Media; 2012.

25. Peng X, Yuan H. Fundamental properties of Pythagorean fuzzy aggregation operators. Fundam Inform.
2016;147(4):415‐446.

26. Ma Z, Xu Z. Symmetric Pythagorean fuzzy weighted geometric/averaging operators and their application in
multicriteria decision‐making problems. Int J Intell Syst. 2016;31(12):1198‐1219.

27. Rahman K, Abdullah S, Ahmed R, Ullah M. Pythagorean fuzzy Einstein weighted geometric aggregation
operator and their application to multiple attribute group decision making. J Intell Fuzzy Syst. 2017;33(1):
635‐647.

28. Garg H. Generalized pythagorean fuzzy geometric aggregation operators using Einstein t‐norm and t‐
conorm for multicriteria decision‐making process. Int J Intell Syst. 2016;32(6):597‐630.

29. Garg H. A new generalized Pythagorean fuzzy information aggregation using Einstein operations and its
application to decision making. Int J Intell Syst. 2016;31(9):886‐920.

30. Wei G, Lu M. Pythagorean fuzzy power aggregation operators in multiple attribute decision making. Int
J Intell Syst. 2017;33(1):169‐186.

31. Wang L, Li N. Pythagorean fuzzy interaction power Bonferroni mean aggregation operators in multiple
attribute decision making. Int J Intell Syst. 2020;35(1):150‐183.

32. Rahman K, Abdullah S, Hussain F. Some generalised Einstein hybrid aggregation operators and their
application to group decision‐making using Pythagorean fuzzy numbers [published online ahead of print
July 28, 2020]. Fuzzy Inf Eng. 1‐16. https://doi.org/10.1080/16168658.2020.1746483

44 | SARKAR AND BISWAS

https://doi.org/10.1155/2012/879629
https://doi.org/10.1155/2012/879629
https://doi.org/10.1080/16168658.2020.1746483


33. Ju Y, Luo C, Ma J, Wang A. A novel multiple‐attribute group decision‐making method based on q‐rung
orthopair fuzzy generalized power weighted aggregation operators. Int J Intell Syst. 2019;34(9):2077‐2103.

34. Akram M, Shahzadi G. A hybrid decision‐making model under q‐rung orthopair fuzzy Yager aggregation
operators. Granul Comput. 2020. https://doi.org/10.1007/s41066‐020‐00229‐z

35. Garg H, Chen SM. Multiattribute group decision making based on neutrality aggregation operators of q‐
rung orthopair fuzzy sets. Inf Sci. 2020;517:427‐447.

36. Liu P, Wang P. Some q‐rung orthopair fuzzy aggregation operators and their applications to multiple‐
attribute decision making. Int J Intell Syst. 2017;33(2):259‐280.

37. Peng X, Dai J, Garg H. Exponential operation and aggregation operator for q‐rung orthopair fuzzy set and
their decision‐making method with a new score function. Int J Intell Syst. 2018;33(11):2255‐2282.

38. Darko AP, Liang D. Some q‐rung orthopair fuzzy Hamacher aggregation operators and their application to
multiple attribute group decision making with modified EDAS method. Eng Appl Artif Intell. 2020;87:
103259.

39. Wang P, Wei G, Wang J, Lin R, Wei Y. Dual hesitant q‐rung orthopair fuzzy Hamacher aggregation
operators and their applications in scheme selection of construction project. Symmetry. 2019;11(6):771.

40. Wang J, Wei G, Wei C, Wei Y. Dual hesitant q‐rung orthopair fuzzy Muirhead mean operators in multiple
attribute decision making. IEEE Access. 2019;7:67139‐67166.

41. Bonferroni C. Sullemedie multiple di potenze. BolletinoMatematicaItaliana. 1950;5:267‐270.
42. Liu P, Liu J, Chen S. Some intuitionistic fuzzy Dombi Bonferroni mean operators and their application to

multi‐attribute group decision making. J Oper Res Soc. 2018;69(1):1‐24.
43. Liang D, Zhang Y, Xu Z, Darko AP. Pythagorean fuzzy Bonferroni mean aggregation operator and its

accelerative calculating algorithm with the multithreading. Int J Intell Syst. 2018;33(3):615‐633.
44. Liu P, Liu J. Some q‐rung orthopai fuzzy Bonferroni mean operators and their application to multi‐attribute

group decision making. Int J Intell Syst. 2018;33(2):315‐347.
45. Tang X, Wei G. Dual hesitant Pythagorean fuzzy Bonferroni mean operators in multi‐attribute decision

making. Archiv Control Sci. 2019;29(2):339‐386.
46. Dombi J. A general class of fuzzy operators, the De‐Morgan class of fuzzy operators and fuzziness induced

by fuzzy operators. Fuzzy Sets Syst. 1982;8(2):149‐163.
47. Jana C, Senapati T, Pal M. Pythagorean fuzzy Dombi aggregation operators and its applications in multiple

attribute decision‐making. Int J Intell Syst. 2019;34(9):2019‐2038.
48. Jana C, Muhiuddin G, Pal M. Some Dombi aggregation of Q‐rung orthopair fuzzy numbers in multiple‐

attribute decision making. Int J Intell Syst. 2019;34(12):3220‐3240.
49. Aydemir SB, Gündüz S. Extension of multi‐Moora method with some q‐rung orthopair fuzzy Dombi

prioritized weighted aggregation operators for multi‐attribute decision making. Soft Comput. 2020;24:
18545‐18563.

50. Biswas A, Sarkar A. Development of dual hesitant fuzzy prioritized operators based on Einstein operations
with their application to multi‐criteria group decision making. Archiv Control Sci. 2019;28(4):527‐549.

51. Zhu B, Xu Z, Xia M. Hesitant fuzzy geometric Bonferroni means. Inf Sci. 2012;205:72‐85.
52. Garg H. Hesitant Pythagorean fuzzy Maclaurin symmetric mean operators and its applications to multi-

attribute decision‐making process. Int J Intell Syst. 2019;34(4):601‐626.
53. Wei G, Lu M. Dual hesitant pythagorean fuzzy Hamacher aggregation operators in multiple attribute

decision making. Archiv Control Sci. 2017;27(3):365‐395.
54. Tang M, Wang J, Lu J, Wei G, Wei C, Wei Y. Dual hesitant Pythagorean fuzzy heronian mean operators in

multiple attribute decision making. Mathematics. 2019;7(4):344.
55. Wei G, Wang J, Wei C, Wei Y, Zhang Y. Dual hesitant Pythagorean fuzzy Hamy mean operators in multiple

attribute decision making. IEEE Access. 2019;7:86697‐86716.
56. Garg H. hesitant Pythagorean fuzzy sets and their aggregation operators in multiple attribute decision‐

making. Int J Uncertain Quantif. 2018;8(3):267‐289.
57. Yang W, Pang Y. New q‐rung orthopair fuzzy partitioned Bonferroni mean operators and their application

in multiple attribute decision making. Int J Intell Syst. 2019;34(3):439‐476.
58. Qin Y, Qi Q, Scott PJ, Jiang X. An additive manufacturing process selection approach based on fuzzy

Archimedean weighted power Bonferroni aggregation operators. Robot Comput Integr Manuf. 2020;64:
101926.

SARKAR AND BISWAS | 45

https://doi.org/10.1007/s41066-020-00229-z


59. Biswas A, Deb N. Pythagorean fuzzy Schweizer and Sklar power aggregation operators for solving multi‐
attribute decision‐making problems [published online ahead of print November 11, 2020]. Granul Comput.
https://doi.org/10.1007/s41066‐020‐00243‐1

60. Liu P, Akram M, Sattar A. Extensions of prioritized weighted aggregation operators for decision‐making
under complex q‐rung orthopair fuzzy information. J Intell Fuzzy Syst. 2020;39(5):7469‐7493.

How to cite this article: Sarkar A, Biswas A. Dual hesitant q‐rung orthopair fuzzy
Dombi t‐conorm and t‐norm based Bonferroni mean operators for solving multicriteria
group decision making problems. Int J Intell Syst. 2021;1–46.
https://doi.org/10.1002/int.22417

46 | SARKAR AND BISWAS

https://doi.org/10.1007/s41066-020-00243-1
https://doi.org/10.1002/int.22417


Received: 29 May 2019 Revised: 17 December 2019 Accepted: 17 December 2019

DOI: 10.1002/eng2.12106

R E S E A R C H A R T I C L E

Development of Archimedean t-norm and t-conorm-based
interval-valued dual hesitant fuzzy aggregation operators
with their application in multicriteria decision making

Arun Sarkar1 Animesh Biswas2

1Department of Mathematics, Heramba
Chandra College, Kolkata, India
2Department of Mathematics, University
of Kalyani, Kalyani, India

Correspondence
Animesh Biswas, Department of
Mathematics, University of Kalyani,
Kalyani, West Bengal 741235, India.
Email: abiswaskln@rediffmail.com

Funding information
University of Kalyani

Abstract
In this article, Archimedean t-norm and t-conorm (At-N&t-CN)-based aggrega-
tion operators are developed for aggregating the interval-valued dual hesitant
fuzzy (IVDHF) elements (IVDHFEs), which can cover a wide variety of exist-
ing aggregation operators. After introducing the concept of IVDHF set, several
related terms, viz., score function, accuracy function, and degree of hesitancy
are defined. Using At-N&t-CN, different operations for IVDHFEs are presented.
Conversion processes from the developed operators to other forms of operators
in several variants of fuzzy environments are discussed. An approach to solve
multicriteria decision making problem in IVDHF context is presented using
the developed concepts. To demonstrate proficiency of the developed method,
an illustrative example is presented. Furthermore, several numerical examples,
studied previously, are also solved, and achieved solutions are compared with
the existing ones to establish the robustness of the proposed operator.

K E Y W O R D S

Archimedean t-norm and t-conorm, hesitant fuzzy set, interval-valued dual hesitant fuzzy set,
multicriteria decision making, weighted averaging and weighted geometric operators

1 INTRODUCTION

Under real-world complex decision making situations, decision makers (DMs) often feel free to assign a set of possible
evaluation values instead of putting exact decision values during the process of evaluating imprecise data. To conceptu-
alize such concept, Torra and Narukawa1 and Torra2 introduced hesitant fuzzy (HF) set (HFS) as an extension of fuzzy
set.3 That empowers the membership degree of an element to consider a finite set of different possible values in [0, 1].
Afterward, generalizing the idea of HFSs, Chen et al4 proposed interval-valued HF (IVHF) set (IVHFS) that assigns a set
of possible subintervals of [0, 1] as membership degree.

In the process of decision making, the DMs sometimes prefer to assign membership value together with nonmem-
bership value of an element to represent a decision situation. In such context, the concept of IFS5,6 has been developed.
Combining IFS with HFS, the concept of dual HF (DHF) sets (DHFSs)7 comes into account. Thus DHFSs consist of a
set of possible membership degrees and also a set of possible nonmembership degrees in [0, 1]. In recent time, DHFSs

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,
provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
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have received much attention to the researchers8,9 in modelling various multicriteria decision making (MCDM) problems
within a very short span after its initiation.

Extending the concept of DHFS, Ju et al10 introduced interval-valued DHFS (IVDHFS) whose membership and non-
membership values are represented through two possible sets of subintervals of [0, 1]. Therefore, using this perception,
IVDHFS becomes more flexible to express the DM's hesitancy than IFS, HFS, IVHFS, and their extensions. After intro-
duction of IVDHFS, it is interestingly noticed that the sets, viz., fuzzy set, IFS, IVIFS,11 HFS, IVHFS, and DHFS can be
treated as special cases of IVDHFS.

Research works on aggregation operators in imprecise decision making environments have now become an emerg-
ing area of research. On various imprecise circumstances, a large number of aggregation operators are developed using
weighted averaging (WA) and weighted geometric (WG) operators. Using algebraic operations on HFSs, Xia and Xu12

presented HF WA (HFWA), HF WG (HFWG) aggregation operators and applied them to solve MCDM problems. On the
IVHF context, Chen et al4 introduced IVHF WA (IVHFWA) and IVHF WG (IVHFWG) operators. Considering confidence
level of the DMs, Zeng et al13 very recently, presented a family of weighted aggregation operators, viz., weighted IVHF
WA and the generalized weighted IVHF WA and corresponding to those WG operators. Wang et al14 proposed DHF WA
(DHFWA) and WG (DHFWG) aggregation operators. Using Einstein operations, Biswas and Sarkar15 introduced DHF
prioritized WA and WG operators in multicriteria group decision making context.

To aggregate the IVDHF elements (IVDHFEs), Ju et al10 developed IVDHF weighted aggregation operator. Further-
more, Zhang et al16 imposed Einstein WA and WG operators on IVDHF environment to develop IVDHF Einstein WA
(IVDHFEWA) and IVDHF Einstein WG (IVDHFEWG) operators. Wei et al17 presented IVDHF linguistic WG, IVDHF
linguistic ordered WG, and IVDHF linguistic hybrid geometric operators for IVDHF linguistic information. Using the
concept of IVDHFSs and linguistic term sets, Liu and Tang18 proposed IVDHF uncertain linguistic sets. Wei19 proposed
some aggregation operators based on IVDHF uncertain linguistic information. Zang et al20 defined distance measure for
IVDHF elements and developed IVDHF Heronian mean (HM) and geometric HM aggregation operators21 in the recent
past. Recently, Sarkar and Biswas22 applied IVDHF Bonferroni mean operator to solve MCDM problems.

In studying the above aggregation operators, it is the fact that those aggregation operators are mostly based on differ-
ent kinds of t-norms and t-conorms (t-Ns&t-CNs) which are derived from Archimedean t-Ns&t-CNs (At-Ns&t-CNs).23,24

In general, At-Ns&t-CNs produce different forms of t-Ns&t-CNs, which allow the information fusion process more flex-
ible and robust and provide more freedom in decision making process to the DMs. It is well known23 that Archimedean
t-conorms are characterized by an increasing generator, g, and Archimedean t-norms characterized by a decreasing gen-
erator, f , maintaining the relationship g(t) = f (1 − t). For different forms of generating function, At-N&t-CNs can produce
many operators viz., Algebraic, Einstein, Hamacher, Frank, Dombi classes of operators, and others. Based on At-N&t-CN,
Xia et al25 constructed some operations on IFSs and developed At-N&t-CN-based intuitionistic fuzzy WA (AIFWA) and
WG (AIFWG) aggregation operators. In DHF environment, Yu26 proposed At-N&t-CN DHF WA (ADHFWA) and WG
(ADHFWG) operators. Zhang et al27 introduced some general aggregation operators based on At-N&t-CN for DHF lin-
guistic (DHFL) elements (DHFLEs) viz., At-N&t-CN-based DHFL WA and WG, At-N&t-CN-based generalized DHFL
WA and WG operators. Furthermore, Zhang et al28 proposed power-geometric operators to aggregate DHFLEs based on
At-N&t-CN. However, the previously proposed At-N&t-CN-based aggregation operators are not implemented to such sit-
uations in which the input arguments take the form of IVDHFEs. Therefore, the main contribution of this article is to
develop several At-N&t-CN aggregation operators based on IVDHF information.

Thus the main objective of this article is to introduce At-N&t-CNs-based operations on IVDHFSs to aggregate IVD-
HFEs. Archimedean IVDHF WA (AIVDHFWA) and WG (AIVDHFWG) operators are proposed and their properties are
discussed. Relationships between the newly introduced operators and the existing ones have been established. Based
on the controlling parameter, the DMs now can adjust their preferences more accurately to express their judgement
values. It is interesting to note that almost all the above-defined existing operators in different imprecise circum-
stances can be derived from the proposed operators. Conversion processes from the proposed aggregation operators
in the IVDHF environment to various aggregation operators in other variants of fuzzy environments are also dis-
cussed. Finally, a methodology for solving MCDM problems using IVDHF information has been presented. Utilizing
this proposed methodology, several existing problems on MCDM have been solved. It is to be noted here that all
the solutions of these existing problems can be achieved for some particular value of the parameter in the proposed
method.

The rest of this article is organized in such a manner that in Section 2 preliminary concepts of different existing
variants of fuzzy sets with their respective score function, accuracy function, different operational laws on them have
been presented. Different classes of t-Ns&t-CNs that can be derived from At-N&t-CNs are also presented in this section.
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Section 3 contains At-N&t-CN-based aggregation operators for IVDHFEs using newly defined operations and their prop-
erties are studied. How different operators can be derived from the developed At-N&t-CN-based IVDHF aggregation
operators is presented in Section 4. Section 5 discusses a methodology for solving MCDM problems in IVDHF environ-
ment. An illustrative example is solved using the proposed method and sensitivity analysis is performed by varying the
parameter in Section 6. In Section 7, a comparative analysis of the proposed method with the existing methods by solving
several examples, considered previously, in various variants of fuzzy environments is presented. Finally, conclusions and
scope for future studies have been described.

2 PRELIMINARIES

Some preliminary concepts, which are essential to develop the proposed methodology, are presented in this section.

Definition 1. [1, 2] Let X be any set. An HFS defined on X can be represented in the form of a function that maps each
element of X with a subset consisting of a finite number of elements in [0, 1]. Symbolically, it is denoted as

E = {⟨x, hE(x)⟩ ∣ x ∈ X}, (1)

where hE(x) is a collection of possible finite values lying within [0, 1], signifying membership degrees for x ∈X to the set
E. Xia and Xu12 simply denoted h = hE(x) as HF element (HFE).

The concept of IVHFS is presented by Chen et al4 as follows.

Definition 2. [4] Let I([0, 1]) denote the set of all closed subintervals of [0, 1], that is,

I([0, 1]) = {[𝛾 l, 𝛾u]|𝛾 l ≤ 𝛾u; 𝛾 l, 𝛾u ∈ [0, 1]}. (2)

The IVHFS is expressed by the symbol:

Ã = {⟨x, h̃Ã(x)⟩|x ∈ X}. (3)

where h̃Ã(x) denotes membership grade of element x ∈X to Ã as a set of possible intervals belongs to I([0, 1]). For sim-
plicity, Chen et al4 renamed h̃ = h̃Ã(x) as an IVHF element (IVHFE). The IVHFEs reduce to the HFEs, if 𝛾 l = 𝛾u is
considered.

Definition 3. [7] Let X be a universe of discourse. Then a DHFS, D, on X is expressed as

D = {⟨x, h(x), g(x)⟩|x ∈ X}, (4)

where h(x) and g(x) denote the sets of possible degrees of membership and nonmembership of x ∈X in D, respectively,
where.

0≤ 𝛾 , 𝜂 ≤ 1, 0≤ 𝛾+ + 𝜂+ ≤ 1, where 𝛾 ∈ h(x), 𝜂 ∈ g(x), 𝛾+ = max
𝛾∈h(x)

{𝛾} and 𝜂+ = max
𝜂∈h(x)

{𝜂} for all x ∈X .

DHFE is introduced by Zhu et al7 and is expressed as d = (h, g), where h and g are two HFEs. The score and accuracy
functions of DHFE d are presented as

S(d) = 1|h| ∑
𝛾∈h

𝛾 − 1|g| ∑
𝜂∈g

𝜂 and A(d) = 1|h| ∑
𝛾∈h

𝛾 + 1|g| ∑
𝜂∈g

𝜂, (5)

where |h| and |g| denote the scalar cardinality of 𝛾 and 𝜂, respectively.
For any two DHFEs d1 and d2, if S(d1)> S(d2) then d1 is larger than d2.

Definition 4. [10] An IVDHFS K̃ on a given set X is described as

K̃ = {|x, h̃(x), g̃(x)||x ∈ X}, (6)
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4 of 34 SARKAR and BISWAS

in which h̃(x) =
⋃

[𝛾 l,𝛾u]∈h̃(x)
{[𝛾 l, 𝛾u]} and g̃(x) =

⋃
[𝜂l,𝜂u]∈g̃(x)

{[𝜂l, 𝜂u]} denote two individual sets of subintervals in [0, 1], repre-

senting the respective possible degrees of membership and nonmembership of x ∈X to K̃, with [𝛾 l, 𝛾u], [𝜂l, 𝜂u]⊂ [0, 1] and
0≤ (𝛾u)+ + ( 𝜂u)+ ≤ 1, where (𝛾u)+ = max{𝛾u}, and ( 𝜂u)+ = max{𝜂u} for all x ∈X . For computational simplicity Ju et al10

named k̃(x) = (h̃(x), g̃(x)) as an IVDHFE and used the notation as k̃ = (h̃, g̃).
To compare the IVDHFEs, Ju et al10 presented score function and accuracy function in the following manner:

Definition 5. [10] Let k̃ = (h̃, g̃) be an IVDHFE. The score function of k̃ is expressed as

S(k̃) = 1
2

⎛⎜⎜⎝ 1|h̃| ∑[𝛾 l,𝛾u]∈h̃

(𝛾 l + 𝛾u) − 1|̃g| ∑[𝜂l,𝜂u]∈g̃

(𝜂l + 𝜂u)
⎞⎟⎟⎠ , (7)

and accuracy function of IVDHFE k̃ = (h̃, g̃) is presented as

A(k̃) = 1
2

⎛⎜⎜⎝ 1|h̃| ∑[𝛾 l,𝛾u]∈h̃

(𝛾 l + 𝛾u) + 1|̃g| ∑[𝜂l,𝜂u]∈g̃

(𝜂l + 𝜂u)
⎞⎟⎟⎠ , (8)

where |h̃| and |̃g| is the number of intervals in h̃ and g̃, respectively.

Definition 6. [10] Let k̃1 and k̃2 be any two IVDHFEs,

• If S(k̃1) > S(k̃2) then k̃1 ≻ k̃2

• If S(k̃1) = S(k̃2) then

if A(k̃1) > A(k̃1) then k̃1 ≻ k̃2; if A(k̃1) = A(k̃2) then k̃1 ≈ k̃2.

Definition 7. [10] If k̃i = (h̃i, g̃i) (i = 1, 2) and k̃ = (h̃, g̃) be three arbitrary IVDHFEs with 𝜆> 0, then the following
operational rules are defined as

1. k̃1 ⊕ k̃2 =
⎛⎜⎜⎜⎝
⋃
[𝛾 l

i , 𝛾
u
i ] ∈ h̃i

i = 1, 2

{[𝛾 l
1 + 𝛾 l

2 − 𝛾 l
1𝛾

l
2, 𝛾

u
1 + 𝛾u

2 − 𝛾u
1 𝛾

u
2 ]},
⋃
[𝜂l

i , 𝜂
u
i ] ∈ g̃i

i = 1, 2
{[𝜂l

1𝜂
l
2, 𝜂

u
1𝜂

u
2 ]}
⎞⎟⎟⎟⎠,

2. k̃1 ⊗ k̃2 =
⎛⎜⎜⎜⎝
⋃
[𝛾 l

i , 𝛾
u
i ] ∈ h̃i

i = 1, 2

{[𝛾 l
1𝛾

l
2, 𝛾

u
1 𝛾

u
2 ]},
⋃
[𝜂l

i , 𝜂
u
i ] ∈ g̃i

i = 1, 2
{[𝜂l

1 + 𝜂l
2 − 𝜂l

1𝜂
l
2, 𝜂

u
1 + 𝜂u

2 − 𝜂u
1𝜂

u
2 ]}
⎞⎟⎟⎟⎠,

3. 𝜆k̃ = (
⋃

[𝛾 l,𝛾u]∈h̃{[1 − (1 − 𝛾 l)𝜆, 1 − (1 − 𝛾u)𝜆]},
⋃

[𝜂l,𝜂l]∈g̃{[(𝜂l)𝜆, (𝜂u)𝜆]}),
4. k̃𝜆 = (

⋃
[𝛾 l,𝛾u]∈h̃{[(𝛾

l)𝜆, (𝛾u)𝜆]},
⋃

[𝜂l,𝜂l]∈g̃{[1 − (1 − 𝜂l)𝜆, 1 − (1 − 𝜂u)𝜆]}).

Definition 8. [23, 24] Archimedean t-norm is defined using a decreasing generator f such that

I(a, b) = f (−1)(f (a) + f (b)), for all a, b ∈ [0, 1]. (9)

Similarly, Archimedean t-conorm is defined using an increasing generator g such that

U(a, b) = g(−1)(g(a) + g(b))with g(t) = f (1 − t)for all a, b, t ∈ [0, 1]. (10)

Now, using the decreasing as well as increasing generators, different classes of t-Ns&t-CNs can be derived.
Let f (t) = log

(
𝜃+(1−𝜃)t

t

)
, 𝜃 > 0, g(t) = log

(
𝜃+(1−𝜃)(1−t)

1−t

)
, f −1(t) = 𝜃

et+𝜃−1
, g−1(t) = 1 − 𝜃

et+𝜃−1
, then the At-N&t-CN is

called Hamacher t-norm and t-conorm and are presented as UH
𝜃
(a, b) = a+b−𝑎𝑏−(1−𝜃)𝑎𝑏

1−(1−𝜃)𝑎𝑏
, IH

𝜃
(a, b) = 𝑎𝑏

𝜃+(1−𝜃)(a+b−𝑎𝑏)
, 𝜃 > 0. It is

worthy to mention here that different types of operations can be obtained as some particular cases of Hamacher operators.
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SARKAR and BISWAS 5 of 34

For example, if 𝜃 = 1 is considered, then Hamacher operations represent algebraic operations. Also, if 𝜃 = 2 is assumed,
then Hamacher operations further reduce to Einstein operations. Several other forms can also be derived by varying the
parameter 𝜃.

Similarly, if the decreasing generator f (t) = log
(

𝜃−1
𝜃t−1

)
, 𝜃 > 1 is considered then Frank class of t-Ns&t-CNs can be

found.

A classification of t-Ns&t-CNs for particular decreasing generator f , is presented in Table 1 as follows:
Beliakov et al29 proposed some arithmetic operations on IFNs based on At-N&t-CN which are presented below:

Definition 9. [29] Let 𝛼j = (𝜇𝛼j , 𝜈𝛼j) (j = 1, 2) and 𝛼 = (𝜇𝛼 , 𝜈𝛼) be three IFNs then

1. 𝛼1 ⊕ 𝛼2 = (U(𝜇𝛼1 , 𝜇𝛼2), I(𝜈𝛼1 , 𝜈𝛼2)) = (g−1(g(𝜇𝛼1) + g(𝜇𝛼2)), f −1(f (𝜈𝛼1) + f (𝜈𝛼2))),
2. 𝛼1 ⊗ 𝛼2 = (I(𝜇𝛼1 , 𝜇𝛼2),U(𝜈𝛼1 , 𝜈𝛼2)) = (f −1(f (𝜇𝛼1) + f (𝜇𝛼2)), g

−1(g(𝜈𝛼1) + g(𝜈𝛼2))),
3. 𝜆𝛼 = (g−1(𝜆g(𝜇𝛼)), f −1(𝜆f (𝜈𝛼))), 𝜆> 0.
4. 𝛼𝜆 = (f −1(𝜆f (𝜇𝛼)), g−1(𝜆g(𝜈𝛼))), 𝜆> 0.

Zhang and Wu30 defined some At-N&t-CN-based operations for IVHFEs.

Definition 10. [30] Let h̃i = ({[𝜉l
i , 𝜉

u
i ]}) (i = 1, 2) and h̃ = ({[𝜉l, 𝜉u]}) are three IVHFEs then

1. h̃1 ⊕ h̃2 = (
⋃

[𝜉l
i ,𝜉

u
i ]∈h̃i,i=1,2{[g

−1(g(𝜉l
1) + g(𝜉l

2)), g−1(g(𝜉u
1 ) + g(𝜉u

2 ))]}),

2. h̃1 ⊗ h̃2 = (
⋃

[𝜉l
i ,𝜉

u
i ]∈h̃i,i=1,2{[f

−1(f (𝜉l
1) + f (𝜉l

2)), f −1(f (𝜉u
1 ) + f (𝜉u

2 ))]}),

3. 𝜆h̃ = (∪[𝜉l,𝜉u]∈h̃{[g
−1(𝜆𝑔(𝜉l)), g−1(𝜆𝑔(𝜉u))]}), 𝜆 > 0,

4. h̃𝜆 = (∪([𝜉l𝜉u]∈h̃{[f
(−1)(𝜆𝑓 (𝜉l)), f (−1)(𝜆𝑓 (𝜉u))]}), 𝜆 > 0.

Yu26 applied At-N&t-CN in DHF context and proposed the Archimedean operations there.

Definition 11. [26] Let d̃i = (h̃i, g̃i) (i = 1, 2) and d̃ = (h̃, g̃) are three DHFEs, then some operations based on At-N&t-CN
are defined as follows.

1. d̃1 ⊕ d̃2 = (
⋃

𝛾1∈h̃1,𝛾2∈h̃2
{g−1(g(𝛾1) + g(𝛾2))},

⋃
𝜂1∈g̃1,𝜂2∈g̃2

{f −1(f (𝜂1) + f (𝜂2))}),
2. d̃1 ⊗ d̃2 = (

⋃
𝛾1∈h̃1,𝛾2∈h̃2

{f −1(f (𝛾1) + f (𝛾2))},
⋃

𝜂1∈g̃1,𝜂2∈g̃2
{g−1(g(𝜂1) + g(𝜂2))}),

3. 𝜆d̃ = (∪
𝛾∈h̃{g−1(𝜆𝑔(𝛾))},∪𝜂∈g̃{f −1(𝜆𝑓 (𝜂))}), 𝜆 > 0,

4. d̃𝜆 = (∪
𝛾∈h̃{f −1(𝜆𝑓 (𝛾))},∪𝜂∈g̃{g−1(𝜆𝑔(𝜂))}), 𝜆 > 0.

2.1 Existing aggregation operators

As it is the fact that IVDHFS can cover a wide variety of fuzzy sets. So, if At-N&t-CN operators are introduced on IVD-
HFSs, it could cover existing aggregation operators, mostly. Focusing on this idea, a chart of various aggregation operators
(viz., Algebraic, Einstein, Hamacher, Frank, etc.) and environments (viz., DHF, IVHF, HF, IVIF, IF, etc.) is shown in
Figure 1.

T A B L E 1 t-Conorms and
t-norms generating from
decreasing generator f

Classes of
t-conorms
and t-norms

Decreasing
generator f

Archimedean
t-conorm U(a, b)

Archimedean
t-norm I(a, b)

Algebraic −logt a+ b− ab ab

Einstein − log
(

2−t
t

)
a+b
1+𝑎𝑏

𝑎𝑏

1+(1−a)(1−b)

Hamacher log
(

𝜃+(1−𝜃)t
t

)
, 𝜃 > 0 a+b−𝑎𝑏−(1−𝜃)𝑎𝑏

1−(1−𝜃)𝑎𝑏
𝑎𝑏

𝜃+(1−𝜃)(a+b−𝑎𝑏)

Frank log
(

𝜃−1
𝜃t−1

)
, 𝜃 > 1 1 − log𝜃(1 + (𝜃1−a−1)(𝜃1−b−1)

𝜃−1

)
log𝜃(1 + (𝜃a−1)(𝜃b−1)

𝜃−1

)
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IVDHFS

ADHFWA/
ADHFWG

DHFHWA/
DHFHWG

DHFWA/
DHFWG

DHFEWA/
DHFEWGDHFFWA/

DHFFWG

IVHFS

DHFS

AIVHFWA/ 
AIVHFWG

IVHFHWA/
IVHFHWG

IVHFWA/
IVHFWG

IVHFEWA/
IVHFEWG

IVHFFWA/
IVHFFWG

HFS AHFWA/
AHFWG

Yet to introdece

HFHWA/
HFHWG

HFWA/ HFWG

HFEWA/
HFEWG

HFFWA/
HFFWG

IVIFS AIVIFWA/ 
AIVIFWG

Yet to introduce

IVIFHWA/
IVIFHWG

IVIFWA/
IVIFWG

IVIFEWA/
IVIFEWG

IVIFFWA/
IVIFFWG

IFS AIFWA/
AIFWG

IFHWA/
IFHWG

IFWA/ IFWG
 

IFEWA

IFEWG
IFFWA/
IFFWG

Sets Operators
F I G U R E 1 Classification
of aggregation operators in
various fuzzy environments

3 DEVELOPMENT OF AT-N&T- CN-BASED AGGREGATION OPERATORS
FOR IVDHFES

Based on the defined operations in Section 2.1, two aggregation operators, viz., AIVDHFWA and AIVDHFWG operators
are presented. To develop those operators, At-N&t-CN-based operations on IVDHFEs are presented in the next subsection.

3.1 At-N&t-CN-based operations on IVDHFEs

This section introduces At-N&t-CN-based operations for IVDHFEs.
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SARKAR and BISWAS 7 of 34

Definition 12. Let k̃i = (h̃i, g̃i) (i = 1, 2) and k̃ = (h̃, g̃) be any three IVDHFEs. Now the following operations for the
IVDHFEs based on At-N&t-CN are presented below.

• Sum. k̃1 ⊕ k̃2 =

⎛⎜⎜⎜⎜⎜⎝
⋃

[𝛾 l
i , 𝛾

u
i ] ∈ h̃i

i = 1, 2

{[U(𝛾 l
1, 𝛾

l
2),U(𝛾u

1 , 𝛾
u
2 )]},

⋃
[𝜂l

i , 𝜂
u
i ] ∈ g̃i

i = 1, 2

{[I(𝜂l
1, 𝜂

l
2), I(, 𝜂u

1 , 𝜂
u
2 )]}

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝
⋃

[𝛾 l
i , 𝛾

u
i ] ∈ h̃i

i = 1, 2

{[g−1(g(𝛾 l
1) + g(𝛾 l

2)), g−1(g(𝛾u
1 ) + g(𝛾u

2 ))]},

⋃
[𝜂l

i , 𝜂
u
i ] ∈ g̃i

i = 1, 2

{[f −1(f (𝜂l
1) + f (𝜂l

2)), f −1(f (𝜂u
1 ) + f (𝜂u

2 ))]}

⎞⎟⎟⎟⎟⎟⎠
• Product. k̃1 ⊗ k̃2 =

⎛⎜⎜⎜⎜⎜⎝
⋃

[𝛾 l
i , 𝛾

u
i ] ∈ h̃i

i = 1, 2

{[I(𝛾 l
1, 𝛾

l
2), I(𝛾u

1 , 𝛾
u
2 )]},

⋃
[𝜂l

i , 𝜂
u
i ] ∈ g̃i

i = 1, 2

{[U(𝜂l
1, 𝜂

l
2),U(, 𝜂u

1 , 𝜂
u
2 )]}

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝
⋃

[𝛾 l
i , 𝛾

u
i ] ∈ h̃i

i = 1, 2

{[f −1(f (𝛾 l
1) + f (𝛾 l

2)), f −1(f (𝛾u
1 ) + f (𝛾u

2 ))]} ,

⋃
[𝜂l

i , 𝜂
u
i ] ∈ g̃i

i = 1, 2

{[g−1(g(𝜂l
1) + g(𝜂l

2)), g−1(g(𝜂u
1 ) + g(𝜂u

2 ))]}

⎞⎟⎟⎟⎟⎟⎠
• Scalar Multiplication. 𝜆k̃ = (

⋃
[𝛾 l,𝛾u]∈h̃

{[g−1(𝜆g(𝛾 l)), g−1(𝜆g(𝛾u))]},
⋃

[𝜂l,𝜂u]∈g̃
{[f −1(𝜆𝑓 (𝜂l)), f −1(𝜆𝑓 ( 𝜂u))]}), 𝜆> 0

• Exponentiation. k̃𝜆 = (
⋃

[𝛾 l,𝛾u]∈h̃
{[f −1(𝜆𝑓 (𝛾 l)), f −1(𝜆𝑓 (𝛾u))]},

⋃
[𝜂l,𝜂u]∈g̃

{[g−1(𝜆g(𝜂l)), g−1(𝜆g( 𝜂u))]}), 𝜆> 0

It is worthy to mention here that based on different forms of the decreasing generator, f , different types of operations
can be derived as follows.

Case 1. (Algebraic) For f (t) = − log t

1. k̃1 ⊕ k̃2 =

⎛⎜⎜⎜⎜⎜⎝
⋃

[𝛾 l
i , 𝛾

u
i ] ∈ h̃i

i = 1, 2

{[𝛾 l
1 + 𝛾 l

2 − 𝛾 l
1𝛾

l
2, 𝛾

u
1 + 𝛾u

1 − 𝛾u
1 𝛾

u
2 ]},

⋃
[𝜂l

i , 𝜂
u
i ] ∈ g̃i

i = 1, 2

{[𝜂l
1𝜂

l
2, 𝜂

u
1𝜂

u
2 ]}

⎞⎟⎟⎟⎟⎟⎠
2. k̃1 ⊗ k̃2 =

⎛⎜⎜⎜⎜⎜⎝
⋃

[𝛾 l
i , 𝛾

u
i ] ∈ h̃i

i = 1, 2

{[𝛾 l
1𝛾

l
2, 𝛾

u
1 𝛾

u
2 ]},

⋃
[𝜂l

i , 𝜂
u
i ] ∈ g̃i

i = 1, 2

{[𝜂l
1 + 𝜂l

2 − 𝜂l
1𝜂

l
2, 𝜂

u
1 + 𝜂u

2 − 𝜂u
1𝜂

u
2 ]}

⎞⎟⎟⎟⎟⎟⎠
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8 of 34 SARKAR and BISWAS

3. 𝜆k̃ = (
⋃

[𝛾 l,𝛾u]∈h̃
{[1 − (1 − 𝛾 l)𝜆, 1 − (1 − 𝛾u)𝜆]},

⋃
[𝜂l,𝜂u]∈g̃

{[(𝜂l)𝜆, (𝜂u)𝜆]}), 𝜆> 0

4. k̃𝜆 = (
⋃

[𝛾 l,𝛾u]∈h̃
{[(𝛾 l)𝜆, (𝛾u)𝜆]},

⋃
[𝜂l,𝜂u]∈g̃

{[1 − (1 − 𝜂l)𝜆, 1 − (1 − 𝜂u)𝜆]}), 𝜆> 0

Case 2. (Einstein Class) For f (t) = log
(

2−t
t

)
, 𝜆> 0

1. k̃1 ⊕ k̃2 =

⎛⎜⎜⎜⎜⎜⎝
⋃

[𝛾 l
i , 𝛾

u
i ] ∈ h̃i

i = 1, 2

{[
𝛾 l

1 + 𝛾 l
2

1 + 𝛾 l
1𝛾

l
2

,
𝛾u

1 + 𝛾u
2

1 + 𝛾u
1 𝛾

u
2

]}
,

⋃
[𝜂l

i , 𝜂
u
i ] ∈ g̃i

i = 1, 2

{[
𝜂l

1𝜂
l
2

1 + (1 − 𝜂l
1)(1 − 𝜂l

2)
,

𝜂u
1𝜂

u
2

1 + (1 − 𝜂u
1 )(1 − 𝜂u

2 )

]}⎞⎟⎟⎟⎟⎟⎠
2. k̃1 ⊗ k̃2 =

⎛⎜⎜⎜⎜⎜⎝
⋃

[𝛾 l
i , 𝛾

u
i ] ∈ h̃i

i = 1, 2

{[
𝛾 l

1𝛾
l
2

1 + (1 − 𝛾 l
1)(1 − 𝛾 l

2)
,

𝛾u
1 𝜂

u
2

1 + (1 − 𝛾u
1 )(1 − 𝛾u

2 )

]}
,

⋃
[𝜂l

i , 𝜂
u
i ] ∈ g̃i

i = 1, 2

{[
𝜂l

1 + 𝜂l
2

1 + 𝜂l
1𝜂

l
2

,
𝜂u

1 + 𝜂u
2

1 + 𝜂u
1𝜂

u
2

]}⎞⎟⎟⎟⎟⎟⎠
3. 𝜆k̃ =

(⋃
[𝛾 l,𝛾u]∈h̃

{[
(1 + 𝛾 l)𝜆 − (1 − 𝛾 l)𝜆

(1 + 𝛾 l)𝜆 + (1 − 𝛾 l)𝜆
,
(1 + 𝛾u)𝜆 − (1 − 𝛾u)𝜆

(1 + 𝛾u)𝜆 + (1 − 𝛾u)𝜆

]}
,
⋃

[𝜂l,𝜂u]∈g̃

{[
2(𝜂l)𝜆

(2 − 𝜂l)𝜆 + (𝜂l)𝜆
,

2(𝜂u)𝜆

(2 − 𝜂u)𝜆 + (𝜂u)𝜆

]})

4. k̃𝜆 =
(⋃

[𝛾 l,𝛾u]∈h̃

{[
2(𝛾 l)𝜆

(2 − 𝛾 l)𝜆 + (𝜂l)𝜆
,

2(𝛾u)𝜆

(2 − 𝛾u)𝜆 + (𝛾u)𝜆

]}
,
⋃

[𝜂l,𝜂u]∈g̃

{[
(1 + 𝜂l)𝜆 − (1 − 𝜂l)𝜆

(1 + 𝜂l)𝜆 + (1 − 𝜂l)𝜆
,
(1 + 𝜂u)𝜆 − (1 − 𝜂u)𝜆

(1 + 𝜂u)𝜆 + (1 − 𝜂u)𝜆

]})

Case 3. (Hamacher Class) For f (t) = log
(

𝜃+(1−𝜃)t
t

)
, 𝜃 > 0

1. k̃1 ⊕ k̃2 =
⎛⎜⎜⎝

⋃
[𝛾 l

1,𝛾
u
1 ]∈h̃1,[𝛾 l

2,𝛾
u
2 ]∈h̃2

{[
𝛾 l

1 + 𝛾 l
2 − 𝛾 l

1𝛾
l
2 − (1 − 𝜃)𝛾 l

1𝛾
l
2

1 − (1 − 𝜃)𝛾 l
1𝛾

l
2

,
𝛾 l

1 + 𝛾 l
2 − 𝛾 l

1𝛾
l
2 − (1 − 𝜃)𝛾 l

1𝛾
l
2

1 − (1 − 𝜃)𝛾 l
1𝛾

l
2

]}
,

⋃
[𝜂l

1,𝜂
u
1 ]∈g̃1,[𝜂l

2,𝜂
u
2 ]∈g̃2

{[
𝜂l

1𝜂
l
2

𝜃 + (1 − 𝜃)(𝜂l
1 + 𝜂l

2 − 𝜂l
1𝜂

l
2)
,

𝜂u
1𝜂

u
2

𝜃 + (1 − 𝜃)(𝜂u
1 + 𝜂u

2 − 𝜂u
1𝜂

u
2 )

]})

2. k̃1 ⊗ k̃2 =
⎛⎜⎜⎝

⋃
[𝛾 l

1,𝛾
u
1 ]∈h̃1,[𝛾 l

2,𝛾
u
2 ]∈h̃2

{[
𝛾 l

1𝛾
l
2

𝜃 + (1 − 𝜃)(𝛾 l
1 + 𝛾 l

2 − 𝛾 l
1𝛾

l
2)
,

𝛾u
1 𝛾

u
2

𝜃 + (1 − 𝜃)(𝛾u
1 + 𝛾u

2 − 𝛾u
1 𝛾

u
2 )

]}
,

⋃
[𝜂l

1,𝜂
u
1 ]∈g̃1,[𝜂l

2,𝜂
u
2 ]∈g̃2

{[
𝜂l

1 + 𝜂l
2 − 𝜂l

1𝜂
l
2 − (1 − 𝜃)𝜂l

1𝜂
l
2

1 − (1 − 𝜃)𝜂l
1𝜂

l
2

,
𝜂u

1 + 𝜂u
2 − 𝜂u

1𝜂
u
2 − (1 − 𝜃)𝜂u

1𝜂
u
2

1 − (1 − 𝜃)𝜂u
1𝜂

u
2

]})

3. 𝜆k̃ =
(⋃

[𝛾 l,𝛾u]∈h̃

{[
(1 + (𝜃 − 1)𝛾 l)𝜆 − (1 − 𝛾 l)𝜆

(1 + (𝜃 − 1)𝛾 l)𝜆 + (𝜃 − 1)(1 − 𝛾 l)𝜆
,

(1 + (𝜃 − 1)𝛾u)𝜆 − (1 − 𝛾u)𝜆

(1 + (𝜃 − 1)𝛾u)𝜆 + (𝜃 − 1)(1 − 𝛾u)𝜆

]}
,

⋃
[𝜂l,𝜂u]∈g̃

{[
𝜃(𝜂l)𝜆

(1 + (𝜃 − 1)(1 − 𝜂l))𝜆 + (𝜃 − 1)(𝜂l)𝜆
,

𝜃(𝜂u)𝜆

(1 + (𝜃 − 1)(1 − 𝜂u))𝜆 + (𝜃 − 1)(𝜂u)𝜆

]})
, 𝜆> 0

4. k̃𝜆 =
(⋃

[𝛾 l,𝛾u]∈h̃

{[
𝜃(𝛾 l)𝜆

(1 + (𝜃 − 1)(1 − 𝛾 l))𝜆 + (𝜃 − 1)(𝛾 l)𝜆
,

𝜃(𝛾u)𝜆

(1 + (𝜃 − 1)(1 − 𝛾u))𝜆 + (𝜃 − 1)(𝛾u)𝜆

]}
,

⋃
[𝜂l,𝜂u]∈g̃

{[
(1 + (𝜃 − 1)𝜂l)𝜆 − (1 − 𝜂l)𝜆

(1 + (𝜃 − 1)𝜂l)𝜆 + (𝜃 − 1)(1 − 𝜂l)𝜆
,

(1 + (𝜃 − 1)𝜂u)𝜆 − (1 − 𝜂u)𝜆

(1 + (𝜃 − 1)𝜂u)𝜆 + (𝜃 − 1)(1 − 𝜂u)𝜆

]})
, 𝜆> 0

It is to be noted here that considering 𝜃 = 1 and 2, algebraic and Einstein classes can, respectively, be derived from
Hamacher classes of operations.

Case 4. (Frank Class) For f (t) = log
(

𝜃−1
𝜃t−1

)
, 𝜃 > 1,
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1. k̃1 ⊕ k̃2 =
(⋃

[𝛾 l
1,𝛾

u
1 ]∈h̃1,[𝛾 l

2,𝛾
u
2 ]∈h̃2

{[
1 − log𝜃

(
1 + (𝜃1−𝛾l

1−1)(𝜃1−𝛾l
2−1)

𝜃−1

)
, 1 − log𝜃

(
1+ (𝜃1−𝛾u

1 −1)(𝜃1−𝛾u
2 −1)

𝜃−1

)]}
,⋃

[𝜂l
1,𝜂

u
1 ]∈g̃1,[𝜂l

2,𝜂
u
2 ]∈g̃2

{[
log𝜃

(
1 + (𝜃𝜂

l
1−1)(𝜃𝜂

l
2−1)

𝜃−1

)
, log𝜃

(
1 + (𝜃𝜂

u
1 −1)(𝜃𝜂

u
2 −1)

𝜃−1

)]})
2. k̃1 ⊗ k̃2 =

(⋃
[𝛾 l

1,𝛾
u
1 ]∈h̃1,[𝛾 l

2,𝛾
u
2 ]∈h̃2

{[
log𝜃

(
1 + (𝜃𝛾

l
1−1)(𝜃𝛾

l
2−1)

𝜃−1

)
, log𝜃

(
1+

(𝜃𝛾
u
1 −1)(𝜃𝛾

u
2 −1)

𝜃−1

)]}
,
⋃

[𝜂l
1,𝜂

u
1 ]∈g̃1,[𝜂l

2,𝜂
u
2 ]∈g̃2

{[
1 − log𝜃

(
1 + (𝜃1−𝜂l

1−1)(𝜃1−𝜂l
2−1)

𝜃−1

)
, 1 − log𝜃

(
1 + (𝜃1−𝜂u

1 −1)(𝜃1−𝜂u
2 −1)

𝜃−1

)]})
3. 𝜆k̃ =

(⋃
[𝛾 l,𝛾u]∈h̃

{[
1 − log𝜃

(
1 + (𝜃1−𝛾l−1)𝜆

(𝜃−1)𝜆−1

)
, 1 − log𝜃

(
1 + (𝜃1−𝛾u−1)𝜆

(𝜃−1)𝜆−1

)]}
,⋃

[𝜂l,𝜂u]∈g̃

{[
log𝜃
(

1 + (𝜃𝜂l−1)𝜆

(𝜃−1)𝜆−1

)
, log𝜃
(

1 + (𝜃𝜂u−1)𝜆

(𝜃−1)𝜆−1

)]})
, 𝜆> 0.

4. k̃𝜆 =

( ⋃
[𝛾 l,𝛾u]∈h̃

{[
log𝜃
(

1 + (𝜃𝛾l−1)𝜆

(𝜃−1)𝜆−1

)
, log𝜃
(

1 + (𝜃𝛾u−1)𝜆

(𝜃−1)𝜆−1

)]}
,

⋃
[𝜂l,𝜂u]∈g̃

{[
1 − log𝜃

(
1 + (𝜃1−𝜂l−1)𝜆

(𝜃−1)𝜆−1

)
, 1 − log𝜃

(
1 + (𝜃1−𝜂u−1)𝜆

(𝜃−1)𝜆−1

)]})
, 𝜆> 0.

Thus it is clear from the above discussions that the proposed At-N&t-CN-based operations in IVDHF environment
can cover a wide range of operations on the basis of various forms of generators.

3.2 At-N&t-CNs-based IVDHFWA aggregation operator

Definition 13. Let k̃i (i = 1, 2, … , n) be a collection of IVDHFEs, and let 𝜔 = (𝜔1,𝜔2,… ,𝜔n)T be the weight vector with
𝜔i ∈ [0, 1] and

∑n
i=1 𝜔i = 1. Then, an At-N&t-CNs-based AIVDHFWA operator is defined as a mapping: K̃n → K̃, such

that AIVDHFWA(k̃1, k̃2,… , k̃n) = ⊕n
i=1(𝜔ik̃i), where ⊕ has already been defined in Definition 12.

Theorem 1. Let k̃i = (h̃i, g̃i) (i = 1, 2, … , n) be a collection of IVDHFEs, then the aggregated value using AIVDHFWA
operator is also an IVDHFE and is given by

AIVDHFWA(k̃1, k̃2, k̃3 · · · , k̃n) =

(
∪[𝛾 l

i ,𝛾
u
i ]∈h̃i,i=1,2,…,n

{[
g−1

( n∑
i=1

𝜔ig(𝛾 l
i )

)
, g−1

( n∑
i=1

𝜔ig(𝛾u
i )

)]}
,

∪
([𝜂l

i ,𝜂
u
i ]∈g̃i ,i=1,2,…,n)

{[
f (−1)

( n∑
(i=1)

𝜔if (𝜂l
i)

)
, f (−1)

( n∑
(i=1)

𝜔if (𝜂u
i )

)]})
(11)

Proof. Induction method will be followed to prove this theorem.
For n = 2,

𝜔1k̃1 =
⎛⎜⎜⎝
⋃

[𝛾 l
1,𝛾

u
1 ]∈h̃1

{[g−1(𝜔1g(𝛾 l
1)), g−1(𝜔1g(𝛾u

1 ))]},
⋃

[𝜂l
1,𝜂

u
1 ]∈g̃1

{[f −1(𝜔1f (𝜂l
1)), f −1(𝜔1f (𝜂u

1 ))]}
⎞⎟⎟⎠

𝜔2k̃2 =
⎛⎜⎜⎝
⋃

[𝛾 l
2,𝛾

u
2 ]∈h̃2

{[g−1(𝜔1g(𝛾 l
2)), g−1(𝜆𝜔1(𝛾u

2 ))]},
⋃

[𝜂l
2,𝜂

u
2 ]∈g̃2

{[f −1(𝜔1f (𝜂l
2)), f −1(𝜔1f (𝜂u

2 ))]}
⎞⎟⎟⎠

now, 𝜔1k̃1 ⊕𝜔2k̃2 = (
⋃

[𝛾 l
1,𝛾

u
1 ]∈h̃1,[𝛾 l

2,𝛾
u
2 ]∈h̃2

{[g−1(g(y−1(𝜔1g(𝛾 l
1))) + g(g−1(𝜔2g(𝛾 l

2)))),

g−1(g(g−1(𝜔1g(𝛾u
1 ))) + g(g−1(𝜔2g(𝛾u

2 ))))]},
⋃

[𝜂l
1, 𝜂

u
1 ] ∈ g̃1,

[𝜂l
2, 𝜂

u
2 ] ∈ g̃2

{[f −1(f (f −1(𝜔1f (𝜂l
1)))

+ f (f −1(𝜔2f (𝜂l
2)))), f −1(f (f −1(𝜔1f (𝜂u

1 ))) + f (f −1(𝜔2f (𝜂u
2 ))))]})
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10 of 34 SARKAR and BISWAS

=
⎛⎜⎜⎝

⋃
[𝛾 l

1,𝛾
u
1 ]∈h̃1,[𝛾 l

2,𝛾
u
2 ]∈h̃2

{[
g−1

( 2∑
i=1

𝜔ig(𝛾 l
i )

)
, g−1

( 2∑
i=1

𝜔ig(𝛾u
i )

)]}
,

⋃
[𝜂l

1,𝜂
u
1 ]∈g̃1,[𝜂l

2,𝜂
u
2 ]∈g̃2

{[
f −1

( 2∑
i=1

𝜔if (𝜂l
i)

)
, f −1

( 2∑
i=1

𝜔if (𝜂u
i )

)]}⎞⎟⎟⎠
that is, the theorem is true for n = 2.

Suppose now that the theorem is true for n = p, that is,

AIVDHFWA(k̃1, k̃2,… , k̃p) =
⎛⎜⎜⎝

⋃
[𝛾 l

i ,𝛾
u
i ]∈h̃i,i=1,2,…,p

{[
g−1

( p∑
i=1

𝜔ig(𝛾 l
i )

)
, g−1

( p∑
i=1

𝜔ig(𝛾u
i )

)]}
,

⋃
[𝜂l

i ,𝜂
u
i ]∈g̃i,i=1,2,…,p

{[
f −1

( p∑
i=1

𝜔if (𝜂l
i)

)
, f −1

( p∑
i=1

𝜔if (𝜂u
i )

)]}⎞⎟⎟⎠
For n = p+ 1,

AIVDHFWA(k1, k̃2,… , k̃p, k̃p+1) = AIVDHFWA(k̃1, k̃2,… , k̃p)⊕𝜔p+1k̃p+1

=
⎛⎜⎜⎝

⋃
[𝛾 l

i ,𝛾
u
i ]∈h̃i,i=1,2,…,p

{[
g−1

( p∑
i=1

𝜔ig(𝛾 l
i )

)
, g−1

( p∑
i=1

𝜔ig(𝛾u
i )

)]}
,

⋃
[𝜂l

i ,𝜂
u
i ]∈g̃i,i=1,2,…,p

{[
f −1

( p∑
i=1

𝜔if (𝜂l
i)

)
, f −1

( p∑
i=1

𝜔if (𝜂u
i )

)]}⎞⎟⎟⎠⊕⎛⎜⎜⎝
⋃

[𝛾 l
p+1,𝛾

u
p+1]∈h̃p+1

{[g−1(𝜔p+1g(𝛾 l
p+1)), g−1(𝜔p+1g(𝛾u

p+1))]},

⋃
[𝜂l

p+1,𝜂
u
p+1]∈g̃p+1

{[f −1(𝜔p+1f (𝜂l
p+1)), f −1(𝜔p+1f ( 𝜂u

p+1))]}
⎞⎟⎟⎠

=
⎛⎜⎜⎝

⋃
[𝛾 l

i ,𝛾
u
i ]∈h̃i,i=1,2,…,p,p+1

{[
g−1

(
g

(
g−1

( p∑
i=1

𝜔ig(𝛾 l
i )

))

+ g(g−1(𝜔p+1g(𝛾 l
p+1)))), g−1

(
g

(
g−1

( p∑
i=1

𝜔ig(𝛾u
i )

))
+ g(g−1(𝜔p+1g(𝛾u

p+1)))

)]}
,

⋃
[𝜂l

i ,𝜂
u
i ]∈g̃i,i=1,2,…,p,p+1

{[
f −1

(
f

(
f −1

( p∑
i=1

𝜔if (𝜂l
i)

))

+f (f −1(𝜔p+1f (𝜂l
p+1)))), f −1

(
f

(
f −1

( p∑
i=1

𝜔if (𝜂u
i )

))
+ f (f −1(𝜔p+1f (𝜂u

p+1)))

)]})

=

⎛⎜⎜⎜⎜⎜⎝
⋃

[𝛾 l
i , 𝛾

u
i ] ∈ h̃i,

i = 1, 2,… , p, p + 1

{[
g−1

( p∑
i=1

𝜔ig(𝛾 l
i ) + 𝜔p+1g(𝛾 l

p+1)

)
,

g−1

( p∑
i=1

𝜔ig(𝛾u
i ) + 𝜔p+1g(𝛾u

p+1)

)]}
,
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SARKAR and BISWAS 11 of 34

⋃
[𝜂l

i , 𝜂
u
i ] ∈ g̃i,

i = 1, 2,… , p, p + 1

{[
f −1

( p∑
i=1

𝜔if (𝜂l
i) + 𝜔p+1f (𝜂l

p+1)

)
, f −1

( p∑
i=1

𝜔if (𝜂u
i ) + 𝜔p+1f (𝜂u

p+1)

)]})

=

⎛⎜⎜⎜⎜⎜⎝
⋃

[𝛾 l
i , 𝛾

u
i ] ∈ h̃i,

i = 1, 2,… , p, p + 1

{[
g−1

(p+1∑
i=1

𝜔ig(𝛾 l
i )

)
, g−1

(p+1∑
i=1

𝜔ig(𝛾u
i )

)]}
,

⋃
[𝜂l

i , 𝜂
u
i ] ∈ g̃i,

i = 1, 2,… , p, p + 1

{[
f −1

(p+1∑
i=1

𝜔if (𝜂l
i)

)
, f −1

(p+1∑
i=1

𝜔if (𝜂u
i )

)]}⎞⎟⎟⎟⎟⎟⎠
Therefore, this is true for n = p+ 1 also. Hence, it is true for all natural numbers. ▪

Now, based on different forms of the decreasing generator f , some specific WA aggregation operators can be derived
as follows:

Case 1. (Algebraic). When f (t) = − logt, the AIVDHFWA operator converts to the IVDHF WA (IVDHFWA) operator
introduced by Ju et al10:

IVDHFWA(k̃1, k̃2,… , k̃n) =

⎛⎜⎜⎜⎜⎜⎝
⋃

[𝛾 l
i , 𝛾

u
i ] ∈ h̃i,

i = 1, 2,… ,n

{[
1 −

n∏
i=1

(1 − 𝛾 l
i )
𝜔i , 1 −

n∏
i=1

(1 − 𝛾u
i )

𝜔i

]}
,

⋃
[𝜂l

i , 𝜂
u
i ] ∈ g̃i,

i = 1, 2,… ,n

{[ n∏
i=1

(𝜂l
i)
𝜔i ,

n∏
i=1

(𝜂u
i )

𝜔i

]}⎞⎟⎟⎟⎟⎟⎠
Case 2. (Einstein Class). When f (t) = log

(
2−t

t

)
, the AIVDHFWA operator converts to the IVDHF Einstein WA (IVD-

HFEWA) operator which is described as:

IVDHFEWA(k̃1, k̃2,… , k̃n) =

⎛⎜⎜⎜⎜⎜⎝
⋃

[𝛾 l
i , 𝛾

u
i ] ∈ h̃i,

i = 1, 2,… ,n

{[∏n
i=1 (1 + 𝛾 l

i )
𝜔i −
∏n

i=1 (1 − 𝛾 l
i )
𝜔i∏n

i=1 (1 + 𝛾 l
i )𝜔i +
∏n

i=1 (1 − 𝛾 l
i )𝜔i

,

∏n
i=1 (1 + 𝛾u

i )
𝜔i −
∏n

i=1 (1 − 𝛾u
i )

𝜔i∏n
i=1 (1 + 𝛾u

i )
𝜔i +
∏n

i=1 (1 − 𝛾u
i )

𝜔i

]}
,

⋃
[𝜂l

i , 𝜂
u
i ] ∈ g̃i,

i = 1, 2,… ,n

{[
2
∏n

i=1 (𝜂l
i)
𝜔i∏n

i=1 (2 − 𝜂l
i)
𝜔i +
∏n

i=1 (𝜂l
i)
𝜔i
,

2
∏n

i=1 (𝜂l
i)
𝜔i∏n

i=1 (2 − 𝜂l
i)
𝜔i +
∏n

i=1 (𝜂l
i)
𝜔i

]}⎞⎟⎟⎟⎟⎟⎠
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12 of 34 SARKAR and BISWAS

Case 3. (Hamacher Class). When f (t) = log
(

𝜃+(1−𝜃)t
t

)
, 𝜃 > 0, then the AIVDHFWA operator is converted into the IVDHF

Hamacher WA (IVDHFHWA) operator which is expressed as:

IVDHFHWA(k̃1, k̃2,… , k̃n) =

⎛⎜⎜⎜⎜⎜⎝
⋃

[𝛾 l
i , 𝛾

u
i ] ∈ h̃i

i = 1, 2,… ,n

{[ ∏n
i=1 (1 + (𝜃 − 1)𝛾 l

i )
𝜔i −
∏n

i=1 (1 − 𝛾 l
i )
𝜔i∏n

i=1 (1 + (𝜃 − 1)𝛾 l
i )
𝜔i + (𝜃 − 1)

∏n
i=1 (1 − 𝛾 l

i )
𝜔i
,

∏n
i=1 (1 + (𝜃 − 1)𝛾u

i )
𝜔i −
∏n

i=1 (1 − 𝛾u
i )

𝜔i∏n
i=1 (1 + (𝜃 − 1)𝛾u

i )𝜔i + (𝜃 − 1)
∏n

i=1 (1 − 𝛾u
i )𝜔i

]}
,

⋃
[𝜂l

i , 𝜂
u
i ] ∈ g̃i

i = 1, 2,… ,n

{[
𝜃
∏n

i=1 (𝜂l
i)
𝜔i∏n

i=1 (1 + (𝜃 − 1)(1 − 𝜂l
i))

𝜔i + (𝜃 − 1)
∏n

i=1 (𝜂l
i)
𝜔i
,

𝜃
∏n

i=1 (𝜂u
i )

𝜔i∏n
i=1 (1 + (𝜃 − 1)(1 − 𝜂u

i ))
𝜔i + (𝜃 − 1)

∏n
i=1 (𝜂u

i )
𝜔i

]}⎞⎟⎟⎠
Case 4. (Frank Class). When f (t) = log

(
𝜃−1
𝜃t−1

)
, 𝜃 > 1, the AIVDHFWA operator is converted to IVDHF Frank WA

(IVDHFFWA) operator which is presented as:

IVDHFFWA(k̃1, k̃2,… , k̃n) =

⎛⎜⎜⎜⎜⎜⎝
⋃

[𝛾 l
i , 𝛾

u
i ] ∈ h̃i

i = 1, 2,… ,n

⎧⎪⎨⎪⎩
⎡⎢⎢⎢⎣1 −

log
(

1 +
∏n

i=1 (𝜃
1−𝛾 l

i − 1)𝜔i

)
log 𝜃

, 1 −
log
(
1 +
∏n

i=1 (𝜃
1−𝛾u

i − 1)𝜔i
)

log 𝜃

⎤⎥⎥⎥⎦
⎫⎪⎬⎪⎭ ,

⋃
[𝜂l

i , 𝜂
u
i ] ∈ g̃i

i = 1, 2,… ,n

⎧⎪⎨⎪⎩
⎡⎢⎢⎢⎣

log
(

1 +
∏n

i=1 (𝜃
𝜂l

i − 1)𝜔i

)
log 𝜃

,
log
(
1 +
∏n

i=1 (𝜃
𝜂u

i − 1)𝜔i
)

log 𝜃

⎤⎥⎥⎥⎦
⎫⎪⎬⎪⎭
⎞⎟⎟⎟⎟⎟⎠

Now various properties of AIVDHFWA operator are proposed below.

Theorem 2. (Boundary). Let k̃i = (h̃i, g̃i) (i = 1, 2, … , n) be a collection of IVDHFEs, and let
𝛾 l

min = min{𝛾 l
imin

} where 𝛾 l
imin

= min[𝛾 l
i ,𝛾

u
i ]∈h̃i

{𝛾 l
i} for all i = 1, 2, … , n,

𝛾u
max = max{𝛾u

imax
} where 𝛾u

imax
= max[𝛾 l

i ,𝛾
u
i ]∈h̃i

{𝛾u
i } for all i = 1, 2, … , n.

Similarly, 𝛾u
min and 𝛾 l

max can be defined.
Again, let 𝜂u

min = min{𝜂u
imin

} where 𝜂u
imin

= min[𝜂l
i ,𝜂

u
i ]∈h̃i

{𝜂u
i } for all i = 1, 2, … , n.

𝜂l
max = max{𝜂l

imax
} where 𝜂l

imax
= max[𝜂l

i ,𝜂
u
i ]∈h̃i

{𝜂l
i} for all i = 1, 2, … , n.

Similarly, 𝜂l
min and 𝜂u

max can be defined.
Now, if k̃− = ([𝛾 l

min, 𝛾
u
min], [𝜂

l
max, 𝜂

u
max]) and k̃+ = ([𝛾 l

max, 𝛾
u
max], [𝜂l

min, 𝜂
u
min]), then k̃− ≤ AIVDHFWA(k̃1, k̃2,… , k̃n) ≤ k̃+.

Proof. It is given that 𝛾 l
min ≤ 𝛾 l

i ≤ 𝛾 l
max and 𝛾u

min ≤ 𝛾u
i ≤ 𝛾u

max for all i = 1, 2, … , n.
Since g(t) (t ∈ [0, 1]) is a monotonic increasing function,
g−1 (∑n

i=1 𝜔ig(𝛾 l
min)
)
≤ g−1 (∑n

i=1 𝜔ig(𝛾 l
i )
)
≤ g−1 (∑n

i=1 𝜔ig(𝛾 l
max)
)

for all i and so

𝛾 l
min ≤ g(−1)

( n∑
(i=1)

𝜔ig(𝛾 l
i )

)
≤ 𝛾 l

max for all i. (12)
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SARKAR and BISWAS 13 of 34

Similarly,

𝛾u
min ≤ g(−1)

( n∑
(i=1)

𝜔ig(𝛾u
i )

)
≤ 𝛾u

max for all i. (13)

Again 𝜂l
min ≤ 𝜂l

i ≤ 𝜂l
max for all i and since f (t) is a decreasing function, f −1 (∑n

i=1 𝜔if (𝜂l
max)
)
≤ f −1 (∑n

i=1 𝜔if (𝜂l
i)
)
≤

f −1 (∑n
i=1 𝜔if (𝜂l

min)
)

for all i which implies that

𝜂l
max ≤ f −1

( n∑
i=1

𝜔if (𝜂l
i)

)
≤ 𝜂l

min for all i. (14)

In a similar way it can be shown that

𝜂u
max ≤ f −1

( n∑
i=1

𝜔if (𝜂u
i )

)
≤ 𝜂u

min for all i. (15)

Further from Equations (12) and (14) it is clear that

𝛾 l
min − 𝜂l

min ≤ g−1

( n∑
i=1

𝜔ig(𝛾 l
i )

)
− f −1

( n∑
i=1

𝜔if (𝜂l
i)

)
≤ 𝛾 l

max − 𝜂l
max for all i. (16)

Also, from Equations (13) and (15) it is found that

𝛾u
min − 𝜂u

min ≤ g−1

( n∑
i=1

𝜔ig(𝛾u
i )

)
− f −1

( n∑
i=1

𝜔if (𝜂u
i )

)
≤ 𝛾u

max − 𝜂u
max for all i. (17)

Now using Equations (16), (17), and Definition 5, it can easily be shown that

S(k̃−) ≤ S(AIVDHFWA(k̃1, k̃2,… , k̃n)) ≤ S(k̃+)

and hence k̃− ≤ AIVDHFWA(k̃1, k̃2,… , k̃n) ≤ k̃+. ▪

Theorem 3. Let k̃i (i = 1, 2, … , n) be a collection of IVDHFEs, and 𝜔i ∈ [0, 1] (i = 1, 2, … , n) be their corresponding

weights such that
n∑

i=1
𝜔i = 1. If k̃ be an IVDHFE, then

AIVDHFWA(k̃1 ⊕ k̃, k̃2 ⊕ k̃,… , k̃n ⊕ k̃) = AIVDHFWA(k̃1, k̃2,… , k̃n)⊕ k̃

Proof. We have k̃i ⊕ k̃ = (
⋃

[𝛾 l
i ,𝛾

u
i ]∈h̃i,[𝛾 l,𝛾u]∈h̃{[g

−1(g(𝛾 l
i ) + g(𝛾 l)), g−1(g(𝛾u

i ) + g(𝛾u))]},

⋃
[𝜂l

i ,𝜂
u
i ]∈g̃i,[𝜂l,𝜂u]∈g̃

{[f −1(f (𝜂l
i) + f (𝜂l)), f −1(f (𝜂u

i ) + f (𝜂u))]})

Then,

AIVDHFWA(k̃1 ⊕ k̃, k̃2 ⊕ k̃,… , k̃n ⊕ k̃)

=

⎛⎜⎜⎜⎜⎜⎝
⋃

[𝛾 l
i , 𝛾

u
i ] ∈ h̃i, [𝛾 l, 𝛾u] ∈ h̃
i = 1, 2,… ,n

{[
g−1

( n∑
i=1

𝜔ig(g−1(g(𝛾 l
i ) + g(𝛾 l)))

)
, g−1

( n∑
i=1

𝜔ig(g−1(g(𝛾u
i ) + g(𝛾u)))

)}
,
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14 of 34 SARKAR and BISWAS

⋃[
𝜂l

i , 𝜂
u
i

]
∈ g̃i, [𝜂l, 𝜂u] ∈ g̃

i = 1, 2,… ,n

{[
f −1

( n∑
i=1

𝜔if (f −1(f (𝜂l
i) + f (𝜂l)))

)
), f −1

( n∑
i=1

𝜔if (f −1(f (𝜂l
i) + f (𝜂l)))

)]})

=
⎛⎜⎜⎜⎝
⋃
[𝛾 l

i , 𝛾
u
i ] ∈ h̃i, [𝛾 l, 𝛾u] ∈ h̃
i = 1, 2,… ,n

{[
g−1 (∑n

i=1 𝜔i(g(𝛾 l
i ) + g(𝛾 l))

)
, g−1 (∑n

i=1 𝜔i(g(𝛾u
i ) + g(𝛾u))

)}
,

⋃
[𝜂l

i , 𝜂
u
i ] ∈ g̃i, [𝜂l, 𝜂u] ∈ g̃
i = 1, 2,… ,n

{[
f −1

( n∑
i=1

𝜔i(f (𝜂l
i) + f (𝜂l))

)
, f −1

( n∑
i=1

𝜔i(f (𝜂l
i) + f (𝜂l))

)]})

=
⎛⎜⎜⎜⎝
⋃
[𝛾 l

i , 𝛾
u
i ] ∈ h̃i, [𝛾 l, 𝛾u] ∈ h̃
i = 1, 2,… ,n

{[
g−1 (∑n

i=1 𝜔ig(𝛾 l
i ) + g(𝛾 l)

)
, g−1 (∑n

i=1 𝜔ig(𝛾u
i ) + g(𝛾u)

)]}
,

⋃
[𝜂l

i , 𝜂
u
i ] ∈ g̃i, [𝜂l, 𝜂u] ∈ g̃
i = 1, 2,… ,n

{[
f −1

( n∑
i=1

𝜔if (𝜂l
i) + f (𝜂l)

)
, f −1

( n∑
i=1

𝜔if (𝜂u
i ) + f (𝜂u)

)]}⎞⎟⎟⎟⎟⎟⎠
.

Now,

AIVDHFWA(k̃1, k̃2,… , k̃n)⊕ k̃ =

⎛⎜⎜⎜⎜⎜⎝
⋃

[𝛾 l
i , 𝛾

u
i ] ∈ h̃i

i = 1, 2,… ,n

{[
g−1

( n∑
i=1

𝜔ig(𝛾 l
i )

)
, g−1

( n∑
i=1

𝜔ig(𝛾u
i )

)]}
,

⋃
[𝜂l

i , 𝜂
u
i ] ∈ g̃i

i = 1, 2,… ,n

{[
f −1

( n∑
i=1

𝜔if (𝜂l
i)

)
, f −1

( n∑
i=1

𝜔if (𝜂u
i )

)]}⎞⎟⎟⎟⎟⎟⎠
⊕ ({[𝛾 l, 𝛾u]}, {[𝜂l, 𝜂u]})

=

⎛⎜⎜⎜⎜⎜⎝
⋃

[𝛾 l
i , 𝛾

u
i ] ∈ h̃i, [𝛾 l, 𝛾u] ∈ h̃
i = 1, 2,… ,n

{[
g−1

(
g

(
g−1

( n∑
i=1

𝜔ig(𝛾 l
i )

))
+ g(𝛾 l)

)
,

g−1

(
g

(
g−1

( n∑
i=1

𝜔ig(𝛾u
i )

))
+ g(𝛾u)

)]}
,

⋃
[𝜂l

i , 𝜂
u
i ] ∈ g̃i, [𝜂l, 𝜂u] ∈ g̃
i = 1, 2,… ,n

{[
f −1

(
f

(
f −1

( n∑
i=1

𝜔if (𝜂l
i)

))
+ f (𝜂l)

)
,

f −1

(
f

(
f −1

( n∑
i=1

𝜔if (𝜂u
i )

))
+ f (𝜂u)

)]})
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SARKAR and BISWAS 15 of 34

=

⎛⎜⎜⎜⎜⎜⎝
⋃

[𝛾 l
i , 𝛾

u
i ] ∈ h̃i, [𝛾 l, 𝛾u] ∈ h̃
i = 1, 2,… ,n

{[
g−1

( n∑
i=1

𝜔ig(𝛾 l
i ) + g(𝛾 l)

)
, g−1

( n∑
i=1

𝜔ig(𝛾u
i ) + g(𝛾u)

)]}
,

⋃
[𝜂l

i , 𝜂
u
i ] ∈ g̃i, [𝜂l, 𝜂u] ∈ g̃
i = 1, 2,… ,n

{[
f −1

( n∑
i=1

𝜔if (𝜂l
i) + f (𝜂l)

)
, f −1

( n∑
i=1

𝜔if (𝜂u
i ) + f (𝜂u)

)]}⎞⎟⎟⎟⎟⎟⎠
Therefore, AIVDHFWA(k̃1 ⊕ k̃, k̃2 ⊕ k̃,… , k̃n ⊕ k̃) = AIVDHFWA(k̃1, k̃2,… , k̃n)⊕ k̃.
Hence the theorem is proved. ▪

Theorem 4. (Idempotency). If all k̃i (i = 1, 2, … , n) are considered as equal and let k̃i = ({[𝛾 l, 𝛾u]}, {[𝜂l, 𝜂u]}) for all
(i = 1, 2, … , n), then

AIVDHFWA(k̃1, k̃2,… , k̃n) = ({[𝛾 l, 𝛾u]}, {[𝜂l, 𝜂u]}).

Proof. Here AIVDHFWA(k̃1, k̃2,… , k̃n) =
(⋃

[𝛾 l
i ,𝛾

u
i ]∈h̃i|i=1,2,…,n

{[
g−1 (∑n

i=1 𝜔ig(𝛾 l
i )
)
, g−1 (∑n

i=1 𝜔ig(𝛾u
i )
)]}

,

⋃
[𝜂l

i ,𝜂
u
i ]∈g̃i|i=1,2,…,n

{[
f −1

( n∑
i=1

𝜔if (𝜂l
i)

)
, f −1

( n∑
i=1

𝜔if (𝜂u
i )

)]}⎞⎟⎟⎠
Now, since k̃i = ({[𝛾 l, 𝛾u]}, {[𝜂l, 𝜂u]}) for all (i = 1, 2, … , n), then we have
𝛾 l

i = 𝛾 l, 𝛾u
i = 𝛾u, 𝜂l

i = 𝜂l and 𝜂u
i = 𝜂u for all (i = 1, 2, … , n).

Therefore, AIVDHFWA(k̃1, k̃2,… , k̃n) =
(⋃

[𝛾 l
i ,𝛾

u
i ]∈h̃i|i=1,2,…,n

{[
g−1 (g(𝛾 l)

∑n
i=1 𝜔i
)
, g−1 (g(𝛾u)

∑n
i=1 𝜔i
)]}

,

⋃
[𝜂l

i ,𝜂
u
i ]∈g̃i|i=1,2,…,n

{[
f −1

(
f (𝜂l)

n∑
i=1

𝜔i

)
, f −1

(
f (𝜂u)

n∑
i=1

𝜔i

)]}⎞⎟⎟⎠
=
⎛⎜⎜⎝

⋃
[𝛾 l

i ,𝛾
u
i ]∈h̃i|i=1,2,…,n

{[𝛾 l, 𝛾u]},
⋃

[𝜂l
i ,𝜂

u
i ]∈g̃i|i=1,2,…,n

{[𝜂l, 𝜂u]}
⎞⎟⎟⎠

= ({[𝛾 l, 𝛾u]}, {[𝜂l, 𝜂u]})

This completes the proof of the theorem. ▪

3.3 At-N&t-CN-based IVDHFWG aggregation operator

Definition 14. Let k̃i (i = 1, 2, … , n) be a collection of IVDHFEs, and let 𝜔 = (𝜔1,𝜔2,… ,𝜔n)T be the weight vector with
𝜔i ∈ [0, 1] and

∑n
i=1 𝜔i = 1. Now, an At-N&t-CN-based IVDHFWG (AIVDHFWG) operator is a function: K̃n → K̃, given

by AIVDHFWG(k̃1, k̃2,… , k̃n) = ⊗n
i=1((k̃i)𝜔i), where ⊗ has already been defined in Definition 12.
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16 of 34 SARKAR and BISWAS

Theorem 5. Let k̃i = (h̃i, g̃i) (i= 1, 2,… , n) be a family of IVDHFEs. Now, if the operator AIVDHFWG is used to aggregate
k̃i, the aggregated value is also an IVDHFE and is given by

AIVDHFWG(k̃1, k̃2,… , k̃n) =
⎛⎜⎜⎝

⋃
[𝛾 l

i ,𝛾
u
i ]∈h̃i|i=1,2,…,n

{[
f −1

( n∑
i=1

𝜔if (𝛾 l
i )

)
, f −1

( n∑
i=1

𝜔if (𝛾u
i )

)]}
,

⋃
[𝜂l

i ,𝜂
u
i ]∈g̃i|i=1,2,…,n

{[
g−1

( n∑
i=1

𝜔ig(𝜂l
i)

)
, g−1

( n∑
i=1

𝜔ig(𝜂u
i )

)]}⎞⎟⎟⎠ (18)

Proof. According to Definition 12,

(k̃1)𝜔1 =
⎛⎜⎜⎝
⋃

[𝛾 l
1,𝛾

u
1 ]∈h̃1

{[f −1(𝜔1f (𝛾 l
1)), f −1(𝜔1f (𝛾u

1 ))]},
⋃

[𝜂l,𝜂u]∈g̃1

{[g−1(𝜔1g(𝜂l
1)), g−1(𝜔1g(𝜂u

1 ))]}
⎞⎟⎟⎠

and

(k̃2)𝜔2 =
⎛⎜⎜⎝
⋃

[𝛾 l
2,𝛾

u
2 ]∈h̃2

{[f −1(𝜔2f (𝛾 l
2)), f −1(𝜔2f (𝛾u

2 ))]},
⋃

[𝜂l,𝜂u]∈g̃2

{[g−1(𝜔2g(𝜂l
2)), g−1(𝜔2g(𝜂u

2 ))]}
⎞⎟⎟⎠ .

Now,

⊗2
i=1((k̃i)𝜔i) = ((k̃1)𝜔1)⊗ ((k̃2)𝜔2)

=
⎛⎜⎜⎝
⋃

[𝛾 l
i ,𝛾

u
i ]∈h̃i,i=1,2

{[f −1(𝜔1f (𝛾 l
1) + 𝜔2f (𝛾 l

2)), f −1(𝜔1f (𝛾u
1 ) + 𝜔2f (𝛾u

2 ))]}

⋃
[𝜂l

i ,𝜂
u
i ]∈g̃i,i=1,2

{[g−1(𝜔1g(𝜂l
1) + 𝜔2g(𝜂l

2)), g−1(𝜔1g(𝜂u
1 ) + 𝜔2g(𝜂u

2 ))]}
⎞⎟⎟⎠

=
⎛⎜⎜⎝
⋃

[𝛾 l
i ,𝛾

u
i ]∈h̃i,i=1,2

{[
f −1

( 2∑
i=1

𝜔if (𝛾 l
i )

)
, f −1

( 2∑
i=1

𝜔if (𝛾u
i )

)]}
,

⋃
[𝜂l

i ,𝜂
u
i ]∈g̃i,i=1,2

{[
g−1

( 2∑
i=1

𝜔ig(𝜂l
i)

)
, g−1

( 2∑
i=1

𝜔ig(𝜂u
i )

)]}⎞⎟⎟⎠⎛⎜⎜⎝
⋃

[𝛾 l
i ,𝛾

u
i ]∈h̃i|i=1,2,…,n

{[
f −1

( n∑
i=1

𝜔if (𝛾 l
i )

)
, f −1

( n∑
i=1

𝜔if (𝛾u
i )

)]}
,

⋃
[𝜂l

i ,𝜂
u
i ]∈g̃i|i=1,2,…,n

{[
g−1

( n∑
i=1

𝜔ig(𝜂l
i)

)
, g−1

( n∑
i=1

𝜔ig(𝜂u
i )

)]}⎞⎟⎟⎠ ▪

that is, the theorem is valid for n = 2.
Suppose now that the theorem is true for n = p, that is,

AIVDHFWG(k̃1, k̃2,… , k̃n) = ⊗
p
i=1((k̃i)𝜔i) =

⎛⎜⎜⎝
⋃

[𝛾 l
i ,𝛾

u
i ]∈h̃i|i=1,2,…,p

{[
f −1

( p∑
i=1

𝜔if (𝛾 l
i )

)
, f −1

( p∑
i=1

𝜔if (𝛾u
i )

)]}
,

⋃
[𝜂l

i ,𝜂
u
i ]∈g̃i|i=1,2,…,p

{[
g−1

( p∑
i=1

𝜔ig(𝜂l
i)

)
, g−1

( p∑
i=1

𝜔ig(𝜂u
i )

)]}⎞⎟⎟⎠
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SARKAR and BISWAS 17 of 34

Now it is show that the theorem is true for n = p+ 1, that is,

AIVDHFWG(k̃1, k̃2,… , k̃p, k̃p+1)

= AIVDHFWA(k̃1, k̃2,… , k̃n)⊗ (k̃p+1)𝜔p+1

=
⎛⎜⎜⎝

⋃
[𝛾 l

i ,𝛾
u
i ]∈h̃i|i=1,2,…,p

{[
f −1

( p∑
i=1

𝜔if (𝛾 l
i )

)
, f −1

( p∑
i=1

𝜔if (𝛾u
i )

)]}
,

⋃
[𝜂l

i ,𝜂
u
i ]∈g̃i|i=1,2,…,p

{[
g−1

( p∑
i=1

𝜔ig(𝜂l
i)

)
, g−1

( p∑
i=1

𝜔ig(𝜂u
i )

)]}⎞⎟⎟⎠
⊗

⎛⎜⎜⎝
⋃

[𝛾 l
p+1,𝛾

u
p+1]∈h̃p+1

{[f −1(𝜔p+1f (𝛾 l
p+1)), f −1(𝜔p+1f (𝛾u

p+1))]}
⋃

[𝜂l
p+1,𝜂

u
p+1]∈g̃p+1

{[g−1(𝜔p+1g(𝜂l
p+1)), g−1(𝜔p+1g(𝜂u

p+1))]}
⎞⎟⎟⎠

=
⎛⎜⎜⎝

⋃
[𝛾 l

i ,𝛾
u
i ]∈h̃i,i=1,2,…,p,p+1

{[
f −1

( p∑
i=1

𝜔if (𝛾 l
i ) + 𝜔p+1f (𝛾 l

p+1)

)
, f −1

( p∑
i=1

𝜔if (𝛾u
i ) + 𝜔p+1f (𝛾u

p+1)

)]}
,

⋃
[𝜂l

i ,𝜂
u
i ]∈g̃i,i=1,2,…,p,p+1

{[
g−1

( p∑
i=1

𝜔ig(𝜂l
i) + 𝜔p+1g(𝜂l

p+1)

)
, g−1

( p∑
i=1

𝜔ig(𝜂u
i ) + 𝜔p+1g(𝜂u

p+1)

)]}⎞⎟⎟⎠
=
⎛⎜⎜⎝

⋃
[𝛾 l

i ,𝛾
u
i ]∈h̃i,i=1,2,…,p,p+1

{[
f −1

(p+1∑
i=1

𝜔if (𝛾 l
i )

)
, f −1

(p+1∑
i=1

𝜔if (𝛾u
i )

)]}

⋃
[𝜂l

i ,𝜂
u
i ]∈g̃i,i=1,2,…,p,p+1

{[
g−1

(p+1∑
i=1

𝜔ig(𝜂l
i)

)
, g−1

(p+1∑
i=1

𝜔ig(𝜂u
i )

)]}⎞⎟⎟⎠
Therefore the theorem is true for all n.
Now, based on different forms of the decreasing generator, f , different WG aggregation operators are derived as follows:

Case. (Algebric Class). When f (t) = − logt, the AIVDHFWG operator is converted into the IVDHFWG operator
introduced by Ju et al10:

IVDHFWG(k̃1, k̃2,… , k̃n) =
⎛⎜⎜⎝

⋃
[𝛾 l

i ,𝛾
u
i ]∈h̃i|i=1,2,…,n

{[ n∏
i=1

(𝛾 l
i )
𝜔i ,

n∏
i=1

(𝛾u
i )

𝜔i

]}
,

⋃
[𝜂l

i ,𝜂
u
i ]∈g̃i|i=1,2,…,n

{[
1 −

n∏
i=1

(1 − 𝜂l
i)
𝜔i , 1 −

n∏
i=1

(1 − 𝜂u
i )

𝜔i

]}⎞⎟⎟⎠
Case. (Einstein Class). When f (t) = log

(
2−t

t

)
, the AIVDHFWG operator converted into the IVDHF Einstein WG

(IVDHFEWG) operator which is expressed as:

IVDHFEWG(k̃1, k̃2,… , k̃n) =
⎛⎜⎜⎝

⋃
[𝛾 l

i ,𝛾
u
i ]∈h̃i|i=1,2,…,n

{[
2
∏n

i=1 (𝛾 l
i )
𝜔i∏n

i=1 (2 − 𝛾 l
i )𝜔i +
∏n

i=1 (𝛾 l
i )𝜔i

,
2
∏n

i=1 (𝛾u
i )

𝜔i∏n
i=1 (2 − 𝛾u

i )
𝜔i +
∏n

i=1 (𝛾u
i )

𝜔i

]}
,

⋃
[𝜂l

i ,𝜂
u
i ]∈g̃i|i=1,2,…,n

{[∏n
i=1 (1 + 𝜂l

i)
𝜔i −
∏n

i=1 (1 − 𝜂l
i)
𝜔i∏n

i=1 (1 + 𝜂l
i)𝜔i +
∏n

i=1 (1 − 𝜂l
i)𝜔i

,

∏n
i=1 (1 + 𝜂u

i )
𝜔i −
∏n

i=1 (1 − 𝜂u
i )

𝜔i∏n
i=1 (1 + 𝜂u

i )
𝜔i +
∏n

i=1 (1 − 𝜂u
i )

𝜔i

]}⎞⎟⎟⎠
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18 of 34 SARKAR and BISWAS

Case. (Hamacher Class). When f (t) = log
(

𝜃+(1−𝜃)t
t

)
, 𝜃 > 0, the AIVDHFWG operator is converted to the IVDHF

Hamacher WG (IVDHFHWG) operator which is presented as:

IVDHFHWG(k̃1, k̃2,… , k̃n) =

⎛⎜⎜⎜⎜⎜⎜⎝
⋃

[𝛾 l
i , 𝛾

u
i ] ∈ h̃i

i = 1, 2,… ,n.

{[
𝜃
∏n

i=1 (𝛾 l
i )
𝜔i∏n

i=1 (1 + (𝜃 − 1)(1 − 𝛾 l
i ))𝜔i + (𝜃 − 1)

∏n
i=1 (𝛾 l

i )𝜔i
,

𝜃
∏n

i=1 (𝛾u
i )

𝜔i∏n
i=1 (1 + (𝜃 − 1)(1 − 𝛾u

i ))
𝜔i + (𝜃 − 1)

∏n
i=1 (𝛾u

i )
𝜔i

]}
,

⋃
[𝜂l

i , 𝜂
u
i ] ∈ g̃i

i = 1, 2,… ,n.

{[ ∏n
i=1 (1 + (𝜃 − 1)𝜂l

i)
𝜔i −
∏n

i=1 (1 − 𝜂l
i)
𝜔i∏n

i=1 (1 + (𝜃 − 1)𝜂l
i)
𝜔i + (𝜃 − 1)

∏n
i=1 (1 − 𝜂l

i)
𝜔i
,

∏n
i=1 (1 + (𝜃 − 1)𝜂u

i )
𝜔i −
∏n

i=1 (1 − 𝜂u
i )

𝜔i∏n
i=1 (1 + (𝜃 − 1)𝜂u

i )
𝜔i + (𝜃 − 1)

∏n
i=1 (1 − 𝜂u

i )
𝜔i

]})

Case. (Frank Class). When f (t) = log
(

𝜃−1
𝜃t−1

)
, 𝜃 > 1, the AIVDHFWG operator is converted into the IVDHF Frank WG

(IVDHFFWG) operator which is presented as:

IVDHFFWG(k̃1, k̃2,… , k̃n) =
⎛⎜⎜⎜⎝

⋃
[𝛾 l

i ,𝛾
u
i ]∈h̃i|i=1,2,…,n.

⎧⎪⎨⎪⎩
⎡⎢⎢⎢⎣

log
(

1 +
∏n

i=1 (𝜃
𝛾 l

i − 1)𝜔i

)
log 𝜃

,
log
(
1 +
∏n

i=1 (𝜃
𝛾u

i − 1)𝜔i
)

log 𝜃

⎤⎥⎥⎥⎦
⎫⎪⎬⎪⎭ ,

⋃
[𝜂l

i ,𝜂
u
i ]∈g̃i|i=1,2,…,n.

⎧⎪⎨⎪⎩
⎡⎢⎢⎢⎣1 −

log
(

1 +
∏n

i=1 (𝜃
1−𝜂l

i − 1)𝜔i

)
log 𝜃

, 1 −
log
(
1 +
∏n

i=1 (𝜃
1−𝜂u

i − 1)𝜔i
)

log 𝜃

⎤⎥⎥⎥⎦
⎫⎪⎬⎪⎭
⎞⎟⎟⎟⎠ .

4 DERIVATION OF OPERATORS IN VARIOUS CONTEXTS FROM THE
DEVELOPED OPERATORS IN IVDHF ENVIRONMENT

In this section, the developed AIVDHFWA and AIVDHFWG operators in IVDHF environment are used to describe
different aggregation functions for processing information containing other variants of fuzzy elements.

4.1 Archimedean DHF WA (ADHFWA) and WG (ADHFWG) operators26

When 𝛾 l
i = 𝛾u

i = 𝛾i and 𝜂l
i = 𝜂u

i = 𝜂i are considered for all i = 1, 2, … , n., the developed AIVDHFWA and AIVDHFWG
operators are converted into ADHFWA and ADHFWG, operators, respectively. Thus those two operators are given by

ADHFWA(k̃1, k̃2,… , k̃n) =
⎛⎜⎜⎝

⋃
[𝛾 l

i ,𝛾
u
i ]∈h̃i,i=1,2,…,n

{
g−1

( n∑
i=1

𝜔ig(𝛾i)

)}
,

⋃
[𝜂l

i ,𝜂
u
i ]∈g̃i,i=1,2,…,n

{
f −1

( n∑
i=1

𝜔if (𝜂i)

)}⎞⎟⎟⎠
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SARKAR and BISWAS 19 of 34

and

ADHFWG(k̃1, k̃2,… , k̃n) =
⎛⎜⎜⎝

⋃
[𝛾 l

i ,𝛾
u
i ]∈h̃i,i=1,2,…,n

{
f −1

( n∑
i=1

𝜔if (𝛾i)

)}
,

⋃
[𝜂l

i ,𝜂
u
i ]∈g̃i,i=1,2,…,n

{
g−1

( n∑
i=1

𝜔ig(𝜂i)

)}⎞⎟⎟⎠ .

4.2 Archimedean IVHF WA (AIVHFWA) and WG (AIVHFWG) operator30

If 𝜂l
i = 𝜂u

i = 0 and 𝛾 l
i ≠ 𝛾u

i are assumed for all i= 1, 2,… , n., then the developed AIVDHFWA and AIVDHFWG are reduced
to AIVHFWA operator and AIVHFWG operator, respectively, which are defined below.

AIVHFWA(k̃1, k̃2,… , k̃n) =
⎛⎜⎜⎝

⋃
[𝛾 l

i ,𝛾
u
i ]∈h̃i,i=1,2,…,n

{[
g−1

( n∑
i=1

𝜔ig(𝛾 l
i )

)
, g−1

( n∑
i=1

𝜔ig(𝛾u
i )

)]}⎞⎟⎟⎠
and

AIVHFWG(k̃1, k̃2,… , k̃n) =
⎛⎜⎜⎝

⋃
[𝛾 l

i ,𝛾
u
i ]∈h̃i,i=1,…,n

{[
f −1

( n∑
i=1

𝜔if (𝛾 l
i )

)
, f −1

( n∑
i=1

𝜔if (𝛾u
i )

)]}⎞⎟⎟⎠ .

4.3 Archimedean HF WA (AHFWA) and WG (AHFWG) operators

If 𝛾 l
i = 𝛾u

i = 𝛾i and 𝜂l
i = 𝜂u

i = 0 are considered for all i = 1, 2, … , n, the developed AIVDHFWA and AIVDHFWG operators
are reduced to AHFWA and AHFWG operators, respectively. Thus

AHFWA(k̃1, k̃2,… , k̃n) =
⎛⎜⎜⎝

⋃
[𝛾 l

i ,𝛾
u
i ]∈h̃i,i=1,2,…,n

{
g−1

( n∑
i=1

𝜔ig(𝛾i)

)}⎞⎟⎟⎠
and

AHFWG(k̃1, k̃2,… , k̃n) =
⎛⎜⎜⎝

⋃
[𝛾 l

i ,𝛾
u
i ]∈h̃i,i=1,2,…,n

{
f −1

( n∑
i=1

𝜔if (𝛾i)

)}⎞⎟⎟⎠
4.4 Archimedean interval-valued intuitionistic fuzzy (IF) WA (AIVIFWA) and WG
(AIVIFWG) operator

Moreover, in IVDHF environment when each of the membership and nonmembership grades corresponding to an ele-
ment is specified by only one interval value, AIVDHFWA and AIVDHFWA operators reduce to AIVIFWA and AIVIFWG
operators, respectively, and are defined as

AIVIFWA(k̃1, k̃2,… , k̃n) =
([

g−1 (∑n
i=1 𝜔ig(𝛾 l

i )
)
, g−1 (∑n

i=1 𝜔ig(𝛾u
i )
)]

,
[
f −1 (∑n

i=1 𝜔if (𝜂l
i)
)
, f −1 (∑n

i=1 𝜔if (𝜂u
i )
)])

and
AIVIFWG(k̃1, k̃2,… , k̃n) =

([
f −1 (∑n

i=1 𝜔if (𝛾 l
i )
)
, f −1 (∑n

i=1 𝜔if (𝛾u
i )
)]

,
[
g−1 (∑n

i=1 𝜔ig(𝜂l
i)
)
, g−1 (∑n

i=1 𝜔ig(𝜂l
i)
)])

4.5 Archimedean IF WA (AIFWA) and WG (AIFWG) operator25

When membership and nonmembership values of each element in a set correspond only one interval value with the
same upper and lower bounds, that is, 𝛾 l

i = 𝛾u
i = 𝛾i and 𝜂l

i = 𝜂u
i = 𝜂i for all i = 1, 2, … , n., AIVDHFWA and AIVDHFWG
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20 of 34 SARKAR and BISWAS

operators reduce to AIFWA and AIFWG operators, respectively, and are defined as:

AIFWA(k̃1, k̃2,… , k̃n) =

(
g−1

( n∑
i=1

𝜔ig(𝛾i)

)
, f −1

( n∑
i=1

𝜔if (𝜂i)

))

and

AIFWG(k̃1, k̃2,… , k̃n) =

(
f −1

( n∑
i=1

𝜔if (𝛾i)

)
, g−1

( n∑
i=1

𝜔ig(𝜂i)

))
.

As like earlier discussions, it is to be noted here that each type of Archimedean averaging aggregating operators as
defined above can derive several types of averaging aggregation functions with the help of different generators depending
on the values of the parameter 𝜃. Those are described below:

Case 1. (Algebraic Class). If f (t) = − logt, ADHFWA, AIVHFWA, AHFWA, AIVIFWA, and AIFWA operators reduces to
DHFWA, IVHFWA, HFWA, IVIFWA,31 and IFWA32 operators, respectively, which are presented in the following Table 2.

Case 2. (Einstein Class). If f (t) = log
(

2−t
t

)
, then the ADHFWA, AIVHFWA, AHFWA, AIVIFWA, and AIFWA oper-

ators are reduced to DHFEWA, IVHF Einstein WA (IVHFEWA),33 HF Einstein WA (HFEWA),34 IVIF Einstein WA
(IVIFEWA),35 and IF Einstein WA (IFEWA)36 operators, respectively, which are displayed in the following Table 3.

Aggregation operators WA aggregation operator

DHFWA
(⋃

𝛾i∈h̃i ,i=1,2,…,n.

{
1 −

n∏
i=1

(1 − 𝛾i)𝜔i

}
,
⋃

𝜂i∈g̃i ,i=1,2,…,n.

{ n∏
i=1

(𝜂i)𝜔i

})
IVHFWA

(⋃
𝛾i∈h̃i ,i=1,2,…,n

{[
1 −

n∏
i=1

(1 − 𝛾i)𝜔i , 1 −
n∏

i=1
(1 − 𝛾i)𝜔i

]})
HFWA

(⋃
𝛾i∈h̃i ,i=1,2,…,n

{
1 −

n∏
i=1

(1 − 𝛾i)𝜔i

})
IVIFWA

([
1 −

n∏
i=1

(1 − 𝛾i)𝜔i , 1 −
n∏

i=1
(1 − 𝛾i)𝜔i

]
,

[ n∏
i=1

(𝜂i)𝜔i ,
n∏

i=1
(𝜂i)𝜔i

])
IFWA

(
1 −

n∏
i=1

(1 − 𝛾i)𝜔i ,
n∏

i=1
(𝜂i)𝜔i

)

T A B L E 2 Algebraic WA
aggregation operators

T A B L E 3 Einstein class of WA aggregation operators

Aggregation
operators WA aggregation operator

DHFEWA

⎛⎜⎜⎜⎜⎜⎜⎝
⋃

𝛾i∈h̃i ,i=1,…,n

{∏n
i=1 (1 + 𝛾i)𝜔i −

∏n
i=1 (1 − 𝛾i)𝜔i∏n

i=1 (1 + 𝛾i)𝜔i +
∏n

i=1 (1 − 𝛾i)𝜔i

}
,
⋃

𝜂i ∈ g̃i,
i = 1, 2,… ,n

{
2
∏n

i=1 (𝜂i)𝜔i∏n
i=1 (2 − 𝜂i)𝜔i +

∏n
i=1 (𝜂i)𝜔i

}⎞⎟⎟⎟⎟⎟⎟⎠
IVHFEWA

(⋃
𝛾i∈h̃i ,i=1,2,…,n

{[∏n
i=1 (1 + 𝛾i)𝜔i −

∏n
i=1 (1 − 𝛾i)𝜔i∏n

i=1 (1 + 𝛾i)𝜔i +
∏n

i=1 (1 − 𝛾i)𝜔i
,

∏n
i=1 (1 + 𝛾i)𝜔i −

∏n
i=1 (1 − 𝛾i)𝜔i∏n

i=1 (1 + 𝛾i)𝜔i +
∏n

i=1 (1 − 𝛾i)𝜔i

]})
HFEWA

(⋃
𝛾i∈h̃i ,i=1,2,…,n

{∏n
i=1 (1 + 𝛾i)𝜔i −

∏n
i=1 (1 − 𝛾i)𝜔i∏n

i=1 (1 + 𝛾i)𝜔i +
∏n

i=1 (1 − 𝛾i)𝜔i

})
IVIFEWA

([∏n
i=1 (1 + 𝛾i)𝜔i −

∏n
i=1 (1 − 𝛾i)𝜔i∏n

i=1 (1 + 𝛾i)𝜔i +
∏n

i=1 (1 − 𝛾i)𝜔i
,

∏n
i=1 (1 + 𝛾i)𝜔i −

∏n
i=1 (1 − 𝛾i)𝜔i∏n

i=1 (1 + 𝛾i)𝜔i +
∏n

i=1 (1 − 𝛾i)𝜔i

]
,[

2
∏n

i=1 (𝜂i)𝜔i∏n
i=1 (2 − 𝜂i)𝜔i +

∏n
i=1 (𝜂i)𝜔i

,
2
∏n

i=1 (𝜂i)𝜔i∏n
i=1 (2 − 𝜂i)𝜔i +

∏n
i=1 (𝜂i)𝜔i

])
IFEWA

(∏n
i=1 (1 + 𝛾i)𝜔i −

∏n
i=1 (1 − 𝛾i)𝜔i∏n

i=1 (1 + 𝛾i)𝜔i +
∏n

i=1 (1 − 𝛾i)𝜔i
,

2
∏n

i=1 (𝜂i)𝜔i∏n
i=1 (2 − 𝜂i)𝜔i +

∏n
i=1 (𝜂i)𝜔i

)
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SARKAR and BISWAS 21 of 34

T A B L E 4 Hamacher class of WA aggregation operators
Aggregation
operators WA aggregation operator

DHFHWA

⎛⎜⎜⎜⎜⎜⎜⎝
⋃

𝛾i ∈ h̃i,

i = 1, 2,… ,n

{ ∏n
i=1 (1 + (𝜃 − 1)𝛾i)𝜔i −

∏n
i=1 (1 − 𝛾i)𝜔i∏n

i=1 (1 + (𝜃 − 1)𝛾i)𝜔i + (𝜃 − 1)
∏n

i=1 (1 − 𝛾i)𝜔i

}
,

⋃
𝜂i ∈ g̃i,

i = 1, 2,… ,n

{
𝜃
∏n

i=1 (𝜂i)𝜔i∏n
i=1 (1 + (𝜃 − 1)(1 − 𝜂i))𝜔i + (𝜃 − 1)

∏n
i=1 (𝜂i)𝜔i

}⎞⎟⎟⎟⎟⎟⎟⎠
IVHFHWA

(⋃
𝛾i∈h̃i ,i=1,2,…,n

{ ∏n
i=1 (1 + (𝜃 − 1)𝛾 l

i )
𝜔i −
∏n

i=1 (1 − 𝛾 l
i )
𝜔i∏n

i=1 (1 + (𝜃 − 1)𝛾 l
i )𝜔i + (𝜃 − 1)

∏n
i=1 (1 − 𝛾 l

i )𝜔i

}
, )

⋃
𝛾i∈h̃i ,i=1,2,…,n

{ ∏n
i=1 (1 + (𝜃 − 1)𝛾u

i )
𝜔i −
∏n

i=1 (1 − 𝛾u
i )

𝜔i∏n
i=1 (1 + (𝜃 − 1)𝛾u

i )𝜔i + (𝜃 − 1)
∏n

i=1 (1 − 𝛾u
i )𝜔i

}
HFHWA

(⋃
𝛾i∈h̃i ,i=1,2,…,n

{ ∏n
i=1 (1 + (𝜃 − 1)𝛾i)𝜔i −

∏n
i=1 (1 − 𝛾i)𝜔i∏n

i=1 (1 + (𝜃 − 1)𝛾i)𝜔i + (𝜃 − 1)
∏n

i=1 (1 − 𝛾i)𝜔i

})
IVIFHWA

([ ∏n
i=1 (1 + (𝜃 − 1)𝛾i)𝜔i −

∏n
i=1 (1 − 𝛾i)𝜔i∏n

i=1 (1 + (𝜃 − 1)𝛾i)𝜔i + (𝜃 − 1)
∏n

i=1 (1 − 𝛾i)𝜔i
,

∏n
i=1 (1 + (𝜃 − 1)𝛾i)𝜔i −

∏n
i=1 (1 − 𝛾i)𝜔i∏n

i=1 (1 + (𝜃 − 1)𝛾i)𝜔i + (𝜃 − 1)
∏n

i=1 (1 − 𝛾i)𝜔i

]
,[

𝜃
∏n

i=1 (𝜂i)𝜔i∏n
i=1 (1 + (𝜃 − 1)(1 − 𝜂i))𝜔i + (𝜃 − 1)

∏n
i=1 (𝜂i)𝜔i

,
𝜃
∏n

i=1 (𝜂i)𝜔i∏n
i=1 (1 + (𝜃 − 1)(1 − 𝜂i))𝜔i + (𝜃 − 1)

∏n
i=1 (𝜂i)𝜔i

])
IFHWA

( ∏n
i=1 (1 + (𝜃 − 1)𝛾i)𝜔i −

∏n
i=1 (1 − 𝛾i)𝜔i∏n

i=1 (1 + (𝜃 − 1)𝛾i)𝜔i + (𝜃 − 1)
∏n

i=1 (1 − 𝛾i)𝜔i
,

𝜃
∏n

i=1 (𝜂i)𝜔i∏n
i=1 (1 + (𝜃 − 1)(1 − 𝜂i))𝜔i + (𝜃 − 1)

∏n
i=1 (𝜂i)𝜔i

)

T A B L E 5 Frank class of WA aggregation operators

Aggregation operators WA aggregation operator

DHFFWA

⎛⎜⎜⎜⎜⎜⎝
⋃

𝛾i ∈ h̃i,

i = 1, 2,… ,n

{
1 −

log
(
1 +
∏n

i=1 (𝜃1−𝛾i − 1)𝜔i
)

log 𝜃

}
,
⋃

𝜂i ∈ g̃i,

i = 1, 2,… ,n

{
log
(
1 +
∏n

i=1 (𝜃𝜂i − 1)𝜔i
)

log 𝜃

}⎞⎟⎟⎟⎟⎟⎠
IVHFFWA

⎛⎜⎜⎜⎜⎜⎜⎝
⋃

[𝛾 l
i , 𝛾

u
i ] ∈ h̃i,

i = 1, 2,… ,n

⎧⎪⎨⎪⎩
⎡⎢⎢⎢⎣1 −

log
(

1 +
∏n

i=1 (𝜃
1−𝛾 l

i − 1)𝜔i

)
log 𝜃

, 1 −
log
(
1 +
∏n

i=1 (𝜃
1−𝛾u

i − 1)𝜔i
)

log 𝜃

⎤⎥⎥⎥⎦
⎫⎪⎬⎪⎭
⎞⎟⎟⎟⎟⎟⎟⎠

HFFWA

⎛⎜⎜⎜⎜⎜⎜⎝
⋃

𝛾i ∈ h̃i,

i = 1, 2,… ,n

{
1 −

log
(
1 +
∏n

i=1 (𝜃1−𝛾i − 1)𝜔i
)

log 𝜃

}⎞⎟⎟⎟⎟⎟⎟⎠
IVIFFWA

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣1 −

log
(

1 +
∏n

i=1 (𝜃
1−𝛾 l

i − 1)𝜔i

)
log 𝜃

, 1 −
log
(
1 +
∏n

i=1 (𝜃
1−𝛾u

i − 1)𝜔i
)

log 𝜃

⎤⎥⎥⎥⎦ ,⎡⎢⎢⎢⎣
log
(

1 +
∏n

i=1 (𝜃
𝜂l

i − 1)𝜔i

)
log 𝜃

,
log
(
1 +
∏n

i=1 (𝜃
𝜂u

i − 1)𝜔i
)

log 𝜃

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠

IFFWA

(
1 −

log
(
1 +
∏n

i=1 (𝜃1−𝛾i − 1)𝜔i
)

log 𝜃
,

log
(
1 +
∏n

i=1 (𝜃𝜂i − 1)𝜔i
)

log 𝜃

)
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22 of 34 SARKAR and BISWAS

Aggregation operators WG aggregation operator

DHFWG
(⋃

𝛾i∈h̃i ,i=1,2,…,n.

{ n∏
i=1

(𝛾i)𝜔i

}
,
⋃

𝜂i∈g̃i ,i=1,2,…,n.

{
1 −

n∏
i=1

(1 − 𝜂i)𝜔i

})
IVHFWG

(⋃
[𝛾 l

i ,𝛾
u
i ]∈h̃i ,i=1,2,…,n.

{[ n∏
i=1

(𝛾 l
i )
𝜔i ,

n∏
i=1

(𝛾u
i )

𝜔i

]})
HFWG

(⋃
𝛾i∈h̃i ,i=1,2,…,n.

{ n∏
i=1

(𝛾i)𝜔i

})
IVIFWG

([ n∏
i=1

(𝛾 l
i )
𝜔i ,

n∏
i=1

(𝛾u
i )

𝜔i

]
,

[
1 −

n∏
i=1

(1 − 𝜂l
i)
𝜔i , 1 −

n∏
i=1

(1 − 𝜂u
i )

𝜔i

])
IFWG

( n∏
i=1

(𝛾 l
i )
𝜔i , 1 −

n∏
i=1

(1 − 𝜂i)𝜔i

)

T A B L E 6 Algebraic WG
aggregation operators

T A B L E 7 Einstein class of WG aggregation operators
Aggregation
operators WG aggregation operator

DHFEWG

⎛⎜⎜⎜⎜⎜⎜⎝
⋃

𝛾i ∈ h̃i,

i = 1, 2,… ,n.

{
2
∏n

i=1 (𝛾 l
i )
𝜔i∏n

i=1 (2 − 𝛾 l
i )
𝜔i +
∏n

i=1 (𝛾 l
i )
𝜔i

}
,
⋃

𝜂i ∈ g̃i,

i = 1, 2,… ,n.

{∏n
i=1 (1 + 𝜂u

i )
𝜔i −
∏n

i=1 (1 − 𝜂u
i )

𝜔i∏n
i=1 (1 + 𝜂u

i )𝜔i +
∏n

i=1 (1 − 𝜂u
i )𝜔i

}⎞⎟⎟⎟⎟⎟⎟⎠
IVHFEWG

(⋃
[𝛾 l

i ,𝛾
u
i ]∈h̃i ,i=1,2,…,n.

{[
2
∏n

i=1 (𝛾 l
i )
𝜔i∏n

i=1 (2 − 𝛾 l
i )
𝜔i +
∏n

i=1 (𝛾 l
i )
𝜔i
,

2
∏n

i=1 (𝛾 l
i )
𝜔i∏n

i=1 (2 − 𝛾 l
i )
𝜔i +
∏n

i=1 (𝛾 l
i )
𝜔i

]})

HFEWG

(⋃
𝛾i∈h̃i ,i=1,2,…,n.

{
2
∏n

i=1 (𝛾 l
i )
𝜔i∏n

i=1 (2 − 𝛾 l
i )𝜔i +
∏n

i=1 (𝛾 l
i )𝜔i

})

IVIFEWG

([
2
∏n

i=1 (𝛾 l
i )
𝜔i∏n

i=1 (2 − 𝛾 l
i )𝜔i +
∏n

i=1 (𝛾 l
i )𝜔i

,
2
∏n

i=1 (𝛾 l
i )
𝜔i∏n

i=1 (2 − 𝛾 l
i )𝜔i +
∏n

i=1 (𝛾 l
i )𝜔i

]
,[∏n

i=1 (1 + 𝜂u
i )

𝜔i −
∏n

i=1 (1 − 𝜂u
i )

𝜔i∏n
i=1 (1 + 𝜂u

i )
𝜔i +
∏n

i=1 (1 − 𝜂u
i )

𝜔i
,

∏n
i=1 (1 + 𝜂u

i )
𝜔i −
∏n

i=1 (1 − 𝜂u
i )

𝜔i∏n
i=1 (1 + 𝜂u

i )
𝜔i +
∏n

i=1 (1 − 𝜂u
i )

𝜔i

])

IFEWG41

(
2
∏n

i=1 (𝛾 l
i )
𝜔i∏n

i=1 (2 − 𝛾 l
i )
𝜔i +
∏n

i=1 (𝛾 l
i )
𝜔i
,

∏n
i=1 (1 + 𝜂u

i )
𝜔i −
∏n

i=1 (1 − 𝜂u
i )

𝜔i∏n
i=1 (1 + 𝜂u

i )𝜔i +
∏n

i=1 (1 − 𝜂u
i )𝜔i

)

Case 3. (Hamacher Class). When f (t) = log
(

𝜃+(1−𝜃)t
t

)
, 𝜃 > 0, then the ADHFWA, AIVHFWA, AHFWA, AIVIFWA,

and AIFWA operators are converted into the DHFHWA, IVHFHWA, HFHWA,37 IVIFHWA,35 and IFHWA operators,
respectively, which are depicted in the following Table 4.

Case 4. (Frank Class). When f (t) = log
(

𝜃−1
𝜃t−1

)
, 𝜃 > 1, the ADHFWA, AIVHFWA, AHFWA, AIVIFWA, and AIFWA oper-

ators are reduced to the DHFFWA,38 IVHFFWA, HFFWA,39 IVIFFWA,40 and IFFWA operators, respectively, which are
described in the following Table 5.

Similar cases arise for WG aggregation operators which are presented in Tables 6-9.

5 A METHODOLOGY TO SOLVE MCDM PROBLEMS USING IVDHF

In this section, the developed AIVDHFWA and AIVDHFWG operators are applied to formulate a method for solving
MCDM problems having IVDHF information. Let A = {A1, A2,… , Am} be a collection of alternatives which are to be
selected, and C = {C1, C2,… , Cn} be a set of criteria with their weight vector 𝜔 = (𝜔1,𝜔2,… ,𝜔n)T , satisfying 𝜔j ∈ [0, 1]
for j = 1, 2, … , n, and

∑n
j=1 𝜔j = 1, where 𝜔j represents the preference grade of the criterion Cj.

After evaluating the alternatives based on criteria an IVDHF decision matrix (IVDHFDM), K̃ = (k̃𝑖𝑗)m×n is constructed
by some DM. Two kinds of attributes may be associated with the problem, benefit attributes, and cost attributes.
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SARKAR and BISWAS 23 of 34

T A B L E 8 Hamacher class of WG aggregation operators

Aggregation operators WG aggregation operator

DHFHWG

⎛⎜⎜⎜⎜⎜⎜⎝
⋃

𝛾i ∈ h̃i,

i = 1, 2,… ,n.

{
𝜃
∏n

i=1 (𝛾 l
i )
𝜔i∏n

i=1 (1 + (𝜃 − 1)(1 − 𝛾 l
i ))

𝜔i + (𝜃 − 1)
∏n

i=1 (𝛾 l
i )
𝜔i

}
,

⋃
𝜂i ∈ g̃i,

i = 1, 2,… ,n

{ ∏n
i=1 (1 + (𝜃 − 1)𝜂u

i )
𝜔i −
∏n

i=1 (1 − 𝜂u
i )

𝜔i∏n
i=1 (1 + (𝜃 − 1)𝜂u

i )
𝜔i + (𝜃 − 1)

∏n
i=1 (1 − 𝜂u

i )
𝜔i

}⎞⎟⎟⎟⎟⎟⎟⎠
IVHFHWG

⎛⎜⎜⎜⎜⎜⎜⎝
⋃

𝛾i ∈ h̃i,

i = 1, 2,… ,n.

{[
𝜃
∏n

i=1 (𝛾 l
i )
𝜔i∏n

i=1 (1 + (𝜃 − 1)(1 − 𝛾 l
i ))

𝜔i + (𝜃 − 1)
∏n

i=1 (𝛾 l
i )
𝜔i
,

𝜃
∏n

i=1 (𝛾 l
i )
𝜔i∏n

i=1 (1 + (𝜃 − 1)(1 − 𝛾 l
i ))

𝜔i + (𝜃 − 1)
∏n

i=1 (𝛾 l
i )
𝜔i

]})
HFHWG

(⋃
𝛾i∈h̃i ,i=1,2,…,n.

{
𝜃
∏n

i=1 (𝛾 l
i )
𝜔i∏n

i=1 (1 + (𝜃 − 1)(1 − 𝛾 l
i ))

𝜔i + (𝜃 − 1)
∏n

i=1 (𝛾 l
i )
𝜔i

})
IVIFHWG

([
𝜃
∏n

i=1 (𝛾 l
i )
𝜔i∏n

i=1 (1 + (𝜃 − 1)(1 − 𝛾 l
i ))𝜔i + (𝜃 − 1)

∏n
i=1 (𝛾 l

i )𝜔i
,

𝜃
∏n

i=1 (𝛾 l
i )
𝜔i∏n

i=1 (1 + (𝜃 − 1)(1 − 𝛾 l
i ))𝜔i + (𝜃 − 1)

∏n
i=1 (𝛾 l

i )𝜔i

]
,[ ∏n

i=1 (1 + (𝜃 − 1)𝜂u
i )

𝜔i −
∏n

i=1 (1 − 𝜂u
i )

𝜔i∏n
i=1 (1 + (𝜃 − 1)𝜂u

i )
𝜔i + (𝜃 − 1)

∏n
i=1 (1 − 𝜂u

i )
𝜔i
,

∏n
i=1 (1 + (𝜃 − 1)𝜂u

i )
𝜔i −
∏n

i=1 (1 − 𝜂u
i )

𝜔i∏n
i=1 (1 + (𝜃 − 1)𝜂u

i )
𝜔i + (𝜃 − 1)

∏n
i=1 (1 − 𝜂u

i )
𝜔i

])
IFHWG

(
𝜃
∏n

i=1 (𝛾 l
i )
𝜔i∏n

i=1 (1 + (𝜃 − 1)(1 − 𝛾 l
i ))𝜔i + (𝜃 − 1)

∏n
i=1 (𝛾 l

i )𝜔i
,

∏n
i=1 (1 + (𝜃 − 1)𝜂u

i )
𝜔i −
∏n

i=1 (1 − 𝜂u
i )

𝜔i∏n
i=1 (1 + (𝜃 − 1)𝜂u

i )
𝜔i + (𝜃 − 1)

∏n
i=1 (1 − 𝜂u

i )
𝜔i

)

T A B L E 9 Frank class of WG aggregation operators

Aggregation operators WG aggregation operator

DHFFWG

⎛⎜⎜⎜⎜⎜⎜⎝
⋃

𝛾i ∈ h̃i,

i = 1, 2,… ,n

⎧⎪⎨⎪⎩
log
(

1 +
∏n

i=1 (𝜃
𝛾 l

i − 1)𝜔i

)
log 𝜃

⎫⎪⎬⎪⎭ ,
⋃

𝜂i ∈ g̃i,

i = 1, 2,… ,n

⎧⎪⎨⎪⎩1 −
log
(

1 +
∏n

i=1 (𝜃
1−𝜂l

i − 1)𝜔i

)
log 𝜃

⎫⎪⎬⎪⎭
⎞⎟⎟⎟⎟⎟⎟⎠

IVHFFWG

⎛⎜⎜⎜⎜⎜⎜⎝
⋃

𝛾i ∈ h̃i,

i = 1, 2,… ,n

⎧⎪⎨⎪⎩
⎡⎢⎢⎢⎣

log
(

1 +
∏n

i=1 (𝜃
𝛾 l

i − 1)𝜔i

)
log 𝜃

,
log
(

1 +
∏n

i=1 (𝜃
𝛾 l

i − 1)𝜔i

)
log 𝜃

⎤⎥⎥⎥⎦
⎫⎪⎬⎪⎭
⎞⎟⎟⎟⎟⎟⎟⎠

HFFWG
⎛⎜⎜⎜⎝
⋃

𝛾i∈h̃i ,i=1,2,…,n.

⎧⎪⎨⎪⎩
log
(

1 +
∏n

i=1 (𝜃
𝛾 l

i − 1)𝜔i

)
log 𝜃

⎫⎪⎬⎪⎭
⎞⎟⎟⎟⎠

IVIFFWG
⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

log
(

1 +
∏n

i=1 (𝜃
𝛾 l

i − 1)𝜔i

)
log 𝜃

,
log
(

1 +
∏n

i=1 (𝜃
𝛾 l

i − 1)𝜔i

)
log 𝜃

⎤⎥⎥⎥⎦ ,⎡⎢⎢⎢⎣1 −
log
(

1 +
∏n

i=1 (𝜃
1−𝜂l

i − 1)𝜔i

)
log 𝜃

, 1 −
log
(

1 +
∏n

i=1 (𝜃
1−𝜂l

i − 1)𝜔i

)
log 𝜃

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠

IFFWG
⎛⎜⎜⎜⎝

log
(

1 +
∏n

i=1 (𝜃
𝛾 l

i − 1)𝜔i

)
log 𝜃

, 1 −
log
(

1 +
∏n

i=1 (𝜃
1−𝜂l

i − 1)𝜔i

)
log 𝜃

⎞⎟⎟⎟⎠
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24 of 34 SARKAR and BISWAS

Now, in MCDM if the model is associated with the later kind of attributes, then those cost attributes are required to be
converted into former attributes, that is, convert the IVDHFDM K̃ = (k̃𝑖𝑗)m×n into a normalized IVDHFDM 𝑠𝑅 = (̃r𝑖𝑗)m×n
where

r̃𝑖𝑗 =

{
k̃𝑖𝑗 for benefit attribute Cj

k̃c
𝑖𝑗

for cost attribute Cj
(19)

i = 1, 2, … , m and j = 1, 2, … , n.
Suppose now that R̃ = (̃r𝑖𝑗)m×n be an IVDHFDM.
Then for solving MCDM problems with IVDHFEs, the following step by step executions is presented:
Step 1. Transform the IVDHFDM K̃ = (k̃𝑖𝑗)m×n into the normalized IVDHFDM R̃ = (̃r𝑖𝑗)m×n on the basis of

Equation (19).
Step 2. Aggregate the IVDHFEs r̃𝑖𝑗 for each alternative zi using the AIVDHFWA (or AIVDHFWG) operator as follows:
r̃A

i = AIVDHFWA(̃ri1, r̃i2,… , r̃in) =
(⋃

[𝛾 l
𝑖𝑗
,𝛾u
𝑖𝑗
]∈h̃𝑖𝑗 |j=1,2,…,n.

{[
g−1
(∑n

j=1 𝜔jg(𝛾 l
𝑖𝑗
)
)
, g−1
(∑n

j=1 𝜔jg(𝛾u
𝑖𝑗
)
)]}

,

⋃
[𝜂l

𝑖𝑗
,𝜂u
𝑖𝑗
]∈g̃𝑖𝑗 |j=1,2,…,n.

{[
f −1

( n∑
j=1

𝜔jf (𝜂l
𝑖𝑗)

)
, f −1

( n∑
i=1

𝜔jf (𝜂u
𝑖𝑗)

)]}⎞⎟⎟⎠
or

r̃G
i = AIVDHFWG(̃ri1, r̃i2,… , r̃in) =

(⋃
[𝛾 l

𝑖𝑗
,𝛾u
𝑖𝑗
]∈h̃𝑖𝑗 |j=1,2,…,n.

{[
f −1
(∑n

j=1 𝜔jf (𝛾 l
𝑖𝑗
)
)
, f −1
(∑n

j=1 𝜔jf (𝛾u
𝑖𝑗
)
)]}

,

⋃
[𝜂l

𝑖𝑗
,𝜂u
𝑖𝑗
]∈g̃𝑖𝑗 |j=1,2,…,n.

{[
g−1

( n∑
j=1

𝜔jg(𝜂l
𝑖𝑗)

)
, g−1

( n∑
i=1

𝜔jg(𝜂u
𝑖𝑗)

)]}⎞⎟⎟⎠
i = 1, 2,… ,m; j = 1, 2,… ,n.

Step 3. Using Definition 5, find the score and accuracy values of the alternatives.
Step 4. Based on the achieved score values find the ranking of alternatives.

6 ILLUSTRATIVE EXAMPLE

To establish the application potentiality of the developed methodology, a modified version of a practical problem adapted
from an article presented by Wei et al42 is considered.

A company wants to capitalize funds in the best company. There are five possible companies, viz., A1, A2, A3, A4, and
A5, in which the money can be invested. The investment company considered four criteria of the alternatives, viz., C1,
C2, C3, and C4 with the weight vector w = (0.3,0.1,0.2,0.4)T . For avoiding influence to each other, the DM evaluated the
five possible alternatives Ai (i = 1, 2, … , 5) with the weight vector and the decision matrix R̃ = (̃r𝑖𝑗)m×n is presented in
Table 10, where r̃𝑖𝑗 (i = 1, 2, … , 5; j = 1, 2, 3, 4) are in the form of IVDHFEs. Then the developed methodology is applied
to find the most appropriate alternative(s).

Step 1. It is assumed here that all the criteria Cj (j = 1, 2, 3, 4) are benefit criteria. So, the performance values of the
alternatives Ai (i = 1, 2, 3, 4, 5) are not required for normalization.

Step 2. Use the aggregation operators IVDHFHWA as described in Equation (3) for aggregation of preference values
r̃𝑖𝑗 for every alternatives Ai and obtain r̃A

i (i = 1, 2, 3, 4, 5).
Step 3. The score value of r̃A

i (i = 1, 2, 3, 4, 5) for each candidate is calculated utilizing Definition 5.
Step 4. Since S(̃rA

3 ) > S(̃rA
4 ) > S(̃rA

2 ) > S(̃rA
5 ) > S(̃rA

1 ), the ordering of the alternatives Ai (i = 1, 2, … , 5) is determined
as A3 ≻A4 ≻A2 ≻A5 ≻A1 for 𝜃 ∈ [0, 50]. Thus, the best alternative is found as A3.

Varying the parameter 𝜃 ∈ [0, 50], the variation of score values are found using the IVDHFHWA operator and are
presented in Figure 2. Here it is evidenced that when the value of the parameter 𝜃 increases from 0 to 50, the score values
decrease.
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SARKAR and BISWAS 25 of 34

T A B L E 10 Decision matrix with IVDHFEs

C1 C2 C3 C4

A1

⎛⎜⎜⎝
{[0.2,0.3], [0.3,0.4]},

{[0.2,0.3], [0.4,0.5]}

⎞⎟⎟⎠
(

{[0.2,0.5]},
{[0.3,0.4]}

) ⎛⎜⎜⎝
{[0.7,0.8], [0.8,0.9]},

{[0.05,0.1]}

⎞⎟⎟⎠
⎛⎜⎜⎝

{[0.4,0.5]},

{[0.1,0.2], [0.2,0.3], [0.3,0.4]}

⎞⎟⎟⎠
A2

(
{[0.2,0.3],[0.4,0.5]},

{[0.3,0.4]}

) (
{[0.3,0.4],[0.6,0.7]},

{[0.05,0.1],[0.1,0.2],[0.2,0.3]}

) ⎛⎜⎜⎝
{[0.3,0.4]},

{[0, 2, 0.3], [0.4,0.5]}

⎞⎟⎟⎠
⎛⎜⎜⎝
{[0.5,0.6], [0.8,0.9]},

{[0.05,0.1]}

⎞⎟⎟⎠
A3

(
{[0.5,0.7]},

{[[0.1,0.2],[0.2,0.3]]}

) (
{[0.2,0.3],[0.4,0.5]},

{[0.1,0.2]}

) ⎛⎜⎜⎝
{[0.8,0.9], [0.9,0.98]},

{[0.01,0.05]}

⎞⎟⎟⎠
⎛⎜⎜⎝
{[0.3,0.5]},

{[0.3,0.4]}

⎞⎟⎟⎠
A4

(
{[0.3,0.4],[0.7,0.8]},

{[0.05,0.1]}

) (
{[0.1,0.3]},

{[0.2,0.3],[0.4,0.5]}

) ⎛⎜⎜⎝
{[0.6,0.7], [0.8,0.9]},

{[0.01,0.05]}

⎞⎟⎟⎠
⎛⎜⎜⎝

{[0.5,0.7]},

{[0.05,0.1], [0.2,0.3]}

⎞⎟⎟⎠
A5

(
{[0.2,0.3]},
{[0.4,0.6]}

) (
{[0.4,0.6]},
{[0.3,0.4]}

) ⎛⎜⎜⎝
{[0.2,0.3], [0.6,0.7]},

{[0.1,0.3]}

⎞⎟⎟⎠
⎛⎜⎜⎝

{[0.6,0.7]},

{[0.01,0.1], [0.1,0.2]}

⎞⎟⎟⎠
F I G U R E 2 Geometric interpretation of score
values for alternatives utilized by the operator
IVDHFHWA
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θ
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A4
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Now, when the IVDHFHWG operator is utilized, the obtained score values corresponding to alternatives are presented
in Figure 3. From Figure 3, it is noticed that when the values of the parameter 𝜃 are increased from 0 to 50, the score
values also increase.

Furthermore, the following observations are found:

1. when 𝜃 ∈ (0, 1.351), the ordering of the five alternatives is A3 ≻A4 ≻A2 ≻A1 ≻A5, and the best choice is found as A3.
2. when 𝜃 ∈ (1.351, 50], the ordering of the five alternatives is A3 ≻A4 ≻A2 ≻A5 ≻A1, and the best choice is identified as

A3.
3. For 𝜃 = 1.351 the ranking of the five alternatives is A3 ≻A4 ≻A2 ≻A5 = A1, therefore A5 and A1 may be interchanged

in the above ordering.

Now if IVDHFFWA operator is used then the ordering of alternatives become A3 ≻A4 ≻A2 ≻A5 ≻A1 and varying the
parameter 𝜃 ∈ [0, 50], score values of alternatives is presented in Figure 4. It is noticeable that when the values of the
parameter 𝜃 are increased from 1 to 50, the score values decrease.

Again, if IVDHFFWG operator is used, the score value of the alternatives is presented in Figure 5. Here it is found
that when the values of the parameter 𝜃 are increased from 1 to 50, the score values also increase.

Furthermore, the following variations are obtained in the ordering of alternatives.
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F I G U R E 3 Geometric interpretation of score
values for alternatives utilized by the operator
IVDHFHWG
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θ

F I G U R E 4 Geometric interpretation of score
values for alternatives utilized by the operator
IVDHFFWA

1. when 𝜃 ∈ (0, 1.905), the ordering of the five alternatives is A3 ≻A4 ≻A2 ≻A1 ≻A5, and the best choice is A3.
2. when 𝜃 ∈ (1.905, 50], the ordering of the five alternatives is A3 ≻A4 ≻A2 ≻A5 ≻A1, and the best choice is A3.
3. For 𝜃 = 1.905 the ordering of the five alternatives is A3 ≻A4 ≻A2 ≻A5 = A1, therefore A5 and A1 may be interchanged

in the above ordering.

It is worthy to mention here that the ranking achieved by Wei et al42 is A3 ≻A4 ≻A2 ≻A1 ≻A5 and
A3 ≻A2 ≻A4 ≻A5 ≻A1 using HIVFCOA and HIVFCOG operators, respectively. But using the proposed approach, the
ranking of alternatives remains almost same using averaging as well as geometric operators. Thus, the proposed
methodology is more consistent than the technique developed by Wei et al.42

From the above discussions, it is also clear that the score values are highly depending on the parameter 𝜃, which
reflects preference of the DMs in MCDM situations. Thus, the proposed method is flexible enough to establish DMs'
preferences on the alternatives.

From the above comparisons, it is evidenced that the parameter 𝜃 is appeared as a reflection of the DMs' preferences.
Based on the value of the parameter 𝜃, the scores of the alternatives are different, and the rankings of the alternatives are
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F I G U R E 5 Geometric interpretation of score
values for alternatives utilized by the operator
IVDHFFWG
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also varying. Therefore, the proposed aggregation operators can provide the DMs more choices and thus the proposed
method is more flexible than the existing ones.

7 COMPARATIVE STUDIES

It has already been mentioned that the proposed aggregation operators are capable of covering wide range of operators
through At-N&t-CNs. Those operators are also applicable for aggregating many other variants of fuzzy sets. To establish
these facts several examples are considered and solved using the proposed method. A list of methods, which are considered
for this purpose, is presented in the following Table 11.

It is to be noted here that all the above problems are solved in the respective environments with the help of the proposed
aggregation operators by considering different values of the parameter, 𝜃. It is interesting to observe that the solutions of
the existing methods are appeared as a special case for some particular value of 𝜃 in the respective environments.

The achieved solutions in different environments as described in Table 11 using the proposed averaging as well as
geometric operators with the variation of the parameter 𝜃 ∈ [0, 50] is presented in Table 12.

Note. Ju et al10 solved a numerical example on IVDHF environment to find best alternative. Now, if that problem is
solved by the proposed IVDHFHWA operator and the value of the parameter 𝜃 is considered as 1, the score value of the
alternatives is found as same as the score values achieved by Ju et al. Therefore, the method introduced by Ju et al10 is
now appeared as a particular case of the proposed method. Apart from that the score value of Ais is checked for different
values of the parameter 𝜃 by varying it in the range [0,∞). Moreover, this problem can be solved using the Frank class of
aggregation operators. It is found that the ordering of the alternatives remains same as like the ordering achieved using
Hamacher class of aggregation operators.

Now, the same problem10 was solved by Zhang et al16 using IVDHFEWA operator. Since Einstein operation can be
constructed from Hamcher operation by considering the value of the parameter 𝜃 as 2, the result obtained by Zhang et al16

appeared as a particular case of the proposed IVDHFHWA operator.

T A B L E 11 Methods for solving MCDM in different variants of fuzzy
contexts

Method Situations

Ju et al10; Zhang et al16 IVDHF

Wang et al14; Yu et al43; Zhao et al44 DHF

Yu34; Wang and Liu45 HF

Wang et al46; Nayagam et al47 IVIF

Wang and Liu36; Wang and Liu48 IF
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28 of 34 SARKAR and BISWAS

T A B L E 12 Comparison of results and achieved score values by varying 𝜃 with geometric interpretations

Existing
methods

Generalized Solution using Proposed Methodology

Hamacher Averaging Aggregation 
Operator

Hamacher Geometric Aggregation 
Operator

Frank Averaging Aggregation 
Operator

Frank Geometric Aggregation 
Operator

Ju et 
al.10 and

Zhang et al.16

Wang et al.14 
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T A B L E 12 (Continued)

Wang and 
Liu45

Wang et al.46

Nayagam et 
al.47
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Furthermore, Wang et al14 solved another MCDM problem for potential evaluation to choose best emerging technol-
ogy enterprises utilizing DHFWA and DHFWG operators under DHF environment. As a special case of IVDHFS, Wang
et al's results are easily achieved for the value of 𝜃 = 1 of the DHFHWA and DHFHWG operators, respectively, and by
transforming IVDHF to DHF by assuming the upper and lower limits as same.

Yu et al43 considered a problem in DHF context for selecting foreign company for outsourcing human resource services
using DHFWA and DHFWG operators. Considering 𝜃 = 1 in the proposed DHFHWA and DHFHWG operators, the same
ranking of alternatives as like Yu et al43 are found as A1 ≻A4 ≻A2 ≻A3 and A4 ≻A1 ≻A3 ≻A2.

Zhao et al44 in DHF environment solved a numerical example by considering eight alternatives using EDHFWA oper-
ator. The ordering of the alternatives is found as A4 ≻A6 ≻A7 ≻A5 ≻A1 ≻A3 ≻A2 ≻A8 which corresponds to 𝜃 = 2 in the
proposed DHFHWA operator as like the previous arguments.

Yu34 solved a numerical example using HF information based on Einstein operation and found best alternative with
HFEWA and HFEWG operators as A1 ≻A3 ≻A2 ≻A4, which corresponds to 𝜃 = 2 in the proposed HFHWA and HFHWG
operators with similar arguments.

Wang and Liu45 again solved another MCDM problem on HF environment using HFWG and HFEWG operators and
found the ordering of the alternatives as A3 ≻A4 ≻A2 ≻A1 and A3 ≻A2 ≻A4 ≻A1, respectively. The similar results are
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30 of 34 SARKAR and BISWAS

obtained when 𝜃 = 1 and 2 are considered in the proposed HFHWG operator. It is to be noted here that the changing of
the ordering of A4 and A2 is clearly reflected in the graphical presentation of the proposed method.

Wang et al46 solved another MCDM problem in a realistic scenario with four alternatives using IVIFWA operator and
found the ordering as A2 ≻A4 ≻A3 ≻A1, which is the same as the ordering obtained by the proposed IVIFHWA operator
considering 𝜃 = 1.

Nayagam et al47 presented an illustrative example of MCDM under IVIF situation. To aggregate the IVIFNs they uti-
lized IVIFWA and IVIFWG operators and corresponding results are obtained as A2 ≻A4 ≻A3 ≻A1 and A2 ≻A3 ≻A4 ≻A1.
These results correspond to 𝜃 = 1 of the proposed IVIFHWA and IVIFHWG operators.

Wang and Liu36 solved a numerical problem under intuitionistic fuzzy context. And using the aggregation opera-
tors IFWA and IFEWA, the ordering of three alternatives are found as A3 ≻A2 ≻A1, which corresponds to 𝜃 = 1 and 2,
respectively, of the proposed method.

Furthermore, Wang and Liu48 considered an MCDM problem on the same environment related to information tech-
nology improvement projects with five alternatives. Using IFWG and IFEWG operators, the ranking are presented as
A4 ≻A1 ≻A2 ≻A3 ≻A5. The same result is achieved by the proposed IFHWG operator when 𝜃 = 1 and 2, respectively, are
assigned in the respective environment.

8 SENSITIVITY ANALYSIS

It has already been mentioned that all the problems as presented in Table 11 are solved by varying the parameter 𝜃∈ [0,∞).
The ranking of alternatives based on the achieved score values are presented in Table 12 considering the parameter 𝜃 ∈ [0,
50]. It is found that the ordering of alternatives is changed based on the value of 𝜃. For clear presentation, Table 13
is presented by mentioning the ranges of 𝜃 in which the ranking of alternatives remain same for each of the method
compared herein.

As for example, it is to be noted here that under the IVDHF environment, the ranking of alternatives achieved by Ju
et al10 and Zhang et al16 is the same with the proposed Hamacher and Frank classes of t-Ns&t-CNs-based operators for
all positive real values of the parameter 𝜃.

When the problem of Wang et al14 is solved by the introduced method, the change of the ordering of alterna-
tives is found for the value of 𝜃 in several subinterval of R+. When the value of the parameter 𝜃 is considered in
(0,0.3012), the ranking of the alternatives is A5 ≻A4 ≻A3 ≻A2 ≻A1, and for 𝜃 ∈ (0.3012,∞) the ordering is obtained
as A5 ≻A3 ≻A4 ≻A2 ≻A1, when DHFHWA operator is used. Furthermore, using the DHFHWG operator, ordering of
the alternatives is changed in three intervals, but the best alternative would be the same as A5. Beyond the value
5.7750 of 𝜃, the ranking is fixed as A5 ≻A3 ≻A4 ≻A2 ≻A1. Again, applying DHFFWA operator, the ranking is found as
A5 ≻A3 ≻A4 ≻A2 ≻A1 in 𝜃 ∈ (1,∞) and for DHFFWG operator the ranking remains same after the value of 𝜃 = 39.1300.
Therefore, the best ranking result is A5 ≻A3 ≻A4 ≻A2 ≻A1.

After solving the example of Yu et al43 in DHF environment by DHFHWA operator, the first position of the alternatives
differs between A2 and A4 about the point 𝜃 = 0.2453. Whereas the ranking remains the same as A4 ≻A2 ≻A1 ≻A3 after
the value of 𝜃 = 0.2453. From that view point, the best alternative is A4.

Furthermore, using DHFHWA operator to the example of Zhao et al,44 the ordering of alternatives varies with
the change of the parameter 𝜃. For 𝜃 ∈ (0, 0.1445 ) the ordering is A6 ≻A4 ≻A7 ≻A3 ≻A5 ≻A1 ≻A2 ≻A8 and the posi-
tion of A3 and A5 is interchanged when the value of the parameter is considered as 𝜃 ∈ (0.1445, 0.8915 ). Again,
it is noticed that the ranking becomes A6 ≻A4 ≻A7 ≻A5 ≻A1 ≻A3 ≻A2 ≻A8 in the span of the interval 𝜃 ∈ (0.8915,
4.0550 ). Though the ordering of the alternatives differs for 𝜃 ∈ [0,4.0550], but the ranking is fixed for 𝜃 ∈ (4.0550,∞) as
A4 ≻A6 ≻A7 ≻A5 ≻A1 ≻A3 ≻A2 ≻A8.

The HFHWA and HFHWG operators are used to solve Yu's34 problem. When 𝜃 ∈ (0,∞) in HFHWA, the ranking is
found as A1 ≻A3 ≻A2 ≻A4, and by using HFHWG operator, the ordering between A1 and A3 slightly differs about the
point 𝜃 = 1.135.

After solving out an example, considered by Wang and Liu,45 it is observed that the best alternative is A2 for
0<𝜃 < 2.6940 and A3 for 2.6940<𝜃 < 21.110 using HFHWA operator. For 𝜃 > 21.11, the ordering of the alternatives
is found as A3 ≻A2 ≻A4 ≻A1 and it is appeared that the best alternative as A3. Again, utilizing HFHWG operator,
the ordering is found as A3 ≻A4 ≻A2 ≻A1 in the range 𝜃 ∈ [0, 1.5970] and for 𝜃 ∈ (1.5970,∞) the ranking is found as
A3 ≻A2 ≻A4 ≻A1. The later result is achieved when Frank-based aggregation operators are used.
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SARKAR and BISWAS 31 of 34

T A B L E 13 Ranking of alternatives based on the value of 𝜃 in different variants of fuzzy contexts

Existing method Proposed method

Author Context Method Result Operator Parameter Ranking
Ju et al10 IVDHF IVDHFWA A4 ≻A3 ≻A1 ≻A2 IVDHFHWA 𝜃 ∈ [0, 50] A4 ≻A3 ≻A1 ≻A2

IVDHFHWA 𝜃 ∈ [0, 50] A4 ≻A3 ≻A1 ≻A2

Zhang
et al16

IVDHF IVDHFEWA A4 ≻A3 ≻A1 ≻A2 DHFHWA 𝜃 ∈ (0, 0.3012) A5 ≻A4 ≻A3 ≻A2 ≻A1

DHFHWA 𝜃 ∈ (0.3012,∞) A5 ≻A3 ≻A4 ≻A2 ≻A1

Wang
et al14

DHF DHFWA A5 ≻A4 ≻A3 ≻A2 ≻A1 DHFHWG 𝜃 ∈ (0,0.6948) A5 ≻A3 ≻A2 ≻A1 ≻A4

DHFHWG 𝜃 ∈ (0.6948, 5.7750) A5 ≻A3 ≻A2 ≻A4 ≻A1

DHFHWG 𝜃 ∈ (5.7750,∞) A5 ≻A3 ≻A4 ≻A2 ≻A1

Yu et al43 DHF DHFWA A1 ≻A4 ≻A2 ≻A3 DHFHWA 𝜃 ∈ (0,0.2453) A2 ≻A4 ≻A1 ≻A3

DHFWG A4 ≻A1 ≻A3 ≻A2 DHFHWA 𝜃 ∈ (0.2453,∞) A4 ≻A2 ≻A1 ≻A3

DHFHWG 𝜃 ∈ (0, 0.7269) A4 ≻A1 ≻A2 ≻A3

DHFHWG 𝜃 ∈ (0.7269,∞) A4 ≻A2 ≻A1 ≻A3

Zhao
et al44

DHF HFEWA A4 ≻A6 ≻A7 ≻A5 DHFHWA 𝜃 ∈ (0,0.1445) A6 ≻A4 ≻A7 ≻A3 ≻A5 ≻A1 ≻A2 ≻A8

≻A2 ≻A1 ≻A3 ≻A8 DHFHWA 𝜃 ∈ (0.1445, 0.8915) A6 ≻A4 ≻A7 ≻A5 ≻A3 ≻A1 ≻A2 ≻A8

DHFHWA 𝜃 ∈ (0.8915, 4.0550) A6 ≻A4 ≻A7 ≻A5 ≻A1 ≻A3 ≻A2 ≻A8

DHFHWA 𝜃 ∈ (4.0550,∞) A4 ≻A6 ≻A7 ≻A5 ≻A1 ≻A3 ≻A2 ≻A8

DHFHWG 𝜃 ∈ (0, 0.8510) A4 ≻A6 ≻A7 ≻A5 ≻A1 ≻A2 ≻A8 ≻A3

DHFHWG 𝜃 ∈ (0.8510,∞) A4 ≻A6 ≻A7 ≻A5 ≻A1 ≻A2 ≻A3 ≻A8

Yu34 HFS HFEWA A1 ≻A3 ≻A2 ≻A4 HFHWA 𝜃 ∈ (0,∞) A1 ≻A3 ≻A2 ≻A4

HFEWG A1 ≻A3 ≻A2 ≻A4 HFHWG 𝜃 ∈ (0, 1.135) A3 ≻A1 ≻A2 ≻A4

HFHWG 𝜃 ∈ (1.135,∞) A1 ≻A3 ≻A2 ≻A4

Wang and
Liu45

HFS HFWG A3 ≻A4 ≻A2 ≻A1 HFHWA 𝜃 ∈ (0, 2.6940) A2 ≻A3 ≻A1 ≻A4

HFEWG A3 ≻A2 ≻A4 ≻A1 HFHWA 𝜃 ∈ (2.6940, 21.110) A3 ≻A2 ≻A1 ≻A4

HFHWA 𝜃 ∈ (21.110,∞) A3 ≻A2 ≻A4 ≻A1

HFHWG 𝜃 ∈ (0, 0.2477) A3 ≻A4 ≻A1 ≻A2

HFHWG 𝜃 ∈ (0.2477, 1.5970) A3 ≻A4 ≻A2 ≻A1

HFHWG 𝜃 ∈ (1.5970,∞) A3 ≻A2 ≻A4 ≻A1

Wang
et al46

IVIFS IVIFWA A2 ≻A4 ≻A3 ≻A1 IVIFHWA 𝜃 ∈ (0,∞) A2 ≻A4 ≻A3 ≻A1

IVIFHWG 𝜃 ∈ (0, 0.8479) A2 ≻A3 ≻A4 ≻A1

IVIFHWG 𝜃 ∈ (0.8479,∞) A2 ≻A4 ≻A3 ≻A1

Nayagam
et al47

IVIFS IVIFWA A2 ≻A4 ≻A3 ≻A1 IVIFHWA 𝜃 ∈ (0, 2.0440) A4 ≻A2 ≻A3 ≻A1

IVIFWG

IVIFHWA 𝜃 ∈ (2.0440,∞) A2 ≻A4 ≻A3 ≻A1

IVIFHWG 𝜃 ∈ (0,∞) A2 ≻A4 ≻A3 ≻A1

Wang and
Liu36

IFS IFWA A1 ≻A2 ≻A3 IFHWA 𝜃 ∈ (0, 3.4150) A1 ≻A2 ≻A3

IFEWA A1 ≻A2 ≻A3 IFHWA 𝜃 ∈ (3.4150,∞) A2 ≻A1 ≻A3

Wang and
Liu48

IFS IFWG A4 ≻A1 ≻A2 ≻A3 ≻A5 IFHWA 𝜃 ∈ (0, 0.2435) A4 ≻A3 ≻A5 ≻A1 ≻A2

IFHWA 𝜃 ∈ (0.2435,0.4017) A4 ≻A3 ≻A1 ≻A5 ≻A2

IFHWA 𝜃 ∈ (0.4017,∞) A4 ≻A3 ≻A1 ≻A2 ≻A5

𝜃 ∈ (0,3.5950) A4 ≻A1 ≻A2 ≻A3 ≻A5

𝜃 ∈ (3.5950, 7.8870) A4 ≻A1 ≻A3 ≻A2 ≻A5

𝜃 ∈ (7.8870,∞) A4 ≻A3 ≻A1 ≻A2 ≻A5

IFFWA 𝜃 ∈ (1,∞) A4 ≻A3 ≻A1 ≻A2 ≻A5

IFFWG 𝜃 ∈ (1,∞) A4 ≻A1 ≻A2 ≻A3 ≻A5
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Under IVIF environment, the example of Wang et al46 is solved using the proposed method. It is noticed that the
ranking A2 ≻A4 ≻A3 ≻A1 is found for 𝜃 ∈ (0,∞) when IVIFHWA operator is used and the best alternative is found
as A2. Moreover, when IVIFHWG operator is used, the ordering becomes A2 ≻A3 ≻A4 ≻A1 for 𝜃 ∈ (0, 0.8479) and
A2 ≻A4 ≻A3 ≻A1 for 𝜃 ∈ (0.8479,∞).

When a problem of Nayagam et al47 is solved, the ranking is obtained as A4 ≻A2 ≻A3 ≻A1 for 𝜃 ∈ (0, 2.0440);
A2 ≻A4 ≻A3 ≻A1 for 𝜃 ∈ (2.0440,∞) by considering IVIFHWA operator. Again, using IVIFHWG operator, the ranking is
found as A2 ≻A4 ≻A3 ≻A1 for all real values of the parameter 𝜃. Utilizing the IVIFFWA operator, the ordering becomes
A4 ≻A2 ≻A3 ≻A1 for 𝜃 ∈ (1, 4.4940); A2 ≻A4 ≻A3 ≻A1 for 𝜃 ∈ (4.4940,∞). Whereas, if IVIFFWG operator is used, the
result is stable for 𝜃 > 1 as A2 ≻A4 ≻A3 ≻A1.

The ordering of the alternatives achieved by Wang and Liu36 is A1 ≻A2 ≻A3. When IFHWA operator is applied, this
result coincides in the span of the parameter 𝜃 within (0, 3.4150), but the score value of A1 and A2 is same at the point
𝜃 = 3.4150. Also it is observed that the ranking is found in 𝜃 ∈ (3.4150,∞) as A2 ≻A1 ≻A3. Again, for IFHWG operator,
the ranking is A2 ≻A1 ≻A3 for 𝜃 > 0. It is also shown that, when that example is solved using the Frank-based averaging
and geometric aggregation operators, the result is obtained as A2 ≻A1 ≻A3.

While another numerical problem of Wang and Liu48 is solved by the proposed Hamacher-based aggregation opera-
tor, IFHWA, the ordering of the alternatives fluctuates for different values of the parameter 𝜃 lies in several subinterval
of R+ as: when 𝜃 ∈ (0,0.2435 ), the ranking is A4 ≻A3 ≻A5 ≻A1 ≻A2; A4 ≻A3 ≻A1 ≻A5 ≻A2 for 𝜃 ∈ (0.2435,0.4017 ); and
A4 ≻A3 ≻A1 ≻A2 ≻A5 for 𝜃 ∈ (0.4017,∞). Again, when it is solved by IFHWG operator, ordering of the alternatives are
varied for 𝜃, the ranking is found A4 ≻A1 ≻A2 ≻A3 ≻A5 for 𝜃 ∈ (0,3.5950); A4 ≻A1 ≻A3 ≻A2 ≻A5 for 𝜃 ∈ (3.5950, 7.8870 );
and A4 ≻A3 ≻A1 ≻A2 ≻A5 for 𝜃 ∈ (7.8870,∞). Furthermore, it is observed that when this problem is resolved using
Frank-based aggregation operators IFFWA and IFFWG, the ranking is appeared as the same as A4 ≻A1 ≻A2 ≻A3 ≻A5 for
𝜃 > 1.

From the above comparisons, it has been established that the parameter 𝜃 is appeared as the preferences of the DMs.
Varying the value of the parameter 𝜃, it is found that the scores of the alternatives vary, and the orderings of the alternatives
are also changing. Therefore, the DMs have more flexibility in preferences while the developed aggregation operators are
used by them and so the developed methodology is flexible enough than the existing methods.

9 CONCLUSIONS

In the proposed method, At-N&t-CNs are used to aggregate IVDHFEs to find the most appropriate alternative in
MCDM circumstances through the development of AIVDHFWA and AIVDHFWG operators. The developed operators
are efficiently capable of capturing the concepts of other types of aggregation operators in different variants of fuzzy envi-
ronments as discussed in the previous section. Apart from that, many new types of aggregation operators can be generated
from the proposed method. In solving numerical examples, it is observed that in some cases, studied previously, the rank-
ing of the alternatives slightly differs when the authors have used their respective methods. These glitches can be clearly
visible when those problems have been solved through the proposed method. Though the ranks differ in the initial stages
due to the parameter, these differences have been reduced for a maximum span in the later stages. Due to this reason,
it can be stated that the proposed method is the best one as it is represented in a more flexible and generalized format.
The proposed method can be extended to solve GDM problems by considering ordered WA operators along with attribute
weights to make reasonable decision. With the development of the new aggregation operators, the process of making
decisions in complex MCDM would become less tedious by the DMs and to study the properties of those operators may
open up new area of research in the current complex decision making arena. In future, the proposed operators may be
extended to complex intuitionistic fuzzy,49 Pythagorean fuzzy50,51 environments.

ACKNOWLEDGEMENTS
The authors are thankful to the reviewers and the Editor in Chief of this journal for their comments and suggestions to
improve the quality of the manuscript. The authors also would like to thank University of Kalyani for financial assistance
in carrying out this research work through DST-PURSE program.

CONFLICT OF INTEREST
The authors are hereby declaring no conflict of interest for this article.

 25778196, 2020, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eng2.12106, W

iley O
nline L

ibrary on [18/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



SARKAR and BISWAS 33 of 34

AUTHOR CONTRIBUTIONS
Arun Sarkar contributed to the data curation and investigation and supported the methodology and writing the original
draft, review, and editing. Animesh Biswas contributed to the data curation, investigation, methodology, and writing the
original draft, review, and editing.

ORCID
Animesh Biswas https://orcid.org/0000-0002-5813-1076

REFERENCES
1. Torra V, Narukawa Y On hesitant fuzzy sets and decision. Paper presented at: The 18th IEEE International Conference on Fuzzy Systems;

2009; Jeju Island, Korea:1378–1382.
2. Torra V. Hesitant fuzzy sets. Int J Intell Syst. 2010;25:529-539.
3. Zadeh LA. Fuzzy sets. Inform Control. 1965;8:338-353.
4. Chen N, Xu ZS, Xia MM. Interval-valued hesitant preference relations and their applications to group decision making. Knowl Based Syst.

2013;37:528-540.
5. Atanassov KT. Intuitionistic fuzzy sets. Fuzzy Set Syst. 1986;20(1):87-96.
6. Kaur G, Garg H. Generalized cubic intuitionistic fuzzy aggregation operators using t-norm operations and their applications to group

decision-making process. Arab J Sci Eng. 2019;44(3):2775-2794.
7. Zhu B, Xu ZS, Xia MM. Dual hesitant fuzzy sets. J Appl Math. 2012;2012:879629. https://doi.org/10.1155/2012/879629.
8. Garg H, Arora R. Maclaurin symmetric mean aggregation operators based on t-norm operations for the dual hesitant fuzzy soft set.

J Ambient Intell Human Comput. 2019;11:375-410. https://doi.org/10.1007/s12652-019-01238-w.
9. Qu G, Li T, Zhao X, Qu W, An Q, Yan J. Dual hesitant fuzzy stochastic multiple attribute decision making method based on regret theory

and group satisfaction degree. J Intell Fuzzy Syst. 2018;35(6):6479-6488.
10. Ju Y, Liu X, Yang S. Interval-valued dual hesitant fuzzy aggregation operators and their applications to multiple attribute decision making.

J Intell Fuzzy Syst. 2014;27:1203-1218.
11. Mishra AR, Rani P. Biparametric information measures-based TODIM technique for interval-valued intuitionistic fuzzy environment.

Arab J Sci Eng. 2018;43(6):3291-3309.
12. Xia MM, Xu ZS. Hesitant fuzzy information aggregation in decision making. Int J Approx Reason. 2011;52:395-407.
13. Zeng W, Li D, Yin Q. Weighted interval-valued hesitant fuzzy sets and its application in group decision making. Int J Fuzzy Syst.

2019;21:421-432.
14. Wang HJ, Zhao XF, Wei GW. Dual hesitant fuzzy aggregation operators in multiple attribute decision making. J Intell Fuzzy Syst.

2014;26:2281-2290.
15. Biswas A, Sarkar A. Development of dual hesitant fuzzy prioritized operators based on Einstein operations with their application to

multi-criteria group decision making. Arch Control Sci. 2019;28:527-549.
16. Zhang W, Li X, Ju Y. Some aggregation operators based on Einstein operations under interval-valued dual hesitant fuzzy setting and their

application. Math Probl Eng. 2014;2014:1-21.
17. Wei GW, Xu XR, Deng DX. Interval-valued dual hesitant fuzzy linguistic geometric aggregation operators in multiple attribute decision

making. Int J Knowl Based Intell Eng Syst. 2016;20:189-196.
18. Liu P, Tang G. Some generalized shapely interval-valued dual hesitant fuzzy uncertain linguistic Choquet geometric operators and their

application to multiple attribute decision making. J Intell Fuzzy Syst. 2019;36(1):557-574.
19. Wei G. Interval-valued dual hesitant fuzzy uncertain linguistic aggregation operators in multiple attribute decision making. J Intell Fuzzy

Syst. 2017;33:1881-1893.
20. Zang Y, Sun W, Han S. Grey relational projection method for multiple attribute decision making with interval-valued dual hesitant fuzzy

information. J Intell Fuzzy Syst. 2017;33(2):1053-1066.
21. Zang Y, Zhao X, Li S. Interval-valued dual hesitant fuzzy Heronian mean aggregation operators and their application to multi-attribute

decision making. Int J Comput Intell Appl. 2018;17(01):1850005. https://doi.org/10.1142/s1469026818500050.
22. Sarkar A, Biswas A. On developing interval-valued dual hesitant fuzzy Bonferroni mean aggregation operator and their application to

multicriteria decision making. Paper presented at: Computational Intelligence, Communications, and Business Analytics; 2019:27–46.
23. Klir G, Yuan B. Fuzzy Sets and Fuzzy Logic: Theory and Applications. Upper Saddle River, NJ: Prentice Hall; 1995.
24. Nguyen HT, Walker EA. A First Course in Fuzzy Logic. Boca Raton, FL: CRC Press; 1997.
25. Xia M, Xu Z, Zhu B. Some issues on intuitionistic fuzzy aggregation operators based on Archimedean t-conorm and t-norm. Knowl Based

Syst. 2012;31:78-88.
26. Yu D. Archimedean aggregation operators based on dual hesitant fuzzy set and their application to GDM. Int J Uncertain Fuzziness Knowl

Based Syst. 2015;23:761-780.
27. Zhang N, Yao Z, Zhou Y, Wei G. Some new dual hesitant fuzzy linguistic operators based on Archimedean t-norm and t-conorm. Neural

Comput Appl. 2018;31(11):7017-7040.
28. Zhang N, Yuan Y, Fu D, Wei G. Dual hesitant fuzzy linguistic power-geometric operators based on Archimedean t-conorms and t-norms

and their application to group decision making. J Intell Fuzzy Syst. 2019;37(3):3829-3847.

 25778196, 2020, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eng2.12106, W

iley O
nline L

ibrary on [18/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0002-5813-1076
https://orcid.org/0000-0002-5813-1076
https://doi.org/10.1155/2012/879629
https://doi.org/10.1007/s12652-019-01238-w
https://doi.org/10.1142/s1469026818500050


34 of 34 SARKAR and BISWAS

29. Beliakov G, Bustince H, Goswami DP, Mukherjee UK, Pal NR. On averaging operators for Atanassov's intuitionistic fuzzy sets. Inform Sci.
2011;181:1116-1124.

30. Zhang Z, Wu C. Some interval-valued hesitant fuzzy aggregation operators based on Archimedean t-norm and t-conorm with their
application in multi-criteria decision making. J Intell Fuzzy Syst. 2014;27:2737-2748.

31. Xu ZS. Methods for aggregating interval-valued intuitionistic fuzzy information and their application to decision making. Control Decis.
2007;22:215-219.

32. Xu ZS. Intuitionistic fuzzy aggregation operators. IEEE Trans Fuzzy Syst. 2007;15:1179-1187.
33. Wei G, Zhao X. Induced hesitant interval-valued fuzzy Einstein aggregation operators and their application to multiple attribute decision

making. J Intell Fuzzy Syst. 2013;24:789-803.
34. Yu DJ. Some hesitant fuzzy information aggregation operators based on Einstein operational laws. Int J Intell Syst. 2014;29:320-340.
35. Liu P. Some Hamacher aggregation operators based on the interval-valued intuitionistic fuzzy numbers and their application to group

decision making. IEEE Trans Fuzzy Syst. 2014;22:83-97.
36. Wang W, Liu X. Intuitionistic fuzzy information aggregation using Einstein operations. IEEE Trans Fuzzy Syst. 2012;20(5):923-938.
37. Tan C, Yi W, Chen X. Hesitant fuzzy Hamacher aggregation operators for multicriteria decision making. Appl Soft Comput.

2015;26:325-349.
38. Tang X, Yang S, Pedrycz W. Multiple attribute decision-making approach based on dual hesitant fuzzy Frank aggregation operators. Appl

Soft Comput. 2018;68:525-547.
39. Qin J, Liu X, Pedrycz W. Frank aggregation operators and their application to hesitant fuzzy multiple attribute decision making. Appl Soft

Comput. 2016;41:428-452.
40. Zhang Z. Interval-valued intuitionistic fuzzy frank aggregation operators and their applications to multiple attribute group decision

making. Neural Comput Appl. 2016;28:1471-1501.
41. Xu ZS, Yager RR. Some geometric aggregation operators based on intuitionistic fuzzy sets. Int J Gen Syst. 2006;35:417-433.
42. Wei G, Zhao X, Lin R. Some hesitant interval-valued fuzzy aggregation operators and their applications to multiple attribute decision

making. Knowl Based Syst. 2013;46:43-53.
43. Yu D, Zhang W, Huang G. Dual hesitant fuzzy aggregation operators. Technol Econ Dev Econ. 2016;22:194-209.
44. Zhao H, Xu Z, Liu S. Dual hesitant fuzzy information aggregation with Einstein t-conorm and t-norm. J Syst Sci Syst Eng. 2017;26:240-264.
45. Wang W, Liu X. Some hesitant fuzzy geometric operators and their application to multiple attribute group decision making. Technol Econ

Dev Econ. 2014;20:371-390.
46. Wang W, Liu X, Qin Y. Interval-valued intuitionistic fuzzy aggregation operators. J Syst Eng Electron. 2012;23:574-580.
47. Nayagam VLG, Muralikrishnan S, Sivaraman G. Multi-criteria decision-making method based on interval-valued intuitionistic fuzzy sets.

Exp Syst Appl. 2011;38:1464-1467.
48. Wang W, Liu X. Intuitionistic fuzzy geometric aggregation operators based on Einstein operations. Int J Intell Syst. 2011;26:1049-1075.
49. Garg H, Rani D. New generalised Bonferroni mean aggregation operators of complex intuitionistic fuzzy information based on

Archimedean t-norm and t-conorm. J Exp Theoret Artif Intell. 2020;32(1):81-109. https://doi.org/10.1080/0952813x.2019.1620871.
50. Yang Y, Chen ZS, Chen YH, Chin KS. Interval-valued Pythagorean fuzzy frank power aggregation operators based on an isomorphic frank

dual triple. Int J Comput Intell Syst. 2018;11:1091-1110.
51. Sarkar A, Biswas A. Multicriteria decision-making using Archimedean aggregation operators in Pythagorean hesitant fuzzy environment.

Int J Intell Syst. 2019;34(7):1361-1386.

How to cite this article: Sarkar A, Biswas A. Development of Archimedean t-norm and t-conorm-based
interval-valued dual hesitant fuzzy aggregation operators with their application in multicriteria decision making.
Engineering Reports. 2020;2:e12106. https://doi.org/10.1002/eng2.12106

 25778196, 2020, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/eng2.12106, W

iley O
nline L

ibrary on [18/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1080/0952813x.2019.1620871
https://doi.org/10.1002/eng2.12106


DOI: 10.1002/int.22099

RE S EARCH ART I C L E

Multicriteria decision‐making using
Archimedean aggregation operators in
Pythagorean hesitant fuzzy environment

Arun Sarkar | Animesh Biswas

Department of Mathematics, University
of Kalyani, Kalyani, India

Correspondence
Animesh Biswas, Department of
Mathematics, University of Kalyani,
Kalyani, West Bengal 741235, India.
Email: abiswaskln@rediffmail.com

Abstract

In multicriteria decision‐making (MCDM), the existing

aggregation operators are mostly based on algebraic

t‐conorm and t‐norm. But, Archimedean t‐conorms and

t‐norms are the generalized forms of t‐conorms and

t‐norms which include algebraic, Einstein, Hamacher,

Frank, and other types of t‐conorms and t‐norms. From

that view point, in this paper the concepts of Archimedean

t‐conorm and t‐norm are introduced to aggregate Pytha-

gorean hesitant fuzzy information. Some new operational

laws for Pythagorean hesitant fuzzy numbers based on

Archimedean t‐conorm and t‐norm have been proposed.

Using those operational laws, Archimedean t‐conorm and

t‐norm‐based Pythagorean hesitant fuzzy weighted aver-

aging operator and weighted geometric operator are

developed. Some of their desirable properties have also

been investigated. Afterwards, these operators are applied

to solve MCDM problems in Pythagorean hesitant fuzzy

environment. The developed Archimedean aggregation

operators are also applicable in Pythagorean fuzzy contexts

also. To demonstrate the validity, practicality, and effec-

tiveness of the proposed method, a practical problem is

considered, solved, and compared with other existing

method.
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1 | INTRODUCTION

Atanassov1–3 introduced the concept of intuitionistic fuzzy set (IFS), which is a generalization
of the concept of fuzzy set.4 In IFS, the sum of the degrees of membership and nonmembership
is less than or equal to 1. In real‐life, IFS has been successfully applied to solve multicriteria
decision‐making (MCDM) problems.5–12 Recently, Yager13,14 introduced Pythagorean fuzzy set
(PFS) as a more generalized version of fuzzy sets. PFS has emerged as a highly efficient tool for
depicting uncertainty in MCDM problems. As like IFS, PFS is also characterized by the
membership degree and the nonmembership degree of its elements. But it extends in a manner
that the square of the sum of membership and nonmembership values is less than or equal to 1.
As a consequence, IFSs are appeared as a special type of PFSs. Within its short span, PFSs has
been studied extensively and applied to many practical areas successfully after its inception.
Zhang and Xu15 provided the detailed mathematical expression for PFS and introduced the
concept of Pythagorean fuzzy number (PFN). Yager14 proposed Pythagorean fuzzy weighted
average (PFWA) operator, Pythagorean fuzzy weighted geometric average operator, Pythagor-
ean fuzzy weighted power average operator, and Pythagorean fuzzy weighted power geometric
average operator. Garg16 proposed Pythagorean fuzzy Einstein weighted averaging (PFEWA),
Pythagorean fuzzy Einstein ordered weighted averaging (PFEOWA), generalized PFEWA
(GPFEWA), and generalized PFEOWA (GPFEOWA) operators. Biswas and Sarkar17 developed
Pythagorean fuzzy‐dependent operators, and also proposed18 a new technique for order
preference by similarity to ideal solution (TOPSIS)‐based methodology on Pythagorean fuzzy
environment. After that, Peng and Yang19 introduced interval‐valued Pythagorean fuzzy (IVPF)
set (IVPFS) and developed two aggregation operators for aggregating the IVPF information,
such as IVPHF weighted average operator and IVPF weighted geometric operator. Biswas and
Sarkar20 developed point operator‐based similarity measures for IVPF sets. Wei and Lu21

proposed some Pythagorean fuzzy Maclaurin symmetric mean operators in multiattribute
decision‐making (MADM). Zeng et al22 developed a hybrid method for Pythagorean fuzzy
MCDM. Wei23 developed Pythagorean fuzzy interaction aggregation operators for MADM.

However, in many real‐life MCDM problems decision‐makers (DMs) are unable to
determine the exact membership degree of an element to a set due to some sort of doubts
among a few different values. To solve these problems, Torra and Narukawa24 and Torra25

proposed the concept of hesitant fuzzy set (HFS), which permits the membership degree of an
element to be a set of several possible values between 0 and 1. Subsequently, Zhu et al26 defined
dual hesitant fuzzy (DHF) set (DHFS) by considering the membership degree and
nonmembership degree corresponding to an element to a given fixed set by assigning two
sets of crisp values belonging to [0, 1]. It is to be noted here that DHFS can be regarded as an
extension of IFS. Wang et al27 developed some aggregation operators for DHFSs, namely, DHF
power average operators, DHF power geometric operators, Einstein DHF power average, and
the Einstein DHF power geometric operators. Biswas and Sarkar28 proposed DHF prioritized
Einstein weighted averaging operator and DHF prioritized Einstein weighted geometric
operators in the recent past. Inspired by the idea of HFS and PFS, Wei et al29 proposed the
concept of Pythagorean HFS (PHFS). Wei et al29 also introduced Pythagorean hesitant fuzzy
Hamacher aggregation operators to solve multiple attribute MADM problems.

It is customary to mention here that most of the above aggregation methods are based on
widely used algebraic product and algebraic sum operations. However, Archimedean t‐conorm
and t‐norm30,31 are the generalizations of different types of fuzzy set theoretic operations.
Changing the generators, a wide class of t‐conorms and t‐norms can be covered up, namely,
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algebraic, Einstein, Hamacher, Frank, and other classes of t‐conorms and t‐norms. Thus
operators based on Archimedean t‐conorm and t‐norm possess important significance to
research in Pythagorean fuzzy environment, especially in aggregation methods.

The motivation of this paper is to introduce Archimedean t‐conorm and t‐norm to aggregate
PHF information. Some of the operational laws on PHFS based on Archimedean t‐conorm and
t‐norm have been defined. Archimedean t‐conorm and t‐norm‐based PHF weighted averaging
(APHFWA) operator and Archimedean t‐conorm and t‐norm‐based PHF weighted geometric
(APHFWG) operator are developed and some of their desirable properties have also been
described. The developed operators are then used to solve MCDM problems with PHF
information. Finally, a practical example, previously studied by Wei et al,29 is considered and
solved to illustrate the proposed method.

2 | PRELIMINARIES

To develop the proposed methodologies, some basic definitions related to PFSs13,14 and
operations on them are briefly discussed in this section.

2.1 | Pythagorean fuzzy set

Definition 1 (Yager13,14). Let X be a universe of discourse. A PFS P in X is given by

│ ∈{ }P x μ x ν x x X= , ( ), ( ) ,p p

where →μ X: [0,1]p denotes the degree of membership and →ν X: [0,1]p denotes the
degree of nonmembership of the element ∈x X to the set P with the condition that

≤ ≤( )μ x ν x0 ( ( )) + ( ) 1.p p
2 2

The degree of indeterminacy is given by

π x μ x ν x( ) = 1 − ( ( )) − ( ( )) .p p p
2 2

For convenience, Zhang and Xu15 called μ x ν x( ( ), ( ))p p as a PFN and is denoted
by p μ ν= ( , )p p .

For PFNs, Yager and Abbasov32 introduced score and accuracy functions in the following
manners.

Definition 2 (Yager and Abbasov32). For any PFN p μ ν= ( , )p p , the score function of p is
defined as follows:

S p μ ν( ) = ( ) − ( ) ,p p
2 2

where ∈S p( ) [−1,  1].

SARKAR AND BISWAS | 3



For a PFN p μ ν= ( , )p p , the accuracy function of p is defined as

A p μ ν( ) = ( ) + ( ) .p p
2 2

Yager and Abbasov32 proposed a ranking method of PFNs as follows.

Definition 3 (Zhang and Xu15). Let p1 and p2 be any two PFNs, then the ordering of
those PFNs are done by the following principles:

• if S p S p( ) > ( )1 2 , then ≻p p1 1;

• if S p S p( ) = ( )1 2 , then

(1) if A p A p( ) > ( )1 2 , then ≻p p1 2;

(2) if A p A p( ) = ( )1 2 , then ≈p p1 2.

Four basic operations on PFNs are presented by Yager13 and Yager and Abbasov32 as follows.

Definition 4 (Yager13; Yager and Abbasov32). Let p μ ν= ( , ), p μ ν= ( , )1 1 1 and
p μ ν= ( , )2 2 2 be three PFNs, and λ > 0, then some basic operations are defined as follows:

(1) ⊕ ( )p p μ μ μ μ ν ν= + − ,1 2 1
2

2
2

1
2

2
2

1 2 ,

(2) ⊗ ( )p p μ μ ν ν ν ν= , + −1 2 1 2 1
2

2
2

1
2

2
2 ,

(3) ( )( )λp μ ν= 1 − 1 − ,λ λ2 , λ > 0,

(4) ( ( ) )p μ ν= , 1 − 1 −λ λ λ2 , λ > 0.

2.2 | Pythagorean hesitant fuzzy set

Following the concepts of HFSs and PFSs, Wei et al extended HFSs by introducing the
Pythagorean concept in it and defined a new variety of fuzzy set, called PHFS which is
described as follows:

Definition 5 (Wai et al29). Let X be a universe of discourse. A PHFS on X is defined as

∈P x h x x X= { , ( ) | },P

where h x( )P is a set of possible PFNs defined on X .

For convenience, Wei et al29 called ⋃ ∈p h x γ η= ( ) = {( , )}P γ η h x( , ) ( )P a Pythagorean hesitant
fuzzy number (PHFN) where γ η( , ) is a PFN. A PHFN is generally denoted by p h μ υ= = ( , )P .

To compare the PHFNs, Wei et al29 introduced the following ranking method.
For any PHFN p μ υ= ( , ), the score function of p be defined as follows:
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⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑

∈

S p
l

γ η( ) = 1
2

1 + 1
( − ) ,

h γ η μ υ( , ) ( , )

2 2 (1)

where ∈S p( ) [−1,  1].
For a PHFN p μ υ= ( , ), the accuracy function of p be defined as follows:

∑
∈

A p
l

γ η( ) = 1
( − ),

h γ η μ υ( , ) ( , )

2 2 (2)

where lh are the number of elements in μ υ( , ).

Definition 6 (Wai et al29). Let p1 and p2 be any two PHFNs, then the ordering of those
two PHFNs are given by

• if S p S p( ) > ( )1 2 , then p1 is superior to p2, denoted by ≻p p1 2;

• if S p S p( ) = ( )1 2 , then

(1) If A p A p( ) > ( )1 2 , then ≻p p1 2;

if A p A p( ) = ( )1 2 , then p1 is equivalent to p2, denoted by ≈p p1 2.

Definition 7 (Wai et al29). Let p μ ν= ( , ), p μ ν= ( , )1 1 1 , and p μ ν= ( , )2 2 2 be three
PHFNs, and λ > 0, then four basic operations (algebraic) are defined as follows:

(1) ⊕ ⋃
∈
∈

{( )}p p γ γ γ γ η η= ( ) + ( ) − ( ) ( ) , ,
γ η μ ν
γ η μ ν

1 2
( , ) ( , ),
( , ) ( , )

1
2

2
2

1
2

2
2

1 2
1 1 1 1

2 2 2 2

(2) ⊗ ⋃
∈
∈

{( )}p p γ γ η η η η= , + − ,
γ η μ ν
γ η μ ν

1 2
( , ) ( , ),
( , ) ( , )

1 2 1
2

2
2

1
2

2
2

1 1 1 1

2 2 2 2

(3) ⋃
∈

{( )}λp γ η= 1 − (1 − ) , ,
γ η μ υ

λ λ

( , ) ( , )

2 λ > 0,

(4) ⋃
∈

{( )}p γ η= , 1 − (1 − ) ,λ

γ η μ υ

λ λ

( , ) ( , )

2 λ > 0.

2.3 | Archimedean t‐conorm and archimedean t‐norm
Klir and Yuan30 and Nguyen and Walker31 introduced Archimedean t‐conorms and
Archimedean t‐norms.

Definition 8 (Klir and Yuan30; Ngugen and Walker31). A fuzzy t‐conorm is a function
→U: [0,1] × [0,1] [0,1] that satisfies the following axioms for all ∈a b d, , [0,1]:

Axiom U1. U a a( , 0) = for all a.
Axiom U2. If ≤b b⁎ and ≤d d⁎ then ≤U b d U b d( , ) ( , )⁎ ⁎ .
Axiom U3. U a b U b a( , ) = ( , ) for all a and for all b.
Axiom U 4. U a U b d U U a b d( , ( , )) = ( ( , ), ) for all a b, , and d.
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Definition 9 (Klir and Yuan30; Ngugen and Walker31). A fuzzy t‐norm is a function
→I: [0,1] × [0,1] [0,1] that satisfies the following axioms for all ∈a b d, , [0,1]:

Axiom I1. I a a( , 1) = for all a.
Axiom I2. If ≤b b⁎ and ≤d d⁎ then ≤I b d I b d( , ) ( , )⁎ ⁎ .
Axiom I3. I a b I b a( , ) = ( , ) for all a and for all b.
Axiom I4. I a I b d I I a b d( , ( , )) = ( ( , ), ) for all a b, , and d.

Definition 10 (Klir and Yuan30; Ngugen and Walker31). A t‐conorm function U a b( , ) is
called Archimedean t‐conorm if it is continuous and U a a a( , ) > for all ∈a (0,1). An
Archimedean t‐conorm is called strictly Archimedean t‐conorm if it is strictly increasing
in each variable for ∈a b, (0,1).

Definition 11 (Klir and Yuan30; Ngugen and Walker31). A t‐norm function I a b( , ) is
called Archimedean t‐norm if it is continuous and I a a a( , ) < for all ∈a (0,1). An
Archimedean t‐norm is called strictly Archimedean t‐norm if it is strictly increasing in
each variable for ∈a b, (0,1).

Definition 12. Let f be a continuous function from [0,1] to  such that f (1) = 0 and f
is strictly decreasing function, then f is called decreasing generators.

Definition 13. Let g be a continuous function from [0,1] to  such that y (0) = 0 and y
is strictly increasing function, then y is called increasing generators.

Definition 14 (Klement and Mesiar33). A strict Archimedean t‐conorm is expressed by
an increasing generator g such that

∈U a b g g a g b g t f t a b t( , ) = ( ( ) + ( )) with ( ) = (1 − ) for all , , [0, 1],(−1) (3)

and similarly t‐norm is expressed by a decreasing generator f such that

∈I a b f f a f b a b( , ) = ( ( ) + ( )) for all , [0, 1].(−1) (4)

Klement and Mesiar33 proposed some t‐conorms and t‐norms for specific forms of the
function f , as follows:

(1) Let f t t( ) = −log , then g t f t t( ) = (1 − ) = −log(1 − ), f t( ) = e t−1 − , g t( ) = 1 − e t−1 − ,

and Algebric t‐conorm and t‐norm34 are defined asU a b a b ab( , ) = + −A , I a b ab( , ) =A .
(2) Let f t t t( ) = −log ((2 − )/ ), then g t t t( ) = log ((2 − (1 − ))/(1 − )), f t( ) = 2/(e +1)t−1 ,

g t( ) = 1 − 2/(e + 1)t−1 , and Einstein t‐conorm and t‐norm34 are defined as

U a b a b ab( , ) = ( + )/(1 + )E , I a b ab a b( , ) = /(1 + (1 − )(1 − )).E

(3) Let f t θ θ t t( ) = log (( + (1 − ) )/ ), θ > 0, then g t θ θ t t( ) = log (( + (1 − )(1 − ))/(1 − )),
f t θ θ( ) = /(e + − 1)t−1 , g t θ θ( ) = 1 − ( /(e + − 1))t−1 , and Hamacher t‐conorm and

t‐norm34 are defined as U a b a b ab θ ab θ ab( , ) = ( + − − (1 − ) )/(1 − (1 − ) )θ
H ,

I a b ab( , ) = /θ
H θ θ a b ab( + (1 − )( + − )), θ > 0. If θ = 1, then Hamacher t‐conorm and
t‐norm reduced to the algebraic t‐conorm and t‐norm, respectively. If θ = 2 then
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Hamacher t‐conorm and t‐norm reduced to the Einstein t‐conorm and t‐norm,
respectively.

(4) Let f t θ θ( ) = log (( − 1)/( − 1))t , θ > 1, then g t θ θ( ) = log (( − 1)/( − 1))t1− , f t( ) =−1

θ θlog (( − 1 + e )/e )/logt t , g t θ θ( ) = 1 − (log(( − 1 + e )/e )/log )t t−1 , and Frank t‐conorm
and t‐norm34 are defined as

⎛
⎝⎜

⎞
⎠⎟U a b

θ θ
θ

( , ) = 1 − log 1 +
( − 1)( − 1)

− 1
,θ θ

a b
F

1− 1−

⎛
⎝⎜

⎞
⎠⎟I a b

θ θ
θ

( , ) = log 1 +
( − 1)( − 1)

− 1
,θ θ

a b
F

θ > 1. Especially, if →θ 1, then we have → f t tlim ( ) = −logθ 1 .

3 | ARCHIMEDEAN t ‐CONORM AND t ‐NORM ON PHFNs

Archimedean t‐conorm and t‐norm play an important role in aggregation of fuzzy numbers and
is applied to solve different decision‐making problems.12,35 In this section, several operations
based on Archimedean t‐norm and t‐conorm in PHF environment are introduced, which is
defined by the following.

Definition 15. Let p μ ν= ( , ), p μ ν= ( , )1 1 1 , and p μ ν= ( , )2 2 2 be three PHFNs, and
λ > 0, now define some new operational laws for the PHFNs based on Archimedean
t‐conorm and Archimedean t‐norm as follows:

(1) ⊕ ⋃
∈
∈

{( )}p p U γ γ I η η= (( ) , ( ) ) , (( ) , ( ) )
γ η μ ν
γ η μ ν

1 2
( , ) ( , ),
( , ) ( , )

1
2

2
2

1
2

2
2

1 1 1 1

2 2 2 2

⋃
∈
∈

{( )}g g γ g γ f f η f η= ( (( ) ) + (( ) )) , ( (( ) ) + (( ) )) ,
γ η μ ν
γ η μ ν

( , ) ( , ),
( , ) ( , )

−1
1

2
2

2 −1
1

2
2

2

1 1 1 1

2 2 2 2

(2) ⊗ ⋃
∈
∈

{( )}p p I γ γ U η η= (( ) , ( ) ) , (( ) , ( ) )
γ η μ ν
γ η μ ν

1 1
( , ) ( , ),
( , ) ( , )

1
2

2
2

1
2

2
2

1 1 1 1

2 2 2 2

⋃
∈
∈

{( )}f f γ f γ g g η g η= ( (( ) ) + (( ) )) , ( (( ) ) + (( ) )) ,
γ η μ ν
γ η μ ν

( , ) ( , ),
( , ) ( , )

−1
1

2
2

2 −1
1

2
2

2

1 1 1 1

2 2 2 2

(3) ⋃
∈

{( )}λp g λg γ f λf η= ( (( ) )) , ( (( ) )) ,
γ η μ υ( , ) ( , )

−1 2 −1 2
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(4) ⋃
∈

{( )}p f λf γ g λg η= ( (( ) )) , ( (( ) )) .
γ η μ υ

λ

( , ) ( , )

−1 2 −1 2

• (Algebraic) When f t t( ) = −log , the algebraic operations as described in Definition 729 are
found.

• (Einstein) When f t t t( ) = log ((2 − )/ ), the following operations are defined as

(1)
⎧⎨⎩

⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭⊕ ⋃
∈
∈

p p = , ,
γ η μ ν
γ η μ ν

γ γ
γ γ

η η

η η1 2
( , ) ( , ),
( , ) ( , )

( ) + ( )
1 + ( ) ( ) 1 + (1 − ( ) )(1 − ( ) )

1 1 1 1

2 2 2 2

1
2

2
2

1
2

2
2

1 2

1
2

2
2

(2)
⎧⎨⎩

⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭⊗ ⋃
∈
∈

p p = , ,
γ η μ ν
γ η μ ν

γ γ

γ γ

η η
η η1 2

( , ) ( , ),
( , ) ( , )

1 + (1 − ( ) )(1 − ( ) )

( ) + ( )
1 + ( ) ( )

1 1 1 1

2 2 2 2

1 2

1
2

2
2

1
2

2
2

1
2

2
2

(3) ⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠

⎫⎬⎭⋃
∈

λp = , ,
γ η μ υ

γ γ
γ γ

η

η η( , ) ( , )

(1 + ( ) ) − (1 − ( ) )
(1 + ( ) ) + (1 − ( ) )

2 ( )

(2 − ( ) ) + (( ) )

2 λ 2 λ

2 λ 2 λ

λ

2 λ 2 λ
λ > 0,

(4) ⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠

⎫⎬⎭⋃
∈

p = , ,
γ η μ υ

γ

γ γ
η η
η η

λ

( , ) ( , )

2 ( )

(2 − ( ) ) + (( ) )
(1 + ( ) ) − (1 − ( ) )
(1 + ( ) ) + (1 − ( ) )

λ

2 λ 2 λ

2 λ 2 λ

2 λ 2 λ λ > 0,

which are Einstein operations on PHFs.

• (Hamacher) When f t θ θ t t( ) = log (( + (1 − ) )/ ), θ > 0, λ > 0, the following operations are
defined as

(1)
⎧⎨⎩

⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭⊕ ⋃
∈
∈

p p = , ,
γ η μ ν
γ η μ ν

γ γ γ γ θ γ γ
θ γ γ

η η

θ η η η η1 2
( , ) ( , ),
( , ) ( , )

( ) + ( ) − ( ) ( ) − (1 − )( ) ( )
1 − (1 − )( ) ( ) θ + (1 − )(( ) + ( ) − ( ) ( ) )

1 1 1 1

2 2 2 2

1
2

2
2

1
2

2
2

1
2

2
2

1
2

2
2

1 2

1
2

2
2

1
2

2
2

(2)
⎧⎨⎩

⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭⊗ ⋃
∈
∈

p p = , ,
γ η μ ν
γ η μ ν

γ γ

θ γ γ γ γ
η η η η θ η η

θ η η1 2
( , ) ( , ),
( , ) ( , )

θ + (1 − )(( ) + ( ) − ( ) ( ) )

( ) + ( ) − ( ) ( ) − (1 − )( ) ( )
1 − (1 − )( ) ( )

l

1 1 1 1

2 2 2 2

1 2

1
2

2
2

1
2

2
2

1
2

2
2

1
2

2
2

1
2

2
2

1
2

2
2

(3) ⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠

⎫⎬⎭⋃
∈

λp = , ,
γ η μ υ

θ γ γ
θ γ θ γ

η

θ η θ η( , ) ( , )

(1 + ( − 1)( ) ) − (1 − ( ) )
(1 + ( − 1)( ) ) + ( − 1)(1 − ( ) )

θ ( )

(1 + ( − 1)(1 − ( ) )) + ( − 1)( )

λ λ

λ λ

λ

λ λ

2 2

2 2 2 2

(4) ⎜ ⎟
⎧⎨⎩

⎛
⎝

⎞
⎠

⎫⎬⎭⋃
∈

p = , ,
γ η μ υ

γ

θ γ θ γ
θ η η

θ η θ η
λ

( , ) ( , )

θ ( )

(1 + ( − 1)(1 − ( ) )) + ( − 1)( )
(1 + ( − 1)( ) ) − (1 − ( ) )

(1 + ( − 1)( ) ) + ( − 1)(1 − ( ) )

λ

λ λ

λ λ

λ λ2 2

2 2

2 2

which are Hamacher operations on PHFs.

• (Frank) When f t θ θ( ) = log (( − 1)/( −1))t , θ > 1, and λ > 0, then the following operations
are defined as
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(1) ⎜ ⎟
⎪

⎪⎧⎨
⎩

⎛
⎝
⎜⎜ ⎛

⎝
⎞
⎠⊕ ⋃

∈
∈

p p = 1 − log 1 + ,( ) ( )

γ η μ ν
γ η μ ν

θ
θ θ

θ1 2
( , ) ( , ),
( , ) ( , )

−1 − 1
− 1

γ γ

1 1 1 1

2 2 2 2

1−( 1)2 1−( 2)2

⎛
⎝⎜

⎞
⎠⎟

⎞

⎠
⎟⎟

⎫
⎬⎪
⎭⎪

θ θ
θ

log 1 +
( − 1)( − 1)

− 1
,θ

η η( ) ( )1
2

2
2

(2) ⎜ ⎟
⎪

⎪

⎧
⎨
⎩

⎛
⎝
⎜⎜ ⎛

⎝
⎞
⎠⊗ ⋃

∈
∈

p p = log 1 + ,( ) ( )

γ η μ ν
γ η μ ν

θ
θ θ

θ1 2
( , ) ( , ),
( , ) ( , )

−1 −1
− 1

γ γ

1 1 1 1

2 2 2 2

( 1)2 ( 2)2

⎛
⎝⎜

⎞
⎠⎟

⎞

⎠
⎟⎟

⎫
⎬⎪
⎭⎪

θ θ
θ

1 − log 1 +
( − 1)( −1)

− 1
,θ

η η1−( ) 1−( )1
2

2
2

(3) ⎜ ⎟
⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎛
⎝
⎜⎜ ⎛

⎝
⎞
⎠

⎞
⎠
⎟⎟

⎫
⎬
⎭

⋃
∈

( )λp = 1 − log 1 + , log 1 + ,( )

γ η μ υ
θ

θ
θ θ

θ
θ

( , ) ( , )

−1
( − 1)

( − 1)
( − 1)

γ λ

λ

η λ

λ

1−( )2

−1

( )2

−1

(4) ⎜ ⎟
⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎛
⎝
⎜⎜ ⎛

⎝
⎞
⎠

⎞
⎠
⎟⎟

⎫
⎬
⎭

⋃
∈

( )p = log 1 + , 1 − log 1 + ,)

γ η μ υ
θ

θ
θ θ

θ
θ

λ

( , ) ( , )

( − 1)
( − 1)

( − 1
( − 1)

γ λ

λ

η λ

λ

( )2

−1

1−( )2

−1

which are Frank class of t‐norms and t‐conorms on PHFs.

4 | PYTHAGOREAN HESITANT FUZZY ARCHIMEDEAN
AGGREGATION OPERATORS

In this section, two types of aggregation operators based on Archimedean t‐norm and t‐conorm,
namely, averaging and geometric aggregation operators, as a general case, are developed.
Subsequently, for different types of decreasing generators, several types of aggregation operators
are derived.

4.1 | Pythagorean hesitant fuzzy archimedean averaging operators

Definition 16. Let pi ∈i n P( = 1,2, …, ) be a collection of PHFNs, and let
ω ω ω ω= ( , , …, )n

T
1 2 be the weight vector with ∈ω [0,1]i and ∑ ω = 1i

n
i=1 . Then,

an APHFWA operator is a mapping →P P: n , defined by pAPHFWA( ,1
⊕p p ω p, …, ) = ( )n i

n
i i2 =1 , where ⊕ conveys the meaning as described in Definition 15.

Several properties of the above defined APHFWA operator are described as follows.

Theorem 1. Let p μ ν= ( , )i i i i n( = 1,2, …, ) be a collection of PHFNs, and then the
aggregated value by using APHFWA operator is also a PHFN and
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⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭∑ ∑⋃
∈ ∈

∈

( ) ( )
p p p

g ω g γ f ω f η

APHFWA( , , …, )

= (( ) ) , (( ) ) .

n

γ η μ ν γ η μ ν
γ η μ ν

i

n
i i i

n
i i

1 2

( , ) ( , ),( , ) ( , ),
…,( , ) ( , )

−1
=1

2 −1
=1

2

n n n n

1 1 1 1 2 2 2 2

(5)

Proof. For n = 2,

⋃
∈

{( )}ω p g ω g γ f ω f η= ( (( ) )) , ( (( ) )) and
γ η μ ν

1 1
( , ) ( , )

−1
1 1

2 −1
1 1

2

1 1 1 1

⋃
∈

{( )}ω p g ω g γ f ω f η= ( (( ) )) , ( (( ) )) .
γ η μ ν

2 2
( , ) ( , )

−1
2 2

2 −1
2 2

2

2 2 2 2

Now ⊕ω p ω p1 1 2 2

⋃
∈
∈

{( g g g ω g γ g g ω g γ= ( ( ( (( ) ))) + ( ( ( ( ) )))) ,
γ η μ ν
γ η μ ν

( , ) ( , ),
( , ) ( , )

−1 −1
1 1

2 −1
2 2

2

1 1 1 1

2 2 2 2

)}f f f ω f η f f ω f η( ( ( (( ) ))) + ( ( (( ) ))))−1 −1
1 1

2 −1
2 2

2

⎪

⎪⎧⎨
⎩

⎛
⎝
⎜⎜⋃

∈
∈

g ω g γ ω g γ= ( (( ) ) + (( ) )) ,
γ η μ ν
γ η μ ν

( , ) ( , ),
( , ) ( , )

−1
1 1

2
2 2

2

1 1 1 1

2 2 2 2

⎪

⎪⎫⎬
⎭

f ω f η ω f η( (( ) ) + (( ) )) )−1
1 1

2
2 2

2

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭∑ ∑⋃
∈
∈

( ) (g ω g γ f ω f η= (( ) ) , (( ) )) .
γ η μ ν
γ η μ ν

i i i i i i
( , ) ( , ),
( , ) ( , )

−1
=1

2 2 −1
=1

2 2

1 1 1 1

2 2 2 2

Thus the theorem holds for n = 2. Suppose that theorem is true for n k= , ie,

p p pAPHFWA( , , …, )k1 2

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭∑ ∑⋃
∈ ∈

∈

( ) (g ω g γ f ω f η= (( ) ) , (( ) )) .
γ η μ ν γ η μ ν

γ η μ ν

i

k
i i i

k
i i

( , ) ( , ),( , ) ( , ),
…,( , ) ( , )

−1
=1

2 −1
=1

2

k k k k

1 1 1 1 2 2 2 2

Now when n k= + 1,
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⎛
⎝⎜

⎞
⎠⎟∑ ∑

⊕

⋃ ⊕
∈ ∈

∈

{ }( ) ( )
p p p p p p p ω p

g ω g γ f ω f η

APHFWA( , ,…, , ) = APHFWA( , ,…, )

= (( ) ) , (( ) )

k k k k k

γ η μ ν γ η μ ν
γ η μ ν

i

k
i i i

k
i i

1 2 +1 1 2 +1 +1

( , ) ( , ),( , ) ( , ),
…,( , ) ( , )

−1
=1

2 −1
=1

2

k k k k

1 1 1 1 2 2 2 2

⋃
∈

{( )}g ω g γ f ω f η( (( ) )) , ( (( ) ))
γ η μ ν

k k k k
( , ) ( , )

−1
+1 +1

2 −1
+1 +1

2

k k k k+1 +1 +1 +1

⎜ ⎟
⎪

⎪⎧⎨
⎩

⎛
⎝
⎜⎜

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟∑⋃

∈
( )g g g ω g γ g g ω g γ= (( ) ) + ( ( (( ) ))) ,

γ η μ ν
i k k

i

k
i i k k

( , ) ( , ),
=1,2, …, ,  +1

−1 −1
=1

2 −1
+1 +1

2

i i i i

⎜ ⎟
⎪

⎪⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎞
⎠
⎟⎟

⎫
⎬
⎭

⎧⎨⎩
⎛
⎝⎜

∑

∑⋃
∈

( )
( )

f f f ω f η f f ω f η

g ω g γ ω g γ

(( ) ) + ( ( (( ) )))

= (( ) ) + (( ) ) ,

i

k
i i k k

γ η μ ν
i k k

i

k
i i k k

−1 −1
=1

2 −1
+1 +1

2

( , ) ( , ),
=1,2, …, ,  +1

−1
=1

2
+1 +1

2

i i i i

⎞
⎠⎟

⎫⎬⎭
⎧⎨⎩

⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭

∑

∑ ∑⋃
∈

( )
( ) ( )

f ω f η ω f η

g ω g γ f ω f η

(( ) ) + (( ) )

(( ) ) , (( ) ) .

i

k
i i k k

γ η μ ν
i k k

i

k
i i i

k
i i

−1
=1

2
+1 +1

2

( , ) ( , ),
=1,2, …, ,  +1

−1
=1

+1 2 −1
=1

+1 2

i i i i

Hence, the above is true for n k= + 1 also. Thus the theorem is true for all
integers. This completes the proof of the theorem.

• (Algebraic) If f t t( ) = −log , then the APHFWA operator reduces to the Pythagorean
hesitant fuzzy weighted averaging (PHFWA) operator defined as

⎪ ⎪
⎪ ⎪⎧
⎨
⎩

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎫
⎬
⎭

∏ ∏⋃
∈ ∈

∈

p p p γ ηPHFWA( , , …, ) = 1 − (1 − ( ) ) , ( ) .n
γ η μ ν γ η μ ν

γ η μ ν
i

n

i
ω

i

n

i
ω

1 2
( , ) ( , ),( , ) ( , ),

…,( , ) ( , )
=1

2

=1
n n n n

i i

1 1 1 1 2 2 2 2

• (Einstein) If f t t t( ) = log ((2 − )/ ), then the APHFWA operator reduces to the Pythagorean
hesitant fuzzy Einstein weighted averaging (PHFEWA) operator defined as
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⎧
⎨⎪
⎩⎪

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎫
⎬⎪
⎭⎪

⋃
∏ ∏

∏ ∏

∏

∏ ∏

∈ ∈
∈

p p p
γ γ

γ γ

η

η η

PHFEWA( , , …, ) =
(1 + ( ) ) − (1 − )

(1 + ( ) ) + (1 − ( ) )
,

2 ( )

(2 − ( ) ) + (( ) )
.

n
γ η μ ν γ η μ ν

γ η μ ν

i
n

i
ω

i
n

i
ω

i
n

i
ω

i
n

i
ω

i
n

i
ω

i
n

i
ω

i
n

i
ω

1 2
( , ) ( , ),( , ) ( , ),

…,( , ) ( , )

=1
2

=1
2

=1
2

=1
2

=1

=1
2

=1
2

n n n n

i i

i i

i

i i

1 1 1 1 2 2 2 2

• (Hamacher) When f t θ θ t t( ) = log (( + (1 − ) )/ ), θ > 0, then the APHFWA operator
reduces to the Pythagorean hesitant fuzzy Hamacher weighted averaging (PHFHWA)
operator defined as

⎧
⎨⎪
⎩⎪

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎫
⎬⎪
⎭⎪

⋃
∏ ∏

∏ ∏

∏

∏ ∏

∈ ∈
∈

p p p

θ γ γ

θ γ θ γ

θ η

θ η θ η

PHFHWA( , ,…, )

=
(1 + ( − 1)( ) ) − (1 − ( ) )

(1 + ( − 1)( ) ) + ( − 1) (1 − ( ) )
,

( )

(1 + ( − 1)(1 − ( ) )) + ( − 1) (( ) )
.

n

γ η μ ν γ η μ ν
γ η μ ν

i
n

i
ω

i
n

i
ω

i
n

i
ω

i
n

i
ω

i
n

i
ω

i
n

i
ω

i
n

i
ω

1 2

( , ) ( , ),( , ) ( , ),
…,( , ) ( , )

=1
2

=1
2

=1
2

=1
2

=1

=1
2

=1
2

n n n n

i i

i i

i

i i

1 1 1 1 2 2 2 2

(6)

if the value of θ is considered as 1 and 2 in the above equation, then PHFHWA operator reduces
to PHFWA and PHFEWA operators, respectively.

• (Frank) When f t θ θ( ) = log (( − 1)/( − 1))t , θ > 1, then the APHFWA operator reduces to
the Pythagorean hesitant fuzzy Frank weighted averaging (PHFFWA) operator defined as

⎧
⎨⎪
⎩⎪

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎫
⎬⎪
⎭⎪

⋃
∏ ∏

∈ ∈
∈

( ( ) ) ( ( ) )

p p p

θ
θ

θ
θ

PHFFWA( , ,…, )

= 1 −
log 1 + −1

log
,

log 1 + −1
log

.

n

γ η μ ν γ η μ ν
γ η μ ν

i
n γ ω

i
n η ω

1 2

( , ) ( , ),( , ) ( , ),
… ,( , ) ( , )

=1
1−( )

=1
( )

n n n n

i i i i

1 1 1 1 2 2 2 2

2 2

(7)

Theorem 2 (Boundary). Let p μ ν= ( , )i i i i n( = 1, 2, …, ) be a collection of PHFNs, and let
γ γ= min{ }imin min

, where ∈γ γ= min { }i γ η μ ν i( , ) ( , )i i i imin
for all i n= 1, 2, …, .

γ γ= max{ }imax max
, where ∈γ γ= max { }i γ η μ ν i( , ) ( , )i i i imax

for all i n= 1, 2, …, .
η η= min{ }imin min

, where ∈η η= min { }i γ η μ ν i( , ) ( , )i i i imin
for all i n= 1, 2, …, .

η η= max{ }imax max
, where ∈η η= max { }i γ η μ ν i( , ) ( , )i i i imax

for all i n= 1, 2, …, .
Let p γ η= ( , )− min max and p γ η= ( , ).+ max min

≤ ≤p p p p pAPHFWA( , , …, ) .n− 1 2 + (8)

Let

p p p pAPHFWA( , , …, ) =n1 2
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⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭∑ ∑⋃
∈ ∈

∈

( ) ( )g ω g γ f ω f η= (( ) ) , (( ) ) .
γ η μ ν γ η μ ν

γ η μ ν

i

n
i i i

n
i i

( , ) ( , ),( , ) ( , ),
…,( , ) ( , )

−1
=1

2 −1
=1

2

n n n n

1 1 1 1 2 2 2 2

Proof. For any i n= 1, 2, …, , we have ≤ ≤γ γ γimin max,

ie, ≤ ≤γ γ γ( ) ( ) ( ) .imin
2 2

max
2

Since g t( ) ∈t( [0,1]) is a monotonic increasing function, we get

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑ ∑≤ ≤g ω g γ g ω g γ g ω g γ(( ) ) (( ) )) (( ) ) ,

i

n

i
i

n

i i
i

n

i
−1

=1
min

2 −1

=1

2 −1

=1
max

2

which implies that
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑≤ ≤γ g ω g γ γ( ) (( ) ) ( ) .

i

n

i imin
2 −1

=1

2
max

2 (9)

For any i n= 1, 2, …, , we have ≤ ≤η η η( ) ( ) ( )imin
2 2

max
2 since f t( ) ∈t( [0,1]) is a

decreasing function, we get

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑ ∑≤ ≤f ω f η f ω f η f ω f η(( ) ) (( ) ) (( ) ) ,

i

n

i
i

n

i i
i

n

i
−1

=1
min

2 −1

=1

2 −1

=1
max

2

which implies that

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑≤ ≤η f ω f η η( ) (( ) ) ( ) .

i

n

i imin
2 −1

=1

2
max

2 (10)

From (9) and (10),

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑≤ ≤γ η g ω g γ f ω f η γ η( ) − ( ) (( ) ) − (( ) ) ( ) − ( ) ,

i

n

i i
i

n

i imin
2

max
2 −1

=1

2 −1

=1

2
max

2
min

2

≤ ≤S p S p p p S p( ) (APHFWA( , , …, )) ( ).n− 1 2 +

Therefore

≤ ≤p p p p pAPHFWA( , , …, ) .n− 1 2 +

Theorem 3. Let pi i n( = 1,2, …, ) be a collection of PHFNS, ∈ω [0,1]i i n( = 1,2, …, ) be
their corresponding weight vectors, and ∑ ω = 1i

n
i=1 , if p be an PHFN, then

⊕ ⊕ ⊕ ⊕p p p p p p p p p pAPHFWA( , , …, ) = APHFWA( , , …, ) .n n1 2 1 2
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Proof.

⊕ ⋃
∈
∈

{( )}p p g g γ g γ f f η f η= ( (( ) ) + (( ) )) , ( (( ) ) + (( ) )) .i
γ η μ ν
γ η μ υ

i i
( , ) ( , ),
( , ) ( , )

−1 2 2 −1 2 2

i i i i

Let

⊕ ⊕ ⊕p p p p p pAPHFWA( , , …, )n1 2

⎧⎨⎩
⎛
⎝⎜ ∑⋃

∈ ∈
∈ ∈

( )g ω g g g γ g γ= ( ( (( ) ) + (( ) ))) ,
γ η μ ν γ η μ ν

γ η μ ν γ η μ υ

i

n
i i

( , ) ( , ),( , ) ( , ),
…,( , ) ( , ),( , ) ( , )

−1
=1

−1 2 2

n n n n

1 1 1 1 2 2 2 2

⎞
⎠⎟

⎫⎬⎭∑( )f ω f f f η f η( ( (( ) ) + (( ) )))i

n
i i

−1
=1

−1 2 2

⎧⎨⎩
⎛
⎝⎜ ∑⋃

∈ ∈
∈ ∈

( )g ω g γ g γ= ( (( ) ) + (( ) )) ,
γ η μ ν γ η μ ν

γ η μ ν γ η μ υ

i

n
i i

( , ) ( , ),( , ) ( , ),
…,( , ) ( , ),( , ) ( , )

−1
=1

2 2

n n n n

1 1 1 1 2 2 2 2

⎞
⎠⎟

⎫⎬⎭∑( )f ω f η f η( (( ) ) + (( ) ))i

n
i i

−1
=1

2 2

⎧⎨⎩
⎛
⎝⎜ ∑⋃

∈ ∈
∈ ∈

( )g ω g γ g γ= (( ) ) + (( ) ) ,
γ η μ ν γ η μ ν

γ η μ ν γ η μ υ

i

n
i i

( , ) ( , ),( , ) ( , ),
…,( , ) ( , ),( , ) ( , )

−1
=1

2 2

n n n n

1 1 1 1 2 2 2 2

⎞
⎠⎟

⎫⎬⎭∑( )f ω f η f η(( ) ) + (( ) ) .
i

n
i i

−1
=1

2 2

Now

⊕p p p pAPHFWA( , , …, )n1 2

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭∑ ∑⋃

⊕ ⋃

∈ ∈
∈

∈

( ) ( )g ω g γ f ω f η

γ η

= (( ) ) , (( ) )

{( , )}

γ η μ ν γ η μ ν
γ η μ ν

i

n
i i i

n
i i

γ η μ υ

( , ) ( , ),( , ) ( , ),
…,( , ) ( , )

−1
=1

2 −1
=1

2

( , ) ( , )

n n n n

1 1 1 1 2 2 2 2
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⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠∑⋃

∈ ∈
∈ ∈

{ ( )( )g g g ω g γ g γ= (( ) ) + (( ) ) ,
γ η μ ν γ η μ ν

γ η μ ν γ η μ υ

i

n
i i

( , ) ( , ),( , ) ( , ),
…,( , ) ( , ),( , ) ( , )

−1 −1
=1

2 2

n n n n

1 1 1 1 2 2 2 2

⎜ ⎟
⎛
⎝

⎞
⎠

⎞
⎠⎟∑ }( )( )f f f ω f η f η(( ) ) + (( ) )i

n
i i

−1 −1
=1

2 2

⋃ ∑
∈ ∈

∈ ∈

{( g ω g γ g γ= ( (( ) )+ (( ) )) ,
γ η μ ν γ η μ ν

γ η μ ν γ η μ υ

i
n

i i
( , ) ( , ),( , ) ( , ),
…,( , ) ( , ),( , ) ( , )

−1
=1

2 2

n n n n

1 1 1 1 2 2 2 2

∑ )}f ω f η f η( (( ) )+ (( ) )) .i
n

i i
−1

=1
2 2

Hence the theorem.

Theorem 4 (Idempotency). If all p μ ν= ( , )i i i i n( =1, 2, …, ) are equal and let
p p μ υ= = ( , )i for all i n( =1, 2, …, ), then

p p p pAPHFWA( , , …, ) =n1 2 .

Proof.

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭∑ ∑⋃
∈ ∈

∈

( ) ( )p p p g ω g γ f ω f ηAPHFWA( , , …, ) = (( ) ) , (( ) ) .n
γ η μ ν γ η μ ν

γ η μ ν

i

n
i i i

n
i i1 2

( , ) ( , ),( , ) ( , ),
…,( , ) ( , )

−1
=1

2 −1
=1

2

n n n n
1 1 1 1 2 2 2 2

Now since p μ υ= ( , )i , γ η γ η( , ) = ( , )i i for all i n( = 1,2, …, ), then we have

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭∑ ∑⋃

⋃

∈

∈

( ) ( )p p p g g γ ω f f η ω

γ η γ η p

APHFWA( , ,…, ) = (( ) ) , (( ) )

= {( , )} = {( , )} = .

n
γ η μ ν
i n

i

n
i i

n
i

γ η μ ν
i n

1 2
( , ) ( , )

=1,2, …,

−1 2
=1

−1 2
=1

( , ) ( , )
=1,2, …,

i i

i i

Hence the theorem.

4.2 | Pythagorean hesitant fuzzy archimedean geometric operators

In the following, we shall propose some Pythagorean hesitant fuzzy Archimedean geometric
operator based on the Archimedean operations of PHFNs.

Definition 17. Let pi i n( = 1,2, …, ) be a collection of PHFEs, and let ω ω ω ω=( , , …, )n
T

1 2

be the weight vector with ∈ω [0,1]i and ∑ ω = 1i
n

i=1 . Then, an Archimedean t‐conorm
and t‐norm‐based Pythagorean hesitant fuzzy weighted geometric (APHFWG) operator
is a

mapping →P Pn , where ⊗p p p pAPHFWG( , , …, ) = ( )n i
n

i
ω

1 2 =1 i

⊗ conveys the meaning as described in the Definition 15.
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Theorem 5. Let p μ ν= ( , )i i i i n( = 1,2, …, ) be a collections of PHFNs, then the aggregated
value by using APHFWG operator is also a PHFN and

⎧⎨⎩
⎛
⎝⎜

⎞
⎠⎟

⎫⎬⎭∑ ∑⋃
∈

( ) ( )p p p f ω f γ g ω g ηAPHFWG( , ,…, ) = (( ) ) , (( ) ) .n
γ η μ ν
i n

i

n
i i i

n
i i1 2

( , ) ( , )
=1,2, …,

−1
=1

2 −1
=1

2

i i i i

(11)

Proof. Proof is same as the Theorem 1.

If the generator f is assigned different forms, then some specific interval‐valued DHF
weighted geometric operators can be obtained as follows:

• (Algebraic) If f t t( ) = −log , then the APHFWG operator reduces to the Pythagorean
interval‐valued hesitant fuzzy weighted geometric (PHFWG) operator defined as

⎪ ⎪
⎪ ⎪⎧
⎨
⎩

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎫
⎬
⎭

∏ ∏⋃
∈

p p p γ ηPHFWG( , , …, ) = ( ) , 1 − (1 − ( ) ) .n
γ η μ ν
i n

i

n

i
ω

i

n

i
ω

1 2
( , ) ( , )

=1,2, …,
=1 =1

2

i i i i

i i

• (Einstein) If f t t t( ) = log ((2 − )/ ), then the APHFWG operator reduces to the Pythagorean
hesitant fuzzy Einstein weighted geometric (PHFEWG) operator defined as

p p pPHFEWG( , , …, )n1 2

⎧
⎨⎪
⎩⎪

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎫
⎬⎪
⎭⎪

⋃
∏

∏ ∏

∏ ∏

∏ ∏∈

γ

γ γ

η η

η η
=

2 ( )

(2 − ( ) ) + (( ) )
,

(1 + ( ) ) − (1 − ( ) )

(1 + ( ) ) + (1 − ( ) )
.

γ η μ ν
i n

i
n

i
ω

i
n

i
ω

i
n

i
ω

i
n

i
ω

i
n

i
ω

i
n

i
ω

i
n

i
ω( , ) ( , )

=1,2, …,

=1

=1
2

=1
2

=1
2

=1
2

=1
2

=1
2

i i i i

i

i i

i i

i i

(12)

• (Hamacher) When f t θ θ t t( ) = log (( + (1 − ) )/ ), θ > 0, then the APHFWG operator
reduces to the Pythagorean hesitant fuzzy Hamacher weighted geometric (PHFHWG)
operator defined as

⎧⎨⎩
⎛
⎝⎜⋃

∈

∏

∏ ∏
p p pPHFHWG( , , …, ) = ,n

γ η μ ν
i n

θ γ

θ γ θ γ1 2
( , ) ( , )

=1,2,…,

( )

(1 + ( − 1)(1 − ( ) )) + ( − 1) (( ) )
i i i i

i
n

i
ωi

i
n

i
ωi

i
n

i
ωi

=1

=1
2

=1
2

⎞

⎠
⎟⎟

⎫
⎬⎪
⎭⎪

∏ ∏

∏ ∏

θ η η

θ η θ η

(1 + ( − 1)( ) ) − (1 − ( ) )

(1 + ( −1)( ) ) + ( − 1) (1 − ( ) )
,i

n
i

ω
i
n

i
ω

i
n

i
ω

i
n

i
ω

=1
2

=1
2

=1
2

=1
2

i i

i i
(13)

if θ = 1 and θ = 2 is substituted in the above equation, then PHFHWG operator reduces to
PHFWG and PHFEWG operator, respectively.
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• (Frank) When f t θ θ( ) = log (( − 1)/( − 1))t , θ > 1, then the APHFWG operator reduces to
the Pythagorean hesitant fuzzy Frank weighted geometric (PHFFWG) operator defined as:

p p pPHFFWG( , ,…, )n1 2

⎧
⎨⎪
⎩⎪

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎫
⎬⎪
⎭⎪

⋃
∏ ∏

∈

( ( ) ) ( ( ) )θ
θ

θ
θ

=
log 1 + − 1

log
, 1 −

log 1+ −1
log

.
γ η μ ν
i n

i
n γ ω

i
n η ω

( , ) ( , )
=1,2, …,

=1
( )

=1
1−( )

i i i i

i i i i
2 2

(14)

5 | AN APPROACH TO MCDM WITH PYTHAGOREAN
HESITANT FUZZY INFORMATION

In this section, the proposed APHFWA and APHFWG operators are used to develop an
approach to solve MCDM problems under PHF environment. For some MCDM, let
Z z z z= { , , …, }m1 2 be a set of alternatives to be selected, C C C C= { , , …, }n1 2 be a collection of
criterion such that their weight vector is given by ω ω ω ω= ( , ,…, )n

T
1 2 with ∈ω [0,1]j for

j n= 1,2,…, , and ∑ ω = 1j
n

j=1 . Suppose that P p= ( )ij m n× be a PHF decision matrix. Then, the
developed APHFWA (and APHFWG) operators are used to develop an approach for solving
MCDM problems in a PHF environment. The proposed methodology is described through the
following steps:

Step 1. Aggregate the PHFNs, pij for each alternative zi using the APHFWA APHFWG(or )
operator as follows:

p p p p= APHFWA( , , …, )i i i in1 2

⎛
⎝⎜

⎞
⎠⎟∑ ∑⋃

∈ { }( ) ( )g ω g γ f ω f η= (( ) ) , (( ) ) ,
γ η μ ν

j n

j

n
j ij j

n
j ij

( , ) ( , )
=1,2, …,

−1
=1

2 −1
=1

2

ij ij ij ij

(15)

or

p p p p= APHFWG( , , …, )i i i in1 2

⎛
⎝⎜

⎞
⎠⎟∑ ∑⋃

∈ { }( ( )f ω f γ g ω g η= (( ) )) , (( ) ) ,
γ η μ ν

j n

j

n
j ij j

n
j ij

( , ) ( , )
=1,2, …,

−1
=1

2 −1
=1

2

ij ij ij ij

(16)

i m= 1,  2,…, .

Step 2. Use Equation (1) to calculate the score value of each alternative.
Step 3. According to the Definition 6, the rank of the alternatives is evaluated.
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6 | ILLUSTRATIVE EXAMPLE

In the context of green supply chain management (GSCM) in PHF environment, one MCDM
problem previously studied by Wei et al,29 is considered and solved. With the fast growing
industrialization, the environmental and ecological impacts of products have become a major
issue in the society, since the civilization is facing various threats, like global warming, toxic
environments, ozone layer depletion, natural resources depletion, etc. To overcome such
situation GSCM is one of the emerging areas of research which is not just considers
environmental impacts, but also looks into productivity and profit. The problem is described
as follows.

The expert in a GSCM considers four criteria, namely (1) the product quality factor (C1);
(2) environmental factor (C2); (3) delivery factor (C3); and (4) price factor (C4). The weight
vector of the respective criterion is w = (0.4, 0.1, 0.2, 0.3)T . There are five green suppliers
available, and the set of all alternatives is denoted by Z z i= { | = 1, 2, 3, 4, 5}i . The
characteristics of the supplier z i( = 1, 2,…,5)i in terms of the criteria in are expressed by
the following decision matrix represented through PHFNs (see Table 1):

To obtain the best alternative(s), the developed APHFWA and APHFWG operators are
used and step‐by‐step execution of the proposed method is described below. In this context, it
is to be noted here that two types of Archimedean t‐norms and t‐conorms, namely, Hamacher
and Frank Classes are considered. Algebraic and Einstein classes can be derived as particular
cases of Hamacher class of t‐norms and t‐conorms.

Step 1. Utilize the aggregation operators APHFWA and APHFWG as described in Equations
(15) and (16), respectively, to aggregate all the preference values pij for each alternative zi and
get pi (i = 1, 2, 3, 4, 5).

Step 2. The score value S z( )i for each alternative, z i( = 1, 2, 3, 4, 5)i , is evaluated using
Definition 5.

Step 3. Utilize the ranking method to determine the best alternatives among five alternatives.

TABLE 1 Pythagorean hesitant fuzzy decision matrix

C1 C2

z1 {(0.2,0.3), (0.3,0.4)} {(0.4,0.6), (0.5,0.4), (0.7,0.2)}

z2 {(0.4,0.3), (0.6,0.4)} {(0.5,0.6), (0.6,0.4)}

z3 {(0.6,0.2), (0.7,0.3)} {(0.5,0.3), (0.5,0.4)}

z4 {(0.6,0.5), (0.7,0.4)} {(0.5,0.2), (0.6,0.5)}

z5 {(0.3,0.3), (0.6,0.4)} {(0.5,0.4), (0.7,0.4)}

C3 C4

z1 {(0.4,0.5), (0.6,0.3)} {(0.6,0.3), (0.7,0.4)}

z2 {(0.5,0.3), (0.5,0.6)} {(0.5,0.4), (0.7,0.6)}

z3 {(0.5,0.2), (0.8,0.6), (0.8,0.2)} {(0.4,0.5), (0.6,0.4)}

z4 {(0.4,0.3), (0.5,0.4)} {(0.6,0.2), (0.6,0.3), (0.8,0.4)}

z5 {(0.6,0.4), (0.7,0.4)} {(0.4,0.6), (0.5,0.3)}
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7 | RESULTS AND DISCUSSIONS

7.1 | Using PHFHWA operator

The proposed technique is applied to solve the above MCDM problem considering PHFHWA
operator (Equation (6)). For different values of the parameter θ, ranging between 0 to 20, the
change of score values obtained by the PHFHWA operator is depicted in Figure 1. It is to be
observed that the score values decrease with the increase of θ.

The following changes are observed in ordering of alternatives:

(1) For ∈θ [0, 0.8850], the decreasing order of the score values of the alternatives ranges
as ∈S z( ) [0.5635, 0.5739]1 , ∈S z( ) [0.5635, 0.5722]2 , ∈S z( ) [0.6454, 0.6575]3 , ∈S z( )4

[0.6291, 0.6384], and ∈S z( ) [0.5667, 0.5747]5 .
Thus the ordering of the alternatives in [0, 0.8850) appeared as ≻ ≻ ≻ ≻z z z z z3 4 5 1 2 and the
best alternative is identified as z3. At θ = 0.885, the score value of the alternatives
corresponding to z1 and z2 are equal with the values
S z S z( ) = 0.5635 = ( )1 2 . Thus the ranking of the five alternatives for θ = 0.885 becomes

≻ ≻ ≻z z z z z= .3 4 5 2 1 Therefore, z1 and z2 are interchangeable in the above ordering.
(2) For ∈θ (0.885, 6.631) the score values are obtained as ∈S z( ) (0.5447, 0.5635)1 ,

∈S z( ) (0.5563, 0.5635)2 , ∈S z( ) (0.6343, 0.6454)3 , ∈S z( ) (0.6209, 0.6291)4 , and ∈S z( )5

(0.5563, 0.5667).
Thus in (0.885, 6.631) the ordering of the alternatives becomes ≻ ≻ ≻ ≻z z z z z3 4 5 2 1. Thus
the best alternative is identified as z3 as like previous.
It is to be noted here that when θ = 6. 631, the score value of the alternatives corresponding
to z2 and z5 are equal with S z S z( ) = 0.5563 = ( )2 5 .
Thus in the ranking of the five alternatives when θ = 6. 631, z2 and z5 are interchangeable.

FIGURE 1 Scores for alternatives obtained by the PHFHWA operator. PHFHWA, Pythagorean hesitant
fuzzy Hamacher weighted averaging [Color figure can be viewed at wileyonlinelibrary.com]
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(3) Similarly, for ∈θ (6.631,20], the score values of the alternatives are found as
S z( ) = [0.5355, 0.5447)1 , S z( ) = [0.5544, 0.5563)2 , S z( ) = [0.6313, 0.6343)3 , S z( ) =4

[0. 6186, 0.6209), and S z( ) = [0. 5525, 0.5563)5 .

So the ordering of the five alternatives in this case is given by ≻ ≻ ≻ ≻z z z z z3 4 2 5 1

(Table 2).

Note 1 As described in (Equation (6)) Section 4.1, it is to be mentioned here that for if
the value of the parameter θ, is considered as 1 and 2 then the PHFHWA operator
reduced to the PHFWA and PHFEWA operator, respectively. Thus the score values and
the ordering of alternatives are presented below by Table 2.

It is worthy to mention here that for all values of the parameter θ, the best alternative is
identified as z3.

Wei et al29 considered the MCDM problem considering the value of the parameter θ = 3,
only, and the ranking of the alternatives found as the same as the proposed method using
PHFHWA operator. Thus the proposed method appeared as a generalized method in which the
technique of Wei et al29 is a special case.

7.2 | Using PHFHWG operator

Now, if PHFHWG operator (Equation (13)) is used, the achieved score values of the alternatives
are shown in Figure 2. From that it is clear that all score values obtained using PHFHWG
operator increase, monotonically, as the parameter θ increases from 0 to 20.

For ∈θ [0, 20], the score values of the alternatives using PHFHWG operator are ranges in
increasing order as S z( ) = [0.4872, 0.5342]1 , S z( ) = [0.5289, 0.5504]2 , S z( ) = [0.5927, 0.6243]3 ,
S z( ) = [0.5887, 0.6135]4 , and S z( ) = [0.5342, 0.5477]5 .

It is interesting to note here that for all values of the parameter, θ, the ordering of the
alternatives is ≻ ≻ ≻ ≻z z z z z3 4 2 5 1 (Table 3 and Figure 3).

Note 2 As like previous discussions, it is to be pointed out that if θ = 1, and θ = 2 is
considered in (Equation (13)) Section 4.2, then the score values and ordering of the alternatives
corresponding to PHFWG and PHFEWG operators are presented below by Table 3.

Note 3 Considering θ = 3, Wei et al29 applied PHFHWG operator and found the
ranking of the alternatives as ≻ ≻ ≻ ≻z z z z z3 4 5 2 1. The score value corresponding to z5

TABLE 2 Result using PHFWA and PHFEWA operators

Operators Score value Ranking of the alternatives

PHFWA S z( ) = 0.56261 , S z( ) = 0.56312 , S z( ) = 0.64463 ,

S z( ) = 0.62854 , S z( ) = 0.56615 .

≻ ≻ ≻ ≻z z z z z3 4 5 2 1

PHFEWA S z( ) = 0.55661 , S z( ) = 0.56012 , S z( ) = 0.64033 ,

S z( ) = 0.62544 , S z( ) = 0.56255

≻ ≻ ≻ ≻z z z z z3 4 5 2 1

Abbreviation: PHFWA, Pythagorean hesitant fuzzy weighted averaging; PHFEWA, Pythagorean hesitant fuzzy Einstein
weighted averaging.
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is presented by that method as S z( ) = 0.55085 , whereas, the score values
corresponding to θ = 3 for z5 are found by the developed method as S z( ) = 0.54255 ,
keeping all the other score values same as like existing method (Wei et al29).
Analyzing the characteristics of Figure 3 and calculating the score values, it is clear
that for all values of the parameter θ, the ordering of the alternatives is

≻ ≻ ≻ ≻z z z z z3 4 2 5 1, and the curve corresponding to the score values z2 and z5

never intersects, though those two curves come very closer to each other in the
neighborhood of the parameter θ = 1. Under this context, the authors feel that this
discrepancy arises due to some computational error of the existing method proposed
by Wei et al.29 The score of the alternatives z2 and z5 obtained by the PHFHWG
operator is specifically presented in the following Figure 3.

Now, the deviation values between the scores obtained using PHFHWA and PHFHWG
operators are presented in Figure 4. It is observed that the score values achieved
through PHFHWG operator is smaller than those values obtained through PHFHWA
operator. Also, the deviation among the score values decreases with the increase of the
parameter θ.

FIGURE 2 Scores for alternatives obtained by the PHFHWG operator. PHFHWG, Pythagorean hesitant
fuzzy Hamacher weighted geometric [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Result using PHFWG and PHFEWG operators

Operators Score value Ranking of the alternatives

PHFWG S z( ) = 0.51281 , S z( ) = 0.53852 , S z( ) = 0.60753 ,

S z( ) = 0.60164 , S z( ) = 0.53795

≻ ≻ ≻ ≻z z z z z3 4 2 5 1

PHFEWG S z( ) = 0.51681 , S z( ) = 0.54152 , S z( ) = 0.6123 ,

S z( ) = 0.60504 , S z( ) = 0.54095

≻ ≻ ≻ ≻z z z z z3 4 2 5 1

Abbreviation: PHFWG, Pythagorean interval‐valued hesitant fuzzy weighted geometric; PHFEWG, Pythagorean hesitant fuzzy
Einstein weighted geometric.
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7.3 | Using PHFFWA operator

The ordering of alternatives using PHFFWA operator as defined in (7) is found as
≻ ≻ ≻ ≻z z z z z3 4 5 2 1 and for different values of the parameter θ, score values of alternatives is

shown in Figure 5. From that figure it is clear that scores of the alternatives decrease as the
value of the parameter θ increases from 1 to 20.

7.4 | Using PHFFWG operator

Again if PHFFWG operator as defined in (14) is used then for different values of
the parameter θ, score values of alternatives is shown in the Figure 6. From that figure,
it is clear that scores of the alternatives increases as the value of the parameter θ increases
from 1 to 20. It is to be observed here that using PHFFWG operator, the ordering

FIGURE 3 Scores for alternatives z2 and z5 obtained by the PHFHWG operator. PHFHWG, Pythagorean
hesitant fuzzy Hamacher weighted geometric [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 Deviation values for alternatives between the PHFHWA and PHFHWG operators. PHFHWA,
Pythagorean hesitant fuzzy Hamacher weighted averaging; PHFHWG, Pythagorean hesitant fuzzy Hamacher
weighted geometric [Color figure can be viewed at wileyonlinelibrary.com]
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of alternatives changes at θ = 7.483. The ordering of the alternatives are presented as
follows:

(1) For ∈θ [1,7.483), the ordering of the five alternatives is ≻ ≻ ≻ ≻z z z z z3 4 2 5 1.
(2) For ∈θ (7.483,20], the ordering of the five alternatives is ≻ ≻ ≻ ≻z z z z z3 4 5 2 1.

Figure 7 illustrates the deviation values between the scores obtained by PHFFWA
operator and by the PHFFWG operator. It is noted that the scores obtained by the PHFFWA

FIGURE 5 Scores for alternatives obtained by the PHFFWA operator. PHFFWA, Pythagorean hesitant
fuzzy Frank weighted averaging [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Scores for alternatives obtained by the PHFFWG operator. PHFFWG, Pythagorean hesitant
fuzzy Frank weighted geometric [Color figure can be viewed at wileyonlinelibrary.com]
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operator are larger than the PHFFWG operator, and as the value of θ increases, the
deviation decreases.

8 | CONCLUSIONS

Archimedean t‐conorm and t‐norm are the generalizations of different classes of t‐conorms and
t‐norms, namely, algebraic, Einstein, Hamacher, Frank, etc. In this paper, Archimedean t‐
conorm and t‐norm are utilized to aggregate PHFNS to find best alternative in MCDM contexts
through the development of two aggregation operators, namely, PHFHWA and PHFHWG
operators PHFFWA and PHFFWG. Some operational laws on PHFNS together with their
desirable properties are investigated. The changes of score values are observed with the change
of the preferences of the alternatives by the DMs which are highly desirable in MCDM contexts.
The proposed aggregation operators also satisfy all the properties that the existing ones have.
The existing operators are appeared now as some special cases of Archimedean aggregation
operators. Finally, a practical example29 for green supplier selections in GSCM is given to verify
the developed approach and to demonstrate its practicality and effectiveness.

In future, some other types of interval‐valued Pythagorean hesitant fuzzy operators based on
the developed concepts of Archimedean t‐conorm and t‐norm can easily be derived.
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Development of dual hesitant fuzzy prioritized
operators based on Einstein operations
with their application to multi-criteria

group decision making

ANIMESH BISWAS and ARUN SARKAR

The purpose of this article is to develop a multicriteria group decision making (MCGDM)
method in dual hesitant fuzzy (DHF) environment by evaluating the weights of the decision
makers from the decision matrices using two newly defined prioritized aggregation operators
based on score function to remove the inconsistencies in choosing the best alternative. Pri-
oritized weighted averaging operator and prioritized weighted geometric operator based on
Einstein operations are described first for aggregating DHF information. Some of their desir-
able properties are also investigated in details. A method for finding the rank of alternatives in
MCGDM problems with DHF information based on priority levels of decision makers is de-
veloped. An illustrative example concerning MCGDM problem is considered to establish the
application potentiality of the proposed approach. The method is efficient enough to solve dif-
ferent real life MCGDM problems having DHF information.

Key words: multi-criteria group decision-making, aggregation operator, dual hesitant
fuzzy numbers, Einstein operations, prioritized weighted averaging operator, prioritized
weighted geometric operator

1. Introduction

Theory of Fuzzy sets (FSs) [31] are widely and successfully applied in all
areas of real life decision making problems to handle vagueness or possibilistic
imprecisions. After introduction of FSs, several extensions are developed, such
as type-2 FSs (T2FSs) [1–3, 8, 10], fuzzy multisets [10], interval-valued FSs
[32], etc. As a generalization of FSs, Atanassov presented the concept of intu-
itionistic FS (IFS) [17] using two characteristic functions representing the degree
of membership and the degree of non-membership of elements of the universal
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set to the IFS. As like FSs, in IFSs several variants are also found in the form of
intuitionistic linguistic FSs [7], interval-valued IFSs [3, 4, 12, 22], etc.

In real-life applications, when decision makers are confused with assign-
ing exact preference information using FSs or IFSs, the concept of hesitant FSs
(HFSs) came into the literature [15, 16] as a new generalization of FSs as well as
IFSs. HFSs deal with the difficulties of establishing a common membership de-
gree not because of a margin of error (IFSs), or some possibility distribution val-
ues (T2FS), but have a set of possible values. Torra [15] provided a definition cor-
responding to the envelope of HFSs. HFS has received a considerable attention
to the researchers and is applied to various fields of decision-making [14, 23].
Xia and Xu [21] developed several series of aggregation operators for hesitant
fuzzy information and discussed the relationships among them. In the context
of multi-criteria decision-making (MCDM), Wei et al., [20] proposed hesitant
fuzzy linguistic arithmetic aggregation operators. Based on the idea of priori-
tized aggregation operators [26] Wei [19] defined some prioritized aggregation
operators for aggregating hesitant fuzzy information and then applied them to
develop models for hesitant fuzzy multiple attribute decision making (MADM)
problems in which the attributes are in different priority level.

Zhu et al. [34] proposed dual hesitant fuzzy (DHF) set (DHFS) by consid-
ering several possible values for the membership as well as non-membership
degrees. Thus, DHFSs can take much more information than HFSs given by de-
cision makers into account in MADM. Wei and Lu [18] developed Dual hesitant
Pythagorean fuzzy Hamacher aggregation operators in MADM. Inspired by gen-
eralized ordered weighted average operator [25], Yu and Li [29] proposed some
generalized aggregation operators for DHFEs. Different MADM theories and
methods under DHF environments are developed using those aggregation oper-
ators. All the developed methods are under the assumption that the attributes are
at the same priority level. However, in real and practical MADM situation, the
attributes may have different priority levels. To overcome this drawback, in this
paper, DHF prioritized weighted average (DHFPWA) operator and DHF priori-
tized weighted geometric (DHFPWG) operator are proposed and some of their
properties have been discussed.

2. Some basic concepts and operations

In this section, some basic concepts, which are essential to develop the pro-
posed methodology, are described.

Definition 1 [1] Let a set X be fixed. An IFS α on X is represented in terms
of two functions µα : X → [0,1] and να : X → [0,1], and having the form α =
{〈x,µα ,να(x)〉|x ∈ X} with the condition 0 6 µα(x)+να(x) 6 1, for all x ∈ X,
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where µA(x) and νA(x) represent, respectively, the membership degree and the
non-membership degree of x in α .

For convenience, Xu and Yager [24] called α = (µα ,να) an intuitionistic
fuzzy number (IFN), where µα ∈ [0,1], να ∈ [0,1] and 0 6 µα +να 6 1.

For any IFN α = (µα ,να), a score of α can be evaluated by a score function
s [6] as

s(α) = µα −να where s(α) ∈ [−1,1]. (1)

Definition 2 [15–16] Let X be a universal set. A HFS A defined on X is repre-
sented by a function hA that returns a subset of [0,1] when it is applied to X.

For convenience, Xia and Xu [21] represented the HFS A by using the math-
ematical symbol:

A = {〈x,hA(x)〉 |x ∈ X} , (2)

where hA(x) is a set of several different values in [0,1], denoting the possible
membership degrees of the element x ∈ X to the set A. Xia and Xu [21] called
h = hA(x) a hesitant fuzzy element (HFE).

Definition 3 [34] Let X be a fixed set, a DHFS D defined on X is represented as:

D = {〈x,h(x),g(x)〉 |x ∈ X} , (3)

where h(x) and g(x) are hesitant fuzzy elements, denoting respectively the mem-
bership and non-membership degree of the element x to D, with the conditions:

0 6 γ, τ 6 1 with 0 6 γ++ τ+ 6 1,

where γ ∈ h(x)⊆ [0,1], τ ∈ g(x)⊆ [0,1] and γ+ = max{h(x)}, τ+ =max{g(x)}.

For convenience 〈h(x),g(x)〉 is called the DHF element (DHFE) and is de-
noted as

α̃ = (h,g).

2.1. Einstein operations

The set theoretical operators play an important role to aggregate different
fuzzy information. Since the inception of fuzzy set theory, starting from Zadeh’s
operator, min and max, many other operators introduced in the literature. All
types of the operators were included in the general concepts of the t-norms and
t-conorms, which satisfy the requirement of the conjunction and disjunction op-
erators, respectively.

There are various t-norm and t-conorm families available in the literature.
Einstein operators include the Einstein product ⊗ε and Einstein sum ⊕ε , which
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are examples of t-norm and t-conorm, respectively. The Einstein operators are
defined as follows [11]:

a⊕ε b =
a+b

1+a ·b , a⊗ε b =
a ·b

1+(1−a)(1−b)
for all (a,b) ∈ [0,1]2. (4)

Based on the concepts of Einstein operators Zhao et al. [33] introduced dif-
ferent operations on DHFEs as follows:

Definition 4 [33] Let α̃1 = (h1,g1), α̃2 = (h2,g2) and α̃ = (h,g) be three
DHFEs. Then

(i) α̃1 ⊕ε α̃2 =


 ⋃

γ1∈h1,γ2∈h2

γ1 + γ2

1+ γ1γ2
,

⋃

τ1∈g1,τ2∈g2

τ1τ2

1+(1−τ1)(1−τ2)


;

(ii) α̃1 ⊗ε α̃2 =



 ⋃

γ1∈h1,γ2∈h2

γ1γ2

1+(1− γ1)(1− γ2)
,

⋃

τ1∈g1,τ2∈g2

τ1 + τ2

1+ τ1τ2



;

(iii) λα̃ =


⋃

γ∈h

(1+ γ)λ − (1− γ)λ

(1+ γ)λ +(1− γ)λ
,
⋃

τ∈g

2τλ

(2− τ)λ + τλ


 , λ > 0;

(iv) α̃λ =


⋃

γ∈h

2γλ

(2− γ)λ + γλ
,
⋃

τ∈g

(1+ τ)λ − (1−τ)λ

(1+ τ)λ +(1−τ)λ


 , λ > 0.

2.2. Prioritized operators

The prioritized operators play also an important role in solving many MCDM
problems. The prioritized averaging (PA) operator, introduced by Yager [26], is
defined in the following manner:

Definition 5 [26] Let C = {C1,C2, . . . ,Cn} be a collection of criteria and that
there is a prioritization between the criteria expressed by the linear ordering
C1 ≻ C2 ≻ . . . ≻ Cn, indicate criteria C j has a higher priority than Ck if j < k.
The value C j(x) is the performance of any alternative x under criteria C j, and
satisfies C j(x) ∈ [0,1]. If

PA(C j(x)) =
n

∑
j=1

w jC j(x), (5)

where w j =
Tj

∑n
j=1 Tj

, Tj =
j−1

∏
k=1

Ck(x) ( j = 2, . . . , n), T1 = 1. Then PA is called the

PA operator.
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In the following Sections, the methodological development of the paper is
incorporated.

At first a new score function of DHFEs is introduced. In this context it is to
be pointed out that a score function defined by Zhu et al. [34] is already exist in
the literature. But, the drawback of that approach is that the score value becomes
negative when average of membership degree is less than the average of non-
membership degree.

Based on the concepts of score functions of DHFEs, Einstein operators and
prioritized operators, dual hesitant fuzzy aggregation operators are defined. The
defined operators are then used to solve a MCDM problem.

The methodological developments are described subsequently.

3. Score function of a dual hesitant fuzzy element (DHFE)

A new score function is defined in this section to find the ordering of DHFEs.

Definition 6 Score function of DHFE is defined as

s(α) =

1+∑γ∈h

γ

l(h)
−∑τ∈g

τ

l(g)

2
(6)

and the accuracy function of DHFE is described as follows

a(α) = ∑
γ∈h

γ

l(h)
+ ∑

τ∈g

τ

l(g)
. (7)

where l(h) and l(g) represents the number of elements in h and g, respectively.

For comparison of DHFEs the following conditions are to be satisfied.
Let α1 and α2 be two DHFEs

1. If s(α1)> s(α2) then α1 > α2;

2. If s(α1) = s(α2) then
if a(α1)> a(α2) then α1 > α2; if a(α1) = a(α2) then α1 = α2.

4. Development of Dual Hesitant fuzzy aggregation operator

based on prioritized operators

Based on the score function, Einstein operations and prioritized operators as
defined above, a dual hesitant fuzzy prioritized Einstein aggregation operator is
defined as follows.
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Definition 7 Let α̃i = (hi,gi) (i = 1,2, . . . ,n) be a collections of DHFEs and
w = (w1,w2, . . . ,wn) be the weight vectors of α̃i, where

wi =
Ti

∑
n

i=1 Ti

and Ti =
i−1

∏
k=1

s(α̃k) (i = 2, . . . ,n), T1 = 1, (8)

and s(α̃i) is the score of DHFE α̃i. If DHFPEWA(α1,α2, . . . ,αn) = ⊕ε
n
i=1wiαi

then DHFPEWA is called a dual hesitant fuzzy prioritized Einstein weighted
averaging operator.

Theorem 1 Let α̃i = (hi,gi) (i = 1,2, . . . ,n) be a collections of DHFEs, then the
aggregated value by using DHFPEWA operator is also a DHFE and

DHFPEWA (α̃1, α̃2, . . . , α̃n) =⊕ε
n
i=1

(
Ti

∑
n

i=1 Ti

α̃i

)

=




⋃

γ1∈h1,γ2∈h2,...,γn∈hn

∏
n

i=1 (1+ γi)
Ti

∑n
i=1 Ti −∏

n

i=1 (1− γi)
Ti

∑n
i=1 Ti

∏
n

i=1 (1+ γi)
Ti

∑n
i=1 Ti +∏

n

i=1 (1− γi)
Ti

∑n
i=1 Ti

,

⋃

τ1∈g1,τ2∈g2,...,τn∈gn

2∏
n

i=1 (τi)
Ti

∑n
i=1 Ti

∏
n

i=1 (2− τi)
Ti

∑n
i=1 Ti +∏

n

i=1 (τi)
Ti

∑n
i=1 Ti


. (9)

Proof. Using the mathematical induction method, the theorem will be proved.
The theorem is obvious for n = 1.
We assume that theorem is true for n = p, we shall prove that it is true for

n = p+1.
For n = p, we have

DHFPEWA (α̃1, α̃2, . . . , α̃p) =⊕ε
p
i=1

(
Ti

∑
n

i=1 Ti

α̃i

)

=




⋃

γ1∈h1,γ2∈h2,.....,γp∈hp

∏
p

i=1 (1+ γi)
Ti

∑n
i=1 Ti −∏

p

i=1 (1− γi)
Ti

∑n
i=1 Ti

∏
p

i=1 (1+ γi)
Ti

∑n
i=1 Ti +∏

p

i=1 (1− γi)
Ti

∑n
i=1 Ti

,

⋃

τ1∈g1,τ2∈g2,...,τp∈gp

2∏
p

i=1 (τi)
Ti

∑n
i=1 Ti

∏
p

i=1 (2− τi)
Ti

∑
p
i=1 Ti +∏

p

i=1 (τi)
Ti

∑n
i=1 Ti


.
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Now when n = p+1,

DHFPEWA(α̃1, α̃2, . . . , α̃p, α̃p+1)

= DHFPEWA(α̃1, α̃2, . . . , α̃p)⊕ε

(
Tp+1

∑
n

i=1 Ti

α̃p+1

)

= DHFPEWA(α̃1, α̃2, . . . , α̃p)⊕ε




⋃

γp+1∈hp+1

(
1+γp+1

) Tp+1
∑n

i=1 Ti −
(
1−γp+1

) Tp+1
∑n

i=1 Ti

(
1+γp+1

) Tp+1
∑n

i=1 Ti +
(
1−γp+1

) Tp+1
∑n

i=1 Ti

,

⋃

τp+1∈gp+1

2τ

Tp+1
∑n

i=1 Ti

p+1

(
2− τp+1

) Tp+1
∑n

i=1 Ti + τ

Tp+1
∑n

i=1 Ti

p+1




=




⋃

γ1∈h1,γ2∈h2,...,γp∈hp

∏
p
i=1 (1+ γi)

Ti
n
∑

i=1
Ti −∏

p
i=1 (1− γi)

Ti
∑n

i=1 Ti

∏
p
i=1 (1+ γi)

Ti
∑n

i=1 Ti +∏
p
i=1 (1− γi)

Ti
∑n

i=1 Ti

,

⋃

τ1∈g1,τ2∈g2,...,τp∈gp

2∏
p
i=1 (τi)

Ti
∑n

i=1 Ti

∏
p
i=1 (2− τi)

Ti
∑n

i=1 Ti +∏
p
i=1 (τi)

Ti
∑n

i=1 Ti


⊕ε




⋃

γp+1∈hp+1

(
1+ γp+1

) Tp+1
∑n

i=1 Ti −
(
1− γp+1

) Tp+1
∑n

i=1 Ti

(
1+ γp+1

) Tp+1
∑n

i=1 Ti +
(
1− γp+1

) Tp+1
∑n

i=1 Ti

,

⋃

τp+1∈gp+1

2
(
τp+1

) Tp+1
∑n

i=1 Ti

(
2− τp+1

) Tp+1
∑n

i=1 Ti +
(
τp+1

) Tp+1
∑n

i=1 Ti




=




⋃

γ1∈h1,
γ2∈h2,...,
γp∈hp,

γp+1∈hp+1

p

∏
i=1

(1+γi)

Ti
n
∑

i=1
Ti−

p

∏
i=1

(1−γi)

Ti
n
∑

i=1
Ti

p

∏
i=1

(1+γi)

Ti
n
∑

i=1
Ti
+

p

∏
i=1

(1−γi)

Ti
n
∑

i=1
Ti

+
(1+γp+1)

Tp+1
n
∑

i=1
Ti −(1−γp+1)

Tp+1
n
∑

i=1
Ti

(1+γp+1)

Tp+1
n
∑

i=1
Ti
+(1−γp+1)

Tp+1
n
∑

i=1
Ti

1+

p

∏
i=1

(1+γi)

Ti
n
∑

i=1
Ti−

p

∏
i=1

(1−γi)

Ti
n
∑

i=1
Ti

p

∏
i=1

(1+γi)

Ti
n
∑

i=1
Ti
+

p

∏
i=1

(1−γi)

Ti
n
∑

i=1
Ti

.
(1+γp+1)

Tp+1
n
∑

i=1
Ti −(1−γp+1)

Tp+1
n
∑

i=1
Ti

(1+γp+1)

Tp+1
n
∑

i=1
Ti
+(1−γp+1)

Tp+1
n
∑

i=1
Ti

,
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⋃

τ1∈g1,
τ2∈g2,

...,τp∈gp,
τp+1∈gp+1

2
p

∏
i=1

(τi)

Ti
n
∑

i=1
Ti

p

∏
i=1

(2− τi)

Ti
n
∑

i=1
Ti
+

p

∏
i=1

(τi)

Ti
n
∑

i=1
Ti

.
2τ

Tp+1
n
∑

i=1
Ti

p+1

(2− τp+1)

Tp+1
n
∑

i=1
Ti
+(τp+1)

Tp+1
n
∑

i=1
Ti

1+




1−
2

p

∏
i=1

(τi)

Ti
n
∑

i=1
Ti

p

∏
i=1

(2−τi)

Ti
n
∑

i=1
Ti
+

p

∏
i=1

(τi)

Ti
n
∑

i=1
Ti





1− 2(τp+1)

Tp+1
n
∑

i=1
Ti

(2−τp+1)

Tp+1
n
∑

i=1
Ti
+(τp+1)

Tp+1
n
∑

i=1
Ti







=




⋃

γ1∈h1,γ2∈h2,...,
γp∈hp,γp+1∈hp+1

p+1
∏
i=1

(1+ γi)

Ti
n
∑

i=1
Ti −

p+1
∏
i=1

(1− γi)

Ti
n
∑

i=1
Ti

p+1
∏
i=1

(1+ γi)

Ti
n
∑

i=1
Ti
+

p+1
∏
i=1

(1− γi)

Ti
n
∑

i=1
Ti

,

⋃

τ1∈g1,τ2∈g2,...,
τp∈gp,τp+1∈gp+1

2
p+1
∏
i=1

(τi)

Ti
n
∑

i=1
Ti

p+1
∏
i=1

(2− τi)

Ti
n
∑

i=1
Ti
+

p+1
∏
i=1

(τi)

Ti
n
∑

i=1
Ti




=⊕ε
p+1
i=1

(
Ti

∑
n

i=1 Ti

α̃i

)
= DHFPEWA(α̃1, α̃2, . . . , α̃p+1).

Hence the theorem is proved for p+1 and thus true for all n.
Hence DHFPEWA(α̃1, α̃2, . . . , α̃n) is a DHFE.
This completes the proof of the theorem.

Theorem 2 (Idempotency) Let α̃i = (hi,gi) (i = 1,2, . . . ,n) be a collections of
DHFEs. If all α̃i (i = 1,2, . . . ,n) are equal, i.e., α̃i = α̃ for all i, where α̃ = (h,g)
then

DHFPEWA(α̃1, α̃2, . . . , α̃n) = α̃ . (10)
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Proof. We have

DHFPEWA(α̃1, α̃2, . . . , α̃n) =⊕ε
n
i=1

(
Ti

∑
n

i=1 Ti

α̃i

)

=



⋃

γ∈h

n

∏
i=1

(1+ γ)
Ti

∑n
i=1 Ti −

n

∏
i=1

(1− γ)
Ti

∑n
i=1 Ti

n

∏
i=1

(1+ γ)
Ti

∑n
i=1 Ti +

n

∏
i=1

(1− γ)
Ti

∑n
i=1 Ti

,
⋃

τ∈g

2
n

∏
i=1

(τ)
Ti

∑n
i=1 Ti

n

∏
i=1

(2− τ)
Ti

∑n
i=1 Ti +

n

∏
i=1

(τ)
Ti

∑n
i=1 Ti




=



⋃

γ∈h

(1+ γ)
T1

∑n
i=1 Ti

+
T2

∑n
i=1 Ti

+...+ Tn
∑n

i=1 Ti − (1− γ)
T1

∑n
i=1 Ti

+
T2

∑n
i=1 Ti

+...+ Tn
∑n

i=1 Ti

(1+ γ)
T1

∑n
i=1 Ti

+
T2

∑n
i=1 Ti

+...+ Tn
∑n

i=1 Ti +(1− γ)
T1

∑n
i=1 Ti

+
T2

∑n
i=1 Ti

+...+ Tn
∑n

i=1 Ti

,

⋃

τ∈g

2τ
T1

∑n
i=1 Ti

+
T2

∑n
i=1 Ti

+...+ Tn
∑n

i=1 Ti

(2− τ)
T1

∑n
i=1 Ti

+
T2

∑n
i=1 Ti

+...+ Tn
∑n

i=1 Ti +(τ)
T1

∑n
i=1 Ti

+
T2

∑n
i=1 Ti

+...+ Tn
∑n

i=1 Ti




= (h,g) = α̃ .

Hence the theorem is proved.

Theorem 3 (Boundary) Let α̃i = (hi,gi) (i = 1,2, . . . ,n) be a collections of
DHFEs, and let

γ∗ = min{γ ∈ hi | i = 1,2, . . . ,n} , γ∗ = max{γ ∈ hi | i = 1,2, . . . ,n} ,
τ∗ = min{τ ∈ gi | i = 1,2, . . . ,n} , τ∗ = max{τ ∈ gi | i = 1,2, . . . ,n} ,

α̃− = (γ∗,τ∗) , α̃+ = (γ∗,τ∗) .

then
α̃−

6 DHFPEWA(α̃1, α̃2, . . . , α̃n)6 α̃+. (11)

Proof. We have

DHFPEWA(α̃1, α̃2, . . . , α̃n) =⊕ε
n
i=1

(
Ti

∑
n

i=1 Ti

α̃i

)

=




⋃

γ1∈h1,
γ2∈h2,
...,

γn∈hn

n

∏
i=1

(1+γi)

Ti
n
∑

i=1
Ti −

n

∏
i=1

(1−γi)

Ti
n
∑

i=1
Ti

n

∏
i=1

(1+γi)

Ti
n
∑

i=1
Ti
+

n

∏
i=1

(1−γi)

Ti
n
∑

i=1
Ti

,
⋃

τ1∈g1,
τ2∈g2,
...,

τn∈gn

2
n

∏
i=1

(τi)

Ti
n
∑

i=1
Ti

n

∏
i=1

(2−τi)

Ti
n
∑

i=1
Ti
+

n

∏
i=1

(τi)

Ti
n
∑

i=1
Ti



.
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By the definition of γ∗, γ∗, τ∗, τ∗

γ∗ 6 γi 6 γ∗ for all i, then

Thus
1− γ∗

1+ γ∗
6

1− γi

1+ γi

6
1− γ∗
1+ γ∗

for all i

i.e.,
n

∏
i=1

(
1− γ∗

1+ γ∗

) Ti
∑n

i=1 Ti

6

n

∏
i=1

(
1− γi

1+ γi

) Ti
∑n

i=1 Ti

6

n

∏
i=1

(
1− γ∗
1+ γ∗

) Ti
∑n

i=1 Ti

for all i

i.e.,
1− γ∗

1+ γ∗
6

n

∏
i=1

(
1− γi

1+ γi

) Ti
∑n

i=1 Ti

6
1− γ∗
1+ γ∗

for all i

i.e.,
2

1+ γ∗
6 1+

n

∏
i=1

(
1− γi

1+ γi

) Ti
∑n

i=1 Ti

6
2

1+ γ∗
for all i

i.e., γ∗ 6
2

1+
n

∏
i=1

(
1− γi

1+ γi

) Ti
∑n

i=1 Ti

−1 6 γ∗ for all i

i.e., γ∗ 6

n

∏
i=1

(1+ γi)
Ti

∑n
i=1 Ti −

n

∏
i=1

(1− γi)
Ti

∑n
i=1 Ti

n

∏
i=1

(1+ γi)
Ti

∑n
i=1 Ti +

n

∏
i=1

(1− γi)
Ti

∑n
i=1 Ti

6 γ∗ for all i. (12)

Similarly,
Since τ∗ 6 τi 6 τ∗ and 2− τ∗ 6 2− τi 6 2− τ∗ then

i.e.,
n

∏
i=1

(
2−τ∗

τ∗

) Ti
∑n

i=1 Ti

6

n

∏
i=1

(
2−τi

τi

) Ti
∑n

i=1 Ti

6

n

∏
i=1

(
2−τ∗

τ∗

) Ti
∑n

i=1 Ti

for all i

i.e.,
2
τ∗

6

n

∏
i=1

(
2−τi

τi

) Ti
∑n

i=1 Ti

+1 6
2
τ∗

for all i

i.e., τ∗ 6
2

n

∏
i=1

(
2−τi

τi

) Ti
∑n

i=1 Ti

+1

6 τ∗ for all i

i.e., τ∗ 6

2
n

∏
i=1

(τi)
Ti

∑n
i=1 Ti

n

∏
i=1

(2−τi)
Ti

∑n
i=1 Ti +

n

∏
i=1

(τi)
Ti

∑n
i=1 Ti

6 τ∗ for all i. (13)
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Then from inequalities (12) and (13), and using (6) we obtain

s
(
α̃−)

6 s(DHFPEWA(α̃1, α̃2, . . . , α̃n))6 s
(
α̃+
)
.

Therefore from the comparative laws of DHFE, it is clear that

α̃−
6 DHFPEWA(α̃1, α̃2, . . . , α̃n)6 α̃+.

This completes the proof of the theorem.

Theorem 4 (Additivity) Let α̃i = (hi,gi) (i = 1,2, . . . ,n) be a collections of
DHFEs, and if α̃ = (h,g) be another DHFE, then

DHFPEWA(α̃1⊕ε α̃ , α̃2⊕ε α̃, . . . , α̃n⊕ε α̃) = DHFPEWA(α̃1, α̃2, . . . , α̃n)⊕ε α̃.

Proof. Based on the operational laws of DHFEs, we have

α̃i ⊕ε α̃ =



 ⋃

γi∈hi,γ∈h

γi + γ

1+ γiγ
,

⋃

τi∈gi,τ∈g

τiτ

1+(1−τi)(1−τ)



 .

According to theorem 1, we have

DHFPEWA(α̃1 ⊕ε α̃, α̃2 ⊕ε α̃, . . . , α̃n ⊕ε α̃)

=




⋃

γ1∈h1,γ2∈h2,
...,

γn∈hn,γ∈h

n

∏
i=1

(
1+

γi + γ

1+ γiγ

) Ti
∑n

i=1 Ti −
n

∏
j=1

(
1− γi + γ

1+ γiγ

) Ti
∑n

i=1 Ti

n

∏
j=1

(
1+

γi + γ

1+ γiγ

) Ti
∑n

i=1 Ti

+
n

∏
j=1

(
1− γi + γ

1+ γiγ

) Ti
∑n

i=1 Ti

,

⋃

τ1∈g1,τ2∈g2,
...,

τn∈gn,τ∈g

2
n

∏
i=1

(
τiτ

1+(1−τi)(1−τ)

) Ti
∑n

i=1 Ti

n

∏
i=1

(
2− τiτ

1+(1−τi)(1−τ)

) Ti
∑n

i=1 Ti

+
n

∏
i=1

(
τiτ

1+(1−τi)(1−τ)

) Ti
∑n

i=1 Ti




=




⋃

γ1∈h1,γ2∈h2,
...,

γn∈hn,γ∈h

n

∏
i=1

(1+ γi)
Ti

∑n
i=1 Ti (1+ γ)

Ti
∑n

i=1 Ti −
n

∏
i=1

(1− γi)
Ti

∑n
i=1 Ti (1− γ)

Ti
∑n

i=1 Ti

n

∏
i=1

(1+ γi)
Ti

∑n
i=1 Ti (1+ γ)

Ti
∑n

i=1 Ti −
n

∏
i=1

(1− γi)
Ti

∑n
i=1 Ti (1− γ)

Ti
∑n

i=1 Ti

,
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⋃

τ1∈g1,τ2∈g2,
...,

τn∈gn,τ∈g

2
n

∏
i=1

(τi)
Ti

∑n
i=1 Ti (τ)

Ti
∑n

i=1 Ti

n

∏
i=1

(2− τi)
Ti

∑n
i=1 Ti (2− τ)

Ti
∑n

i=1 Ti +
n

∏
i=1

(τi)
Ti

∑n
i=1 Ti (τ)

Ti
∑n

i=1 Ti




=




⋃

γ1∈h1,γ2∈h2,
...,γn∈hn,γ∈h

(1+ γ)
n

∏
i=1

(1+ γi)
Ti

∑n
i=1 Ti − (1− γ)

n

∏
i=1

(1− γi)
Ti

∑n
i=1 Ti

(1+ γ)
n

∏
i=1

(1+ γi)
Ti

∑n
i=1 Ti +(1− γ)

n

∏
i=1

(1− γi)
Ti

∑n
i=1 Ti

,

⋃

τ1∈g1,τ2∈g2,
...,

τn∈gn,τ∈g

τ.2
n

∏
i=1

(τi)
Ti

∑n
i=1 Ti

(2− τ)
n

∏
i=1

(2− τi)
Ti

∑n
i=1 Ti + τ

n

∏
i=1

(τi)
Ti

∑n
i=1 Ti


.

Again from the operational laws of DHFE

DHFPEWA(α̃1, α̃2, . . . , α̃n)⊕ε α̃

=




⋃

γ1∈h1,γ2∈h2,...,γn∈hn

n

∏
i=1

(1+ γi)
Ti

∑n
i=1 Ti −

n

∏
i=1

(1− γi)
Ti

∑n
i=1 Ti

n

∏
i=1

(1+ γi)
Ti

∑n
i=1 Ti +

n

∏
i=1

(1− γi)
Ti

∑n
i=1 Ti

,

⋃

τ1∈g1,τ2∈g2,...,τn∈gn

2
n

∏
i=1

(τi)
Ti

∑n
i=1 Ti

n

∏
i=1

(2− τi)
Ti

∑n
i=1 Ti +

n

∏
i=1

(τi)
Ti

∑n
i=1 Ti


⊕ε (h,g)

=




⋃

γ1∈h1,γ2∈h2,...,γn∈hn,γ∈h

(1+ γ)
n

∏
i=1

(1+ γi)
Ti

∑n
i=1 Ti − (1− γ)

n

∏
i=1

(1− γi)
Ti

∑n
i=1 Ti

(1+ γ)
n

∏
i=1

(1+ γi)
Ti

∑n
i=1 Ti +(1− γ)

n

∏
i=1

(1− γi)
Ti

∑n
i=1 Ti

,

⋃

τ1∈g1,τ2∈g2,
...,

τn∈gn,τ∈g

τ.2
n

∏
i=1

(τi)
Ti

∑n
i=1 Ti

(2− τ)
n

∏
i=1

(2− τi)
Ti

∑n
i=1 Ti + τ

n

∏
i=1

(τi)
Ti

∑n
i=1 Ti


 .
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Thus,

DHFPEWA(α̃1⊕ε α̃ , α̃2⊕ε α̃, . . . , α̃n⊕ε α̃) = DHFPEWA(α̃1, α̃2, . . . , α̃n)⊕ε α̃.

This completes the proof.

Theorem 5 Let α̃i = (hi,gi) (i = 1,2, . . . ,n) be a collections of DHFEs, then
the aggregated value by using DHFPEWG operator is also a DHFE and

DHFPEWG(α̃1, α̃2, . . . , α̃n) =⊗ε
n
i=1 (α̃i)

Ti
∑n

i=1 Ti and

DHFPEWG(α̃1, α̃2, . . . , α̃n) =⊗ε
n
i=1 (α̃i)

Ti
∑n

i=1 Ti

=




⋃

γ1∈h1,γ2∈h2,...,γn∈hn

2
n

∏
i=1

(γi)
Ti

∑n
i=1 Ti

n

∏
i=1

(2− γi)
Ti

∑n
i=1 Ti +

n

∏
i=1

(γi)
Ti

∑n
i=1 Ti

,

⋃

τ1∈g1,τ2∈g2,...,τn∈gn

n

∏
i=1

(1+ τi)
Ti

∑n
i=1 Ti −

n

∏
i=1

(1−τi)
Ti

∑n
i=1 Ti

n

∏
i=1

(1+ τi)
Ti

∑n
i=1 Ti +

n

∏
i=1

(1−τi)
Ti

∑n
i=1 Ti


 ,

where Ti =
i−1

∏
k=1

S (α̃k) (i = 2,3, . . . ,n), T1 = 1, and S (α̃k) is the score value of

DHFEα̃k.

Proof. The proof of this theorem is similar to the proof of Theorem 1.

5. An approach to solve MCDM problems with DHFEs

Let X = {x1,x2, . . . ,xm} be the set of alternatives and let C = {c1,c2, . . . ,cn}
be a collection of criteria and there prioritization is given as c1 ≻ c2 ≻ . . . ≻ cn

in such a manner that criteria c j has a higher priority than ci, if j < i. Now
E = {e1,e2, . . . ,ep} represents a set of decision makers and the linear ordering
e1 ≻ e2 ≻ e3 ≻ . . .≻ ep represents prioritization between the decision makers in
such a manner that decision maker eη has a higher priority than decision maker

eξ if η < ξ . Suppose that the decision matrix R(q) =
(

r̃
(q)
i j

)
m×n

(q = 1,2, . . . , p)

is in the form of dual hesitant fuzzy matrix. The elements of this matrix are
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represented by DHFEs as r̃
(q)
i j =

(
h
(q)
i j , g

(q)
i j

)
which designates the value of the

alternative xi ∈ X on the criteria c j ∈C provided by the decision maker eq, where

h
(q)
i j designates the membership degree of the alternative xi satisfies the criteria C j

expressed by the decision maker eq; where as g
(q)
i j indicates the non-membership

degree of the same alternative corresponding to the same criteria.
Now utilizing the DHFPEWA and DHFPEWG operators to develop an ap-

proach to multi-criteria group decision making under dual hesitant fuzzy envi-
ronment, the main steps are described as follows:
Step 1. Calculate the value of T

(q)
i j (q = 1,2, . . . , p)with the following equations.

T
(q)

i j =
q−1

∏
k=1

S
(

r̃
(k)
i j

)
(q = 1,2, . . . , p), (14)

T
(1)

i j = 1. (15)

Step 2. To aggregate all the individual dual hesitant fuzzy decision matrix

R(q) =
(

r̃
(q)
i j

)
m×n

(q = 1,2, . . . , p).

Thus using the DHFPEWA operator

r̃i j = DHFPEWA
(

r̃
(1)
i j , r̃

(2)
i j , . . . , r̃

(p)
i j

)

=




⋃

γ
(q)
i j ∈h

(q)
i j

p

∏
q=1

(
1+ γ

(q)
i j

) T
(q)
i j

∑
p
q=1 T

(q)
i j −

p

∏
q=1

(
1− γ

(q)
i j

) T
(q)
i j

∑
p
q=1 T

(q)
i j

p

∏
q=1

(
1+ γ

(q)
i j

) T
(q)
i j

∑
p
q=1 T

(q)
i j +

p

∏
q=1

(
1− γ

(q)
i j

) T
(q)
i j

∑
p
q=1 T

(q)
i j

,

⋃

τ
(q)
i j ∈g

(q)
i j

2
p

∏
q=1

(
τ
(q)
i j

) T
(q)
i j

∑
p
q=1 T

(q)
i j

p

∏
q=1

(
2− τ

(q)
i j

) T
(q)
i j

∑
p
q=1 T

(q)
i j +

p

∏
q=1

(
τ
(q)
i j

) T
(q)
i j

∑
p
q=1 T

(q)
i j




(16)

or using the DHFPEWG operator
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r̃i j = DHFPEWG
(

r̃
(1)
i j , r̃

(2)
i j , . . . , r̃

(p)
i j

)

=




⋃

γ
(q)
i j ∈h

(q)
i j

2
p

∏
i=1

(
γ
(q)
i j

) T
(q)
i j

∑
p
q=1 T

(q)
i j

p

∏
q=1

(
2− γ

(q)
i j

) T
(q)
i j

∑
p
q=1 T

(q)
i j +

p

∏
q=1

(
γ
(q)
i j

) T
(q)
i j

∑
p
q=1 T

(q)
i j

,

⋃

τ
(q)
i j ∈g

(q)
i j

p

∏
q=1

(
1+ τ

(q)
i j

) T
(q)
i j

∑
p
q=1 T

(q)
i j −

p

∏
q=1

(
1−τ

(q)
i j

) T
(q)
i j

∑
p
q=1 T

(q)
i j

p

∏
q=1

(
1+ τ

(q)
i j

) T
(q)
i j

∑
p
q=1 T

(q)
i j +

p

∏
q=1

(
1−τ

(q)
i j

) T
(q)
i j

∑
p
q=1 T

(q)
i j




. (17)

Step 3. Calculate the values of Ti j as follows:

Ti j =
j−1

∏
k=1

S (r̃ik) , i = 1,2, . . . ,m, j = 1,2, . . . ,n); (18)

Ti1 = 1, i = 1,2, . . . ,m. (19)

Step 4. Aggregate the DHFEs r̃i j for each alternative xi using the DHFPEWA (or
DHFPEWG) operator as follows:

r̃i = DHFPEWA (r̃i1, r̃i2, . . . , r̃in)

=




⋃

γi j∈hi j

n

∏
j=1

(
1+ γi j

) Ti j

∑n
j=1 Ti j −

n

∏
j=1

(
1− γi j

) Ti j

∑n
j=1 Ti j

n

∏
j=1

(
1+ γi j

) Ti j

∑n
j=1 Ti j +

n

∏
j=1

(
1− γi j

) Ti j

∑n
j=1 Ti j

,

⋃

τi j∈gi j

2
n

∏
j=1

(
τi j

) Ti j

∑n
j=1 Ti j

n

∏
j=1

(
2− τi j

) Ti j

∑n
j=1 Ti j +

n

∏
j=1

(
τi j

) Ti j

∑n
j=1 Ti j




(20)

or
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r̃i = DHFPEWG (r̃i1, r̃i2, . . . , r̃in)

=




⋃

γi j∈hi j

2
n

∏
j=1

(
γi j

) Ti j

∑n
j=1 Ti j

n

∏
j=1

(
2− γi j

) Ti j

∑n
j=1 Ti j +

n

∏
j=1

(
γi j

) Ti j

∑n
j=1 Ti j

,

⋃

τi j∈gi j

n

∏
j=1

(
1+ τi j

) Ti j

∑n
j=1 Ti j −

n

∏
j=1

(
1−τi j

) Ti j

∑n
j=1 Ti j

n

∏
j=1

(
1+ τi j

) Ti j

∑n
j=1 Ti j +

n

∏
j=1

(
1−τi j

) Ti j

∑n
j=1 Ti j



. (21)

Step 5. Rank all the alternatives by the proposed score function S(r̃i) described
in the above, then the highest value of S(r̃i), the larger the overall r̃i, and thus the
best alternative xi, is determined.

Based on the methodology developed in this paper, the following illustrative
example is considered and solved.

6. An illustrative example

To illustrate the efficiency of the developed DHFPEW operators a practical
example, studied earlier by Yu [27] in intuitionistic fuzzy context, is adopted in
dual hesitant fuzzy environment. The problem is then solved using the ranking
process developed in this article and is compared with the process developed by
Yu [27] and Yu et al. [30].

The problem under consideration is presented in summarised form as fol-
lows:

For enriching academic environment of a Chinese university, three decision
makers viz., e1, e2 and e3 in order of priority levels e1 > e2 > e3, wants to appoint
outstanding teachers among five candidates, xi (i = 1, 2, . . . , 5) based on four
criteria C1, C2, C3, C4. The criteria possesses the prioritization relationship as
C1 > C2 > C3 > C4. After evaluating the five candidates with respect to their
criteria, the decision makers constructed the following three decision matrices
R(n) = (r

(n)
i j )5×4 (n = 1, 2,3) using DHFEs as follows:
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R(1) =



〈{0.55,0.9},{0.0,0.1}〉 〈{0.6},{0.3}〉 〈{0.75,0.85},{0.15}〉 〈{0.9},{0.0,0.1}〉
〈{0.7,0.9},{0.0,0.1}〉 〈{0.75},{0.15,0.25}〉 〈{0.75},{0.15}〉 〈{0.75},{0.15}〉

〈{0.9},{0.0}〉 〈{0.75,0.85},{0.0,0.15}〉 〈{0.75,0.85},{0.15}〉 〈{0.45},{0.1,0.45}〉
〈{0.5,0.75},{0.15}〉 〈{0.6,0.75},{0.15,0.25}〉 〈{0.7,0.9},{0.0,0.1}〉 〈{0.3},{0.6}〉

〈{0.4,0.75},{0.15,0.25}〉 〈{0.4,0.6},{0.3,0.4}〉 〈{0.75},{0.15}〉 〈{0.5,0.6},{0.3}〉



,

R(2) =



〈{0.75,0.85},{0.15}〉 〈{0.75},{0.15}〉 〈{0.9},{0.0,0.1}〉 〈{0.3,0.4},{0.6}〉
〈{0.85,0.75},{0.05,0.15}〉 〈{0.9},{0.0,0.1}〉 〈{0.75,0.85},{0.15}〉 〈{0.75,},{0.15}〉
〈{0.7,0.9},{0.0,0.05}〉 〈{0.9},{0.0,0.1}〉 〈{0.75},{0.05,0.15}〉 〈{0.6,0.7},{0.1,0.3}〉
〈{0.3,0.9},{0.0,0.1}〉 〈{0.3,0.4},{0.6}〉 〈{0.75,0.85},{0.15}〉 〈{0.6},{0.3}〉
〈{0.45},{0.45,0.55}〉 〈{0.6},{0.3}〉 〈{0.9},{0.0,0.1}〉 〈{0.7,0.9},{0.0,0.1}〉



,

R(3) =



〈{0.75},{0.15,0.25}〉 〈{0.9},{0.0,0.1}〉 〈{0.65,0.75},{0.15}〉 〈{0.3},{0.4,0.6}〉
〈{0.6},{0.1,0.3}〉 〈{0.75,0.85},{0.15}〉 〈{0.9},{0.0,0.1}〉 〈{0.6},{0.3}〉
〈{0.9},{0.0}〉 〈{0.6},{0.3}〉 〈{0.75},{0.15}〉 〈{0.8,0.9},{0.0,0.1}〉

〈{0.5,0.9},{0.0,0.1}〉 〈{0.75},{0.15}〉 〈{0.75},{0.15}〉 〈{0.75},{0.15,0.25}〉
〈{0.75},{0.15}〉 〈{0.75},{0.15}〉 〈{0.7,0.9},{0.0,0.1}〉 〈{0.45},{0.45,0.55}〉



.

To select the most preferable candidate the developed process is applied on
the above matrices and the following steps are performed.

It is worthy to mention here that Step 1 is common for both the DHFPEWA
and DHFPEWG operators.

Step 1. Calculate the value of T
(i)

i j (i = 1, 2, 3) using equations (16) and (17).

T
(1)

i j =




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


 , T

(2)
i j =




0.8375 0.65 0.825 0.925
0.875 0.775 0.8 0.8
0.95 0.8625 0.825 0.5875

0.7375 0.7375 0.875 0.35
0.6875 0.575 0.8 0.625


 ,

T
(3)

i j =




0.6909 0.52 0.7631 0.3469
0.7438 0.7169 0.66 0.64
0.8431 0.7978 0.6806 0.4259
0.5716 0.2766 0.7219 0.2275
0.3266 0.3738 0.74 0.5469


 .
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Step 2. Aggregate the three given decision matrices R(k) (k = 1,2,3) by using
DHFPEWA operator to aggregate the overall decision matrix R which is shown
below:

R =



〈{
0.6819,0.7290,
0.8244,0.8522

}
,

{
0.0,0.1279,
0.0,0.1478

}

〉 〈{
0.7459

}
,

{
0.0,

0.1894

}

〉 〈{
0.7909,0.8117,
0.8285,0.8459

}
,

{
0.0,

0.1320

}

〉 〈 {
0.6758,
0.7002

}
,

{
0.0,0.0,0.2711,

0.2910

}

〉

〈 {
0.6927,0.7388,
0.7947,0.8271

}
,

{
0,0.0795,0,0.1103,
0,0.1146,0,0.1579

}

〉 〈 {
0.8104
0.8366

}
,

{
0.0,0.1324,
0.0,0.1634

}

〉 〈{
0.8030,
0.8333

}
,

{
0.0,

0.1347

}

〉 〈{
0.7161

}
,

{
0.1809

}

〉

〈{
0.8528,
0.9000

}
,

{
0.0,
0.0

}

〉 〈{
0.7822,
0.8202

}
,

{
0,0,0,
0.1634

}

〉 〈{
0.7500,
0.7954

}
,

{
0.1052,
0.1500

}

〉 〈 {
0.5885,0.6378,
0.6207,0.6670

}
,

{
0,0.1000,0,0.1394,
0,0.2189,0,0.2978

}

〉

〈




0.4404,0.6051,0.6880,
0.7904,0.5758,0.7087,

0.7729,0.8500




 ,

{0,0,0,0.1194}

〉〈{
0.5307,0.5600,
0.6231,0.6480

}
,

{
0.2596,
0.3300

}

〉〈{
0.7317,0.7730,
0.8227,0.8512

}
,

{
0.0,

0.1285

}

〉 〈{
0.4545

}
,

{
0.4336,
0.4620

}

〉

〈 {
0.4881,
0.6675

}
,

{
0.2227,0.2414,
0.2848,0.3078

}

〉 〈{
0.5431,
0.6332

}
,

{
0.2639,
0.3076

}

〉 〈{
0.8003,
0.8553

}
,

{
0,0,0,
0.1175

}

〉 〈{
0.5543,0.6633,
0.5985,0.6987

}
,

{
0,0,0.2475,

0.2625

}

〉




.

Step 3. To calculate the value of Ti j use the equation (20) and (21).

Ti j =




1 0.8515 0.7030 0.6162
1 0.8528 0.7460 0.6530
1 0.9382 0.8258 0.6793
1 0.8245 0.5341 0.4621
1 0.6568 0.4277 0.3846


.

Step 4. Utilize DHFPEWA operator to aggregate all DHFEs r̃i j (i = 1, 2, 3, 4, 5;
j = 1, 2, 3, 4) for each alternative xi to reduce it in DHFE r̃i (i = 1, 2, 3, 4, 5).

Step 5. By the definition 3, calculate the score values S(ri) (i = 1, 2, 3, 4, 5) of
the alternative xi . The values are as follows:

S(r1) = 0.8770,S(r2) = 0.8846,S(r3) = 0.9223,S(r4) = 0.8162,S(r5) = 0.8091.

Since S3 > S2 > S1 > S4 > S5, the ordering of alternatives are found as

x3 > x2 > x1 > x4 > x5 .
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Now, the given problem is solved using DHFPEWG operator, for finding the
preference ordering of the candidates. The following steps are performed:
Step 1. Same as above step 1.

Step 2. Utilize the DHFPEWG operator to aggregate the given dual hesitant

fuzzy decision matrix R(q) =
(

r̃
(q)
i j

)
5×4

(q = 1, 2, 3)

R =



〈{
0.6671,0.6981,
0.8083,0.8418

}
,

{
0.0911,0.1193,
0.1303,0.1582

}

〉 〈{
0.7126

}
,

{
0.1857,
0.2088

}

〉 〈{
0.7660,0.7969,
0.8044,0.8358

}
,

{
0.1026,
0.1341

}

〉 〈 {
0.5148,
0.5709

}
,

{
0.3336,0.3697,
0.3723,0.4072

}

〉

〈 {
0.6870,0.7188,
0.7607,0.7939

}
,





0.0452,0.1043,0.0788,
0.1375,0.0833,0.1420,

0.1168,0.1749





〉 〈 {
0.7957,
0.8246

}
,

{
0.1038,0.1345,
0.1450,0.1754

}

〉 〈{
0.7894,
0.8220

}
,

{
0.1101,
0.1366

}

〉 〈{
0.7091

}
,

{
0.1903

}

〉

〈
{0.8302,0.9000},

{0,0.0170}

〉
〈 {

0.7498,
0.7869

}
,

{
0.0926,0.1247,
0.1485,0.1802

}

〉 〈{
0.7500,
0.7894

}
,

{
0.1173,
0.1500

}

〉 〈 {
0.5589,0.5765,
0.5861,0.6042

}
,

{
.0789, .1, .1392, , .2636,
.16, .2833, .3195, .3384

}

〉

〈


0.4277,0.5072,0.615,
0.7135,0.5195,0.6094,

0.7284,0.8341




 ,

{
0.0654,0.09,

0.0972,0.1217

}

〉〈{
0.4898,0.5385,
0.5542,0.6067

}
,

{
0.3360,
0.3811

}

〉〈{
0.7306,0.7635,
0.8068,0.8408

}
,

{
0.0927,
0.1308

}

〉 〈{
0.4081

}
,

{
0.4853,
0.4967

}

〉

〈 {
0.4653,
0.6379

}
,

{
0.2590,0.3010,
0.3066,0.3473

}

〉 〈{
0.5149,
0.6275

}
,

{
0.2721,
0.3254

}

〉 〈 {
0.7813,
0.8400

}
,

{
0.0594,0.0885,
0.0909,0.1198

}

〉 〈{
0.5397,0.5884,
0.5865,0.6376

}
,

{
0.2586,0.2897,
0.2853,0.3159

}

〉




.

Step 3. Calculate the value of Ti j (i = 1, 2, 3, 4, 5), ( j = 1, 2, 3, 4)

Ti j =




1 0.8146 0.6172 0.5192
1 0.8149 0.6806 0.5725
1 0.9283 0.7574 0.6196
1 0.7629 0.4534 0.3794
1 0.6241 0.3971 0.3417


.

Step 4. Utilize the DHFPEWG operator to aggregate all DHFEs r̃i j (i = 1, 2, 3,
4, 5; j = 1, 2, 3, 4) for each alternative xi to reduce in DHFE r̃i (i = 1, 2, 3, 4, 5).

Step 5. By Definition 3, calculate the score values S(ri) (i = 1, 2, 3, 4, 5) of the
alternative xi. The score values are found as

S(r1) = 0.7739,S(r2) = 0.8154,S(r3) = 0.8240,S(r4) = 0.6742,S(r5) = 0.6479.



546 A. BISWAS, A. SARKAR

Since S3 > S2 > S1 > S4 > S5 the ordering is found as

x3 > x2 > x1 > x4 > x5 .

It is evident that the ordering of the candidates are the same for both the opera-
tors.

Now, if the problem is considered in a hesitant fuzzy environment and is
solved using hesitant fuzzy prioritized Einstein weighted averaging operator de-
veloped by Yu et al. [30] the score value of the candidates are found as

S(r1) = 0.7673,S(r2) = 0.7879,S(r3) = 0.8009,S(r4) = 0.6570,S(r5) = 0.6367

with the ordering x3 > x2 > x1 > x4 > x5.
But, if the problem is solved using hesitant fuzzy prioritized Einstein

weighted geometric operator developed by Yu et al. [30] the score value of the
candidates changed and are found as

S(r1) = 0.7185,S(r2) = 0.7681,S(r3) = 0.7623,S(r4) = 0.5896,S(r5) = 0.5922

with the ordering x2 > x3 > x1 > x5 > x4.
So, the methods developed by Yu et al. [30] are not found consistent in this

context.
Further, if the problem under consideration is solved in intuitionistic fuzzy

environment using the technique developed by Yu [27], the same inconsistencies
are observed as in the case of Yu et al. [30]. In this context the solutions are
found as

S(r1) = 0.8901,S(r2) = 0.8940,S(r3) = 0.9003,S(r4) = 0.8737,S(r5) = 0.8574

using intuitionistic fuzzy prioritized averaging operator with the rank of the al-
ternatives

x3 > x2 > x1 > x4 > x5

and using intuitionistic fuzzy prioritized geometric operator

S(r1) = 0.7586,S(r2) = 0.8127,S(r3) = 0.7983,S(r4) = 0.6956,S(r5) = 0.7097

with the rank
x2 > x3 > x1 > x5 > x4 .

Thus the proposed method is consistent than the previous approaches and pro-
vides efficient solutions in the decision making context.
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7. Conclusions

Most of the traditional hesitant fuzzy aggression operators are based on al-
gebraic operations. However, algebraic sum and algebraic product are not only
the operations for aggregation of HFS. Many aggression operators are available
to solve group decision making problems in DHF environment. But those op-
erators did not provide consistent satisfactory solution in the decision making
environment. In this paper DHFPEWA and DHFPEWG are proposed which es-
tablishes their capabilities to provide efficient solution in the decision making
process. A new score function for DHFEs is proposed to remove the drawback
of earlier methods [28]. It is also to be noted here that this process evaluates
the weights of the decision makers from the decision matrix not by assigning
arbitrary weights to them. Thus the influence of outside values cannot affect the
decision of the proposed model. The proposed method can be extended to solve
MCDM problems in interval valued DHF as well as dual hesitant probabilistic
fuzzy environment without any computational complexities. However, it is hoped
that the developed method can add an extra dimension in the process of making
decision in hesitant fuzzy contexts.
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Mixed generalized quasi-Einstein manifolds with

applications to Relativity

Dipankar Hazra

Abstract. The present paper aims to study and analyse mixed generalized
quasi-Einstein manifolds. Some geometric properties of MG (QE)n had
been discussed. We had also outlined the behaviour of MG (QE)4 space-
time with space-matter tensor and discussed some of its related proper-
ties. Finally, we constructed examples of mixed generalized quasi-Einstein
manifolds.

M.S.C. 2010: 53C25, 53C15.
Key words: Einstein manifolds; mixed generalized quasi-Einstein manifolds; quasi-
conformal curvature tensor; energy momentum tensor; Einstein’s field equation; space-
matter tensor.

1 Introduction

An n-dimensional semi-Riemannian or Riemannian manifold (Mn, g) (n > 2) , is said
to be an Einstein manifold if its Ricci tensor S satisfies the condition

(1.1) S =
r

n
g,

where r denotes the scalar curvature of (Mn, g) . In other words, an Einstein manifold
is a Riemannian or pseudo Riemannian manifold whose Ricci tensor is proportional to
the metric. The notion of quasi-Einstein manifold was introduced by M. C. Chaki and
R. K. Maity [6]. A non-flat Riemannian manifold (Mn, g) , (n ≥ 3) is a quasi-Einstein
manifold if its Ricci tensor S satisfies the condition

(1.2) S (X,Y ) = ag (X,Y ) + bA (X)A (Y )

and is not identically zero, where a, b are scalars, b ̸= 0 and A is a non-zero 1-form
such that

g (X,U) = A (X) ,

for all vector field X. U being a unit vector field.

Here a and b are called the associated scalars, A is called the associated 1-form and
U is called the generator of the vector field of the manifold. Such an n-dimensional
manifold is denoted by (QE)n .

Differential Geometry - Dynamical Systems, Vol.24, 2022, pp. 78-91.
© Balkan Society of Geometers, Geometry Balkan Press 2022.
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The notion of a generalized quasi-Einstein manifold was introduced by U. C. De
and G. C. Ghosh [8]. According to them, a non-flat Riemannian manifold is called a
generalized quasi-Einstein manifold if its Ricci tensor S of type (0, 2) is non-zero and
satisfies the condition

(1.3) S (X,Y ) = ag (X,Y ) + bA (X)A (Y ) + cB (X)B (Y ) ,

where a, b, c are certain non-zero scalars and A, B are two non-zero 1-forms such that
for two unit vector fields U and V corresponding to the 1-forms A and B respectively,
defined as

g (X,U) = A (X) , g (X,V ) = B (X) and g (U, V ) = 0.

In such a case a, b, c are called the associated scalars, A, B respectively are called
the associated main and auxiliary 1-forms and U, V respectively are called the main
and auxiliary generators of the vector fields of the manifold. This type of manifold is
denoted by G (QE)n .

In [4, 11], A. Bhattacharyya, T. De and S. Dey introduced the notion of mixed gen-
eralized quasi-Einstein manifold. A non-flat Riemannian manifold (Mn, g) , (n ≥ 3)
is called mixed generalized quasi-Einstein manifold if its Ricci tensor S of type (0, 2)
is not identically zero and satisfies the condition

S (X,Y ) = ag (X,Y ) + bA (X)A (Y ) + cB (X)B (Y )

+ e [A (X)B (Y ) +A (Y )B (X)] ,(1.4)

where a, b, c, e are scalars of which b ̸= 0, c ̸= 0, e ̸= 0 and A, B are two non-zero
1-forms such that

g (X,U) = A (X) , g (X,V ) = B (X) and g (U, V ) = 0,

where U, V are unit vector fields. In this case a, b, c, e are called associated scalars.
A, B are called the associated 1-forms and U, V are called the generators of the vector
fields of the manifold. If e = 0, then the manifold becomes to G (QE)n . This type of
manifold is denoted by MG (QE)n .

In [9], the authors introduce the notion of a manifold of generalized quasi-constant
curvature.

A Riemannian manifold is said to be a manifold of generalized quasi-constant
curvature if the curvature tensor R̃ of type (0, 4) satisfies the following condition

R̃ (X,Y, Z,W ) = p [g (Y, Z) g (X,W )− g (X,Z) g (Y,W )]

+ q [g (X,W )A (Y )A (Z)− g (X,Z)A (Y )A (W )

+g (Y, Z)A (X)A (W )− g (Y,W )A (X)A (Z)]

+ s [g (X,W )B (Y )B (Z)− g (X,Z)B (Y )B (W )

+g (Y, Z)B (X)B (W )− g (Y,W )B (X)B (Z)] ,(1.5)

where p, q, s are scalars, A and B are non-zero 1-forms. U and V are unit orthogonal
vector fields such that

g (X,U) = A (X) , g (X,V ) = B (X) and g (U, V ) = 0.
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A Riemannian manifold is said to be a manifold of mixed generalized quasi-constant
curvature if the curvature tensor R̃ of type (0, 4) satisfies

R̃ (X,Y, Z,W ) = p [g (Y,Z) g (X,W )− g (X,Z) g (Y,W )]

+ q [g (X,W )A (Y )A (Z)− g (Y,W )A (X)A (Z)

+g (Y,Z)A (X)A (W )− g (X,Z)A (Y )A (W )]

+ s [g (X,W )B (Y )B (Z)− g (Y,W )B (X)B (Z)

+g (Y,Z)B (X)B (W )− g (X,Z)B (Y )B (W )]

+ t [{A (Y )B (Z) +B (Y )A (Z)} g (X,W )

− {A (X)B (Z) +B (X)A (Z)} g (Y,W )

+ {A (X)B (W ) +B (X)A (W )} g (Y, Z)

−{A (Y )B (W ) +B (Y )A (W )} g (X,Z)] ,(1.6)

where p, q, s, t are scalars. A, B are non-zero 1-forms. U and V are orthonormal
unit vectors corresponding to A and B such that

g (X,U) = A (X) , g (X,V ) = B (X) and g (U, V ) = 0.

The notion of quasi-conformal curvature tensor was introduced by Yano and
Sawaki [18] and they defined it as:

C∗ (X,Y )Z = a1R (X,Y )Z + b1 [S (Y,Z)X − S (X,Z)Y + g (Y,Z)QX

−g (X,Z)QY ]− r

n

[
a1

n− 1
+ 2b1

]
[g (Y,Z)X − g (X,Z)Y ] ,(1.7)

where a1 and b1 are constants, R is the curvature tensor of type (1, 3) , S is the Ricci
tensor of type (0, 2) , Q is the Ricci operator and r is the scalar curvature of the
manifold.

If a1 = 1 and b1 = − 1

n− 2
, then (1.7) reduces to the conformal curvature tensor

C. Thus the conformal curvature tensor C is a particular case of the tensor C∗. For
this reason C∗ is called the quasi-conformal curvature tensor. A Riemannian or a
semi-Riemannian manifold is called quasi-conformally flat if C∗ = 0 for n > 3.

In a smooth manifold (Mn, g) Petrov [17] introduced a tensor P̃ of the type (0, 4)
and defined it by

(1.8) P̃ = R̃+
κ

2
g ∧ T − σG,

where R̃ is the curvature tensor of type (0, 4) , T is the energy momentum tensor of
type (0, 2) , κ is the gravitational constant, σ is the energy density, G is a tensor of
type (0, 4) given by

(1.9) G (X,Y, Z,W ) = g (Y, Z) g (X,W )− g (X,Z) g (Y,W ) ,

for all X,Y, Z,W ∈ χ (M) and Kulkarni-Nomizu product E ∧ F of two (0, 2) tensors
E and F is defined by

(E ∧ F ) (X,Y, Z,W ) = E (Y,Z)F (X,W ) + E (X,W )F (Y,Z)

− E (X,Z)F (Y,W )− E (Y,W )F (X,Z) ,(1.10)
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where X,Y, Z,W ∈ χ (M) . The tensor P̃ is called the space-matter tensor of type
(0, 4) of the manifold M. The space-matter tensor have been studied by Ahsan, Ali
and Siddiqui [1, 2, 3] and many others.

After studying and analyzing various papers [7, 10, 12, 13, 14], we got motivated
to work in this area. We have tried to develop a new concept. This paper is organized
as follows:

After introduction in Section 2, we have studied MG (QE)n with divergence free
quasi-conformal curvature tensor. In Section 3, we have studied sectional curvatures
at a point of a quasi-conformally flat MG (QE)n . In the next two sections, we have
studied MG (QE)4 spacetime with vanishing space-matter tensor and divergence free
space-matter tensor. In section 6, we have studied perfect fluid MG (QE)4 spacetime.
Finally, we have given two examples of MG (QE)n .

2 MG (QE)n (n > 3) with divergence free quasi-conformal
curvature tensor

In this section we look for a sufficient condition in order that a MG (QE)n (n > 3)
may be quasi-conformally conservative.

Theorem 2.1. If in a MG (QE)n the associated scalars are constants and the gen-
erators U and V of the vector fields of the manifold are parallel vector fields, then the
manifold is quasi-conformally conservative.

Proof. Quasi-conformal curvature tensor is said to be conservative if the divergence
of C∗ vanishes, i.e., div (C∗) = 0.

In a MG (QE)n if the associated scalars a, b, c, e are constants, then contracting
(1.4) we get

r = an+ b+ c,

which implies that the scalar curvature r is constant, i.e., dr = 0.
Using dr = 0 we obtain from (1.7) that

(∇WC∗) (X,Y, Z) = a1 (∇WR) (X,Y )Z + b1 [(∇WS) (Y, Z)X

− (∇WS) (X,Z)Y + g (Y,Z) (∇WQ) (X)

−g (X,Z) (∇WQ) (Y )] .(2.1)

We know (divR) (X,Y, Z) = (∇XS) (Y,Z)− (∇Y S) (X,Z) and from (1.4) we obtain

(∇XS) (Y,Z) = b [(∇XA) (Y )A (Z) +A (Y ) (∇XA) (Z)]

+ c [(∇XB) (Y )B (Z) +B (Y ) (∇XB) (Z)]

+ e [(∇XA) (Y )B (Z) +A (Y ) (∇XB) (Z)

+ (∇XA) (Z)B (Y ) +A (Z) (∇XB) (Y )] ,(2.2)

since a, b, c and e are constants.
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Contracting (2.1) and using (2.2) we obtain

(divC∗) (X,Y, Z) = (a1 + b1) [b {(∇XA) (Y )A (Z) +A (Y ) (∇XA) (Z)

− (∇Y A) (X)A (Z)−A (X) (∇Y A) (Z)}
+ c {(∇XB) (Y )B (Z) +B (Y ) (∇XB) (Z)

− (∇Y B) (X)B (Z)−B (X) (∇Y B) (Z)}
+ e {(∇XA) (Y )B (Z) +A (Y ) (∇XB) (Z)

+ (∇XA) (Z)B (Y ) +A (Z) (∇XB) (Y )

− (∇Y A) (X)B (Z)−A (X) (∇Y B) (Z)

− (∇Y A) (Z)B (X)−A (Z) (∇Y B) (X)}] .(2.3)

Using the condition that the generators U and V of the vector fields of the manifold
are parallel vector fields which gives ∇XU = 0 and ∇XV = 0. Hence

g (∇XU, Y ) = 0, i.e., (∇XA) (Y ) = 0

and
g (∇XV, Y ) = 0, i.e., (∇XB) (Y ) = 0.

Therefore from (2.3) we get

(divC∗) (X,Y, Z) = 0.

Thus the manifold is quasi-conformally conservative. □

3 Sectional curvatures at a point of a quasi-conformally
flat MG (QE)n

Let us consider U⊥ and V ⊥ as (n− 1)-dimensional distribution in a quasi-conformally
flat MG (QE)n (n > 3) orthogonal to U and V respectively. Then for any X ∈ U⊥

and X ∈ V ⊥, g (X,U) = 0 and g (X,V ) = 0, i.e., A (X) = 0 and B (X) = 0. In
this section we will determine sectional curvature K at the plane determined by the
vectors X,Y ∈ U⊥ and X,Y ∈ V ⊥ or by X, U and X, V.

Theorem 3.1. In a quasi-conformally flat MG (QE)n (n > 3) the sectional curvature
of the plane determined by two vectors X,Y ∈ U⊥ and X,Y ∈ V ⊥ is

a1 (an+ b+ c) + 2b1 (n− 1) (b+ c)

n (n− 1) a1
,

while the sectional curvature of the plane determined by two vectors X, U is

a1 (an+ b+ c)− b1 (n− 1) {b (n− 2)− 2c}
n (n− 1) a1

and the sectional curvature of the plane determined by two vectors X, V is

a1 (an+ b+ c)− b1 (n− 1) {c (n− 2)− 2b}
n (n− 1) a1

.
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Proof. In [5], A. Bhattacharyya, T. De and D. Debnath proved that every quasi-
conformally flat MG (QE)n (n > 3) is a manifold of mixed generalized quasi-constant
curvature, i.e.,

R̃ (X,Y, Z,W ) =

{
a1r + 2b1 (n− 1) (r − an)

n (n− 1) a1

}
[g (Y,Z) g (X,W )

−g (X,Z) g (Y,W )] +

(
−bb1

a1

)
[g (X,W )A (Y )A (Z)

− g (Y,W )A (X)A (Z) + g (Y, Z)A (X)A (W )

−g (X,Z)A (Y )A (W )] +

(
−cb1

a1

)
[g (X,W )B (Y )B (Z)

− g (Y,W )B (X)B (Z) + g (Y, Z)B (X)B (W )

−g (X,Z)B (Y )B (W )] +

(
−eb1

a1

)
[{A (Y )B (Z)

+B (Y )A (Z)} g (X,W )− {A (X)B (Z)

+B (X)A (Z)} g (Y,W ) + {A (X)B (W )

+B (X)A (W )} g (Y,Z)− {A (Y )B (W )

+B (Y )A (W )} g (X,Z)] .(3.1)

Putting Z = Y and W = X in (3.1) we have

(3.2) R̃ (X,Y, Y,X) =
a1r + 2b1 (n− 1) (r − an)

n (n− 1) a1

[
g (X,X) g (Y, Y )− {g (X,Y )}2

]
.

Putting Y = Z = U and W = X in (3.1) we have

(3.3) R̃ (X,U,U,X) =

{
a1r + 2b1 (n− 1) (r − an)

n (n− 1) a1
− bb1

a1

}
g (X,X) .

Putting Y = Z = V and W = X in (3.1) we get

(3.4) R̃ (X,V, V,X) =

{
a1r + 2b1 (n− 1) (r − an)

n (n− 1) a1
− cb1

a1

}
g (X,X) .

Now contracting (1.4) over X and Y we have

(3.5) r = an+ b+ c.

Using (3.2), (3.5), (3.3) and (3.4) we obtain

K (X,Y ) =
R̃ (X,Y, Y,X)

g (X,X) g (Y, Y )− {g (X,Y )}2
=

a1 (an+ b+ c) + 2b1 (n− 1) (b+ c)

n (n− 1) a1
,

K (X,U) =
R̃ (X,U,U,X)

g (X,X) g (U,U)− {g (X,U)}2
=

a1 (an+ b+ c)− b1 (n− 1) {b (n− 2)− 2c}
n (n− 1) a1

and

K (X,V ) =
R̃ (X,V, V,X)

g (X,X) g (V, V )− {g (X,V )}2
=

a1 (an+ b+ c)− b1 (n− 1) {c (n− 2)− 2b}
n (n− 1) a1

.

Thus the proof of theorem is completed. □
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4 MG (QE)4 spacetime with vanishing space-matter
tensor

In this section we study MG (QE)4 spacetime with vanishing space-matter tensor.

Theorem 4.1. A MG (QE)4 spacetime satisfying Einstein’s field equation and with
vanishing space-matter tensor is a spacetime of mixed generalized quasi-constant cur-
vature.

Proof. The equation (1.8) can be written as

P̃ (X,Y, Z,W ) = R̃ (X,Y, Z,W ) +
κ

2
[g (Y, Z)T (X,W ) + g (X,W )T (Y,Z)

−g (X,Z)T (Y,W )− g (Y,W )T (X,Z)]

− σ [g (Y, Z) g (X,W )− g (X,Z) g (Y,W )] .(4.1)

If P̃ = 0, then (4.1) becomes

R̃ (X,Y, Z,W ) =− κ

2
[g (Y,Z)T (X,W ) + g (X,W )T (Y,Z)

−g (X,Z)T (Y,W )− g (Y,W )T (X,Z)]

+ σ [g (Y, Z) g (X,W )− g (X,Z) g (Y,W )] .(4.2)

The Einstein’s field equation without cosmological constant is given by [15, 16]

(4.3) S (X,Y )− r

2
g (X,Y ) = κT (X,Y ) ,

where κ is the gravitational constant and r is the scalar curvature of the spacetime.
Using (1.4) and Einstein’s field equation (4.3) in (4.2) we have

R̃ (X,Y, Z,W ) =
(
σ − a+

r

2

)
[g (Y,Z) g (X,W )− g (X,Z) g (Y,W )]

− b

2
[g (X,W )A (Y )A (Z)− g (Y,W )A (X)A (Z)

+g (Y,Z)A (X)A (W )− g (X,Z)A (Y )A (W )]

− c

2
[g (X,W )B (Y )B (Z)− g (Y,W )B (X)B (Z)

+g (Y,Z)B (X)B (W )− g (X,Z)B (Y )B (W )]

− e

2
[{A (Y )B (Z) +B (Y )A (Z)} g (X,W )

− {A (X)B (Z) +B (X)A (Z)} g (Y,W )

+ {A (X)B (W ) +B (X)A (W )} g (Y, Z)

−{A (Y )B (W ) +B (Y )A (W )} g (X,Z)] .(4.4)

Comparing (1.6) and (4.4) we can say that the manifold under consideration is a
manifold of mixed generalized quasi-constant curvature. □
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5 MG (QE)4 spacetime with divergence free space-
matter tensor

In this section we look for a sufficient condition in order that a MG (QE)4 may be of
divergence free space-matter tensor.

Theorem 5.1. In a MG (QE)4 spacetime satisfying Einstein’s field equation with
divergence free space-matter tensor the energy density is constant.

Proof. In a MG (QE)n if the associated scalars a, b, c and e are constants, then
contracting (1.4) we get

r = an+ b+ c,

which implies that the scalar curvature r is constant, i.e., dr = 0.
Using (4.3), we obtain from (4.1) that

(divP ) (X,Y, Z) = divR (X,Y )Z +
1

2
[(∇XS) (Y,Z)− (∇Y S) (X,Z)]

− g (Y,Z)

[
dσ (X) +

1

4
dr (X)

]
+ g (X,Z)

[
dσ (Y ) +

1

4
dr (Y )

]
.(5.1)

We know that in a semi-Riemannian manifold

(5.2) (divR) (X,Y, Z) = (∇XS) (Y,Z)− (∇Y S) (X,Z) .

From (5.1) and (5.2) we have

(divP ) (X,Y, Z) =
3

2
[(∇XS) (Y, Z)− (∇Y S) (X,Z)]− g (Y,Z)

[
dσ (X) +

1

4
dr (X)

]
+ g (X,Z)

[
dσ (Y ) +

1

4
dr (Y )

]
.(5.3)

By assuming (divP ) (X,Y, Z) = 0 and then contracting (5.3) over Y and Z, we have

dσ (X) = 0.

Thus the energy density is constant. □

Theorem 5.2. If in a MG (QE)4 spacetime satisfying Einstein’s field equation the
associated scalars and the energy density σ are constants, then the divergence of the
space-matter tensor vanishes.
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Proof. Using (1.4), equation (5.3) can be written as

(divP ) (X,Y, Z) =
3

2
[da (X) g (Y, Z)− da (Y ) g (X,Z)] +

3

2
[db (X)A (Y )A (Z)

−db (Y )A (X)A (Z)] +
3

2
[dc (X)B (Y )B (Z)

−dc (Y )B (X)B (Z)] +
3

2
[de (X) {A (Y )B (Z)

+A (Z)B (Y )} − de (Y ) {A (X)B (Z) +A (Z)B (X)}]

+
3b

2
[(∇XA) (Y )A (Z) +A (Y ) (∇XA) (Z)− (∇Y A) (X)A (Z)

−A (X) (∇Y A) (Z)] +
3c

2
[(∇XB) (Y )B (Z) +B (Y ) (∇XB) (Z)

− (∇Y B) (X)B (Z)−B (X) (∇Y B) (Z)] +
3e

2
[(∇XA) (Y )B (Z)

+A (Y ) (∇XB) (Z) + (∇XA) (Z)B (Y ) +A (Z) (∇XB) (Y )

− (∇Y A) (X)B (Z)−A (X) (∇Y B) (Z)− (∇Y A) (Z)B (X)

−A (Z) (∇Y B) (X)]− g (Y,Z)

[
dσ (X) +

1

4
dr (X)

]
+ g (X,Z)

[
dσ (Y ) +

1

4
dr (Y )

]
.(5.4)

Using the conditions that the associated scalars and the energy density σ are constants
and the generators U and V of the vector fields of the manifold are parallel vector
fields which gives ∇XU = 0 and ∇XV = 0. Hence dr (X) = 0, dσ (X) = 0, for all X.
Also

g (∇XU, Y ) = 0, i.e., (∇XA) (Y ) = 0

and
g (∇XV, Y ) = 0, i.e., (∇XB) (Y ) = 0.

Therefore from (5.4) we get

(divP ) (X,Y, Z) = 0.

Thus the divergence of the space-matter tensor vanishes. □

6 Perfect fluid MG (QE)4 spacetime

Theorem 6.1. If a perfect fluid MG (QE)4 spacetime admits Einstein’s field equation

without cosmological constant, then in this case isotropic pressure is
−6a+ b− c

6κ
and

energy density is
2a+ 3b+ c

2κ
.

Proof. In a perfect fluid spacetime, the energy momentum tensor T of type (0, 2) is
of the form:

(6.1) T (X,Y ) = pg (X,Y ) + (σ + p)A (X)A (Y ) ,
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where σ and p are the energy density and the isotropic pressure, respectively. Then
in the general relativistic spacetime whose matter content is perfect fluid satisfying
the Einstein’s field equation, the Ricci tensor holds the following equation

(6.2) S (X,Y )− r

2
g (X,Y ) = κT (X,Y ) .

From (6.1) and (6.2), we get

(6.3) S (X,Y )− r

2
g (X,Y ) = κ [pg (X,Y ) + (σ + p)A (X)A (Y )] .

Taking a frame field and contracting (6.3) over X and Y, we have

(6.4) r = κ (σ − 3p) .

Here, if we consider the general relativistic perfect fluid MG (QE)4 spacetime with
unit timelike velocity vector field U, then we have

(6.5) g (U,U) = −1.

Now putting X = Y = U in (6.3) and then using (6.4), we have

(6.6) S (U,U) =
κ

2
(σ + 3p) .

In the case of MG (QE)4 spacetime, contracting (1.4) over X and Y, we have

(6.7) r = 4a+ b+ c.

From (6.4) and (6.7) we have

(6.8) 4a+ b+ c = κ (σ − 3p) .

Again from (1.4), we get

(6.9) S (U,U) = −a+ b.

From (6.6) and (6.9), we obtain

(6.10) b− a =
κ

2
(σ + 3p) .

Solving equations (6.8) and (6.10), we get

p =
−6a+ b− c

6κ
, σ =

2a+ 3b+ c

2κ
.

This completes the proof of the theorem. □
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7 Examples of MG (QE)4
In this section, we show the existence of MG (QE)4 by constructing two non-trivial
concrete examples.

Example 7.1. Let
(
x1, x2, ..., xn

)
∈ Rn, where Rn an n-dimensional real number

space. We consider a Riemannian metric g on R4 =
(
x1, x2, x3, x4

)
, by [10]

(7.1) ds2 = gijdx
idxj =

(
dx1
)2

+
(
x1
)2 (

dx2
)2

+
(
x2
)2 (

dx3
)2

+
(
dx4
)2

,

where i, j = 1, 2, 3, 4. Using (7.1), we see the non-vanishing components of Riemannian
metric are

(7.2) g11 = 1, g22 =
(
x1
)2

, g33 =
(
x2
)2

, g44 = 1

and its associated components are

(7.3) g11 = 1, g22 =
1

(x1)
2 , g33 =

1

(x2)
2 , g44 = 1.

With the help of (7.2) and (7.3), it can be calculated that the non-vanishing compo-
nents of Christoffel symbols, curvature tensor and Ricci tensor are given by

Γ1
22 = −x1, Γ2

33 = − x2

(x1)
2 , Γ2

12 =
1

x1
, Γ3

23 =
1

x2
,

R1332 = −x2

x1
, S12 = − 1

x1x2

and the other components are obtained by the symmetric properties. It can be easily
shown that the scalar curvature r of the resulting manifold

(
R4, g

)
is zero. We shall

show that
(
R4, g

)
is a MG (QE)4 .

Let us consider the associated scalars as follows:

(7.4) a =
1

x1 (x2)
2 , b = − 1

(x2)
3 , c =

1

(x2)
4 , e = − 2

(x1)
2
x2

.

We choose the 1-form as follows:

(7.5) Ai (x) =


1√
2
, when i = 1

x2

√
2
, when i = 3

0, otherwise

and

(7.6) Bi (x) =


x1

√
2
, when i = 2

1√
2
, when i = 4

0, otherwise
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at any point x ∈ R4. Now the equation (1.4) reduces to the equation

(7.7) S12 = ag12 + bA1A2 + cB1B2 + e (A1B2 +A2B1) ,

since, for the other cases (1.4) holds trivially.
From the equations (7.4), (7.5), (7.6) and (7.7) we get

Right hand side of (7.7) = ag12 + bA1A2 + cB1B2 + e (A1B2 +A2B1)

=
1

x1 (x2)
2 · 0 +

(
− 1

(x2)
3

)
· 1√

2
· 0 + 1

(x2)
4 · 0 · x1

√
2

+

(
− 2

(x1)
2
x2

)(
1√
2
· x1

√
2
+ 0

)
= − 1

x1x2
= S12.

We shall now show that the associated vectors Ai and Bi are unit and also they are
orthogonal.
Here,

gijAiAj = 1, gijBiBj = 1, gijAiBj = 0.

So,
(
R4, g

)
is a MG (QE)4 .

Example 7.2. Let
(
x1, x2, ..., xn

)
∈ Rn, where Rn denotes n-dimensional real number

space. We consider a Lorentzian metric g on R4 =

(
x1, x2, x3, x4;x1 ̸= (1 + 2p)π

4
, p ∈ Z

)
,

(Z is the set of positive integer) , by [7]

(7.8) ds2 = gijdx
idxj =

{
sin
(
x1
)
− cos

(
x1
)} [(

dx1
)2

+
(
dx2
)2

+
(
dx3
)2]−(dx4

)2
,

where i, j = 1, 2, 3, 4. Using (7.8), we see the non-vanishing components of the
Lorentzian metric are

(7.9) g11 = g22 = g33 = sin
(
x1
)
− cos

(
x1
)
, g44 = −1

and its associated components are

(7.10) g11 = g22 = g33 =
1

sin (x1)− cos (x1)
, g44 = −1.

With the help of (7.9) and (7.10), it can be found that the non-vanishing components
of Christoffel symbols, curvature tensor, Ricci tensor and scalar curvature are given
by

Γ1
11 = Γ2

12 = Γ3
13 =

sin
(
x1
)
+ cos

(
x1
)

2 (sin (x1)− cos (x1))
, Γ1

22 = Γ1
33 =

sin
(
x1
)
+ cos

(
x1
)

2 (cos (x1)− sin (x1))
,

R1331 =
1

cos (x1)− sin (x1)
, S33 =

−3 + sin 2
(
x1
)

4 (1− sin 2 (x1))
,
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(7.11) r =
−3 + sin 2

(
x1
)

4 (sin (x1)− cos (x1))
3 (̸= 0)

and the other components are obtained by the symmetric properties. From (7.11), it
is clear that the manifold

(
R4, g

)
is a Lorentzian manifold. Now, we are to prove that(

R4, g
)
is a MG (QE)4 .

Let us consider the associated scalars as follows:

a =
sin 2

(
x1
)

4 (sin (x1)− cos (x1))
3 , b =

1

sin (x1)− cos (x1)
, c = − 3

4 (sin (x1)− cos (x1))
3 ,

e = − 1

2 (sin (x1)− cos (x1))
2 .

(7.12)

We choose the 1-form as follows:

(7.13) Ai (x) =

{ √
sin (x1)− cos (x1), when i = 1
0, otherwise

and

(7.14) Bi (x) =

{ √
sin (x1)− cos (x1), when i = 3
0, otherwise

at any point x ∈ R4. Now the equation (1.4) reduces to the equation

(7.15) S33 = ag33 + bA3A3 + cB3B3 + 2eA3B3,

since, for the other cases (1.4) holds trivially.
From the equations (7.12), (7.13), (7.14) and (7.15) we get

Right hand side of (7.15) = ag33 + bA3A3 + cB3B3 + 2eA3B3

=
sin 2

(
x1
)

4 (sin (x1)− cos (x1))
2 + 0− 3

4 (sin (x1)− cos (x1))
2 − 0

=
−3 + sin 2

(
x1
)

4 (1− sin 2 (x1))
= S33.

We shall now show that the 1-forms are unit and orthogonal.
Here,

gijAiAj = 1, gijBiBj = 1, gijAiBj = 0.

So,
(
R4, g

)
is a MG (QE)4 .
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Abstract At first, we show that a quasi-conformally flat perfect fluid spacetime is a de-Sitter spacetime as well as a Robertson-Walker
spacetime. We study this spacetime as a solution of f (R,G)-gravity theory, and obtain a relation among snap, jerk, and deceleration
parameters using flat Friedmann-Robertson-Walker metric. Several energy conditions in terms of Ricci scalar are investigated with
the models f (R,G) � μRβ1Gβ2 , f (R,G) � α1R + α2RmGn and f (R,G) � R + a1Gα3 . For these models, the weak, null and
dominant energy conditions are satisfied while the strong energy condition is violated, which is a good agreement with the recent
observational studies which reveals that the current Universe is in accelerating phase.

1 Introduction

A spacetime is a Lorentzian manifold Mn with the Lorentzian metric g of signature (−, +, +, . . . , +) which permits a globally
timelike vector field. Different types of spacetimes have been studied in various ways, such as ([5, 14, 17, 20, 22, 23, 45]) and many
others.

A Lorentzian manifold of dim. n (n > 2) whose metric assume the appropriate local structure

ds2 � −(dζ )2 + q2(ζ )g∗
u1u2

dxu1 dxu2 (1)

is named a generalized Robertson-Walker (GRW) spacetime ([9, 10]), where g∗
u1u2

� g∗
u1u2

(xu3) are only functions of xu3

(u1, u2, u3 � 2, 3, . . . , n) and q is a function dependent on ζ . So, −I × q2M̄ can be used to represent GRW spacetime in which
I ⊆ R is an open interval and M̄ is an (n − 1)-dimensional Riemannian manifold. If dim. of M̄ is three and of constant sectional
curvature, then the GRW spacetime terms into a Robertson-Walker (RW) spacetime.

Mn is referred to as perfect fluid spacetime (PFS) if the Ricci tensor Rlk takes the shape

Rlk � cglk + duluk, (2)

where c, d are scalars and uk is a unit timelike vector, named velocity vector or flow vector.
The matter content of the spacetimes in general relativity (GR) theory is depicted by the energy-momentum tensor (EMT) T and

the fluid is termed perfect fluid, since it does not have the heat conduction terms [24]. The form of the EMT [38] for a PFS is

Tlk � pglk + ( p + σ )uluk, (3)

where p denotes isotropic pressure, σ denotes energy density of the ordinary matter. On a physical viewpoint, it is described the
global structure of a PFS, in several relevant cases. The Einstein’s field equations (EFE) are described by

Rlk − 1

2
glkR � κTlk, (4)

where R indicates the Ricci scalar and κ is the gravitational constant. Additionally, a state equation with the form p � p(σ ) connects
p and σ , and the PFS is known as isentropic. Furthermore, if p � σ , the PFS is referred to as stiff matter. The PFS is referred to as
the dark matter era if p + σ � 0, the dust matter fluid if p � 0, and the radiation era if p � σ

3 [8]. The Universe is represented as
accelerating phase when p

σ
< − 1

3 . It covers the quintessence phase if −1 <
p
σ

< 0 and phantom era if p
σ

< −1.
It is widely accepted by the scientific community that our Universe is currently in an accelerated phase. GR in its standard form

can not explain the accelerated expansion without extra terms or components, which have been gathered under the name of dark
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energy. As is widely known in GR, the energy conditions (ECs) are crucial tools for researching wormholes and black holes in
various modified gravities ([4, 24]). The Raychaudhuri Eq. [41], which reflect the attractive nature of gravity through the positivity
condition Rlkv

lvk ≥ 0, where vl is a null vector, are used to methodically create the ECs. In GR, through the EFE, this condition on
geometry is equivalent to the null energy condition (NEC) Tlkvlvk ≥ 0 on matter. In specifically, the weak energy condition (WEC)
asserts that Tlkuluk ≥ 0, for any timelike vector ul and assumes a positive local energy density. Numerous changes to EFE have
been made and extensively researched (see [7, 36, 40] for examples of the modified gravity theories). One of these modified theories
was the “ f (R,G)-gravity theory” [19], which was developed by substituting the earlier Ricci scalar R with a function of R and
G, the Gauss-Bonnet scalar. In [12], the authors have studied the stability of de-Sitter and power-law solutions in f (R,G)-gravity
and shown that gravitational action plays an important role in the stability of the solutions both of which depending on the form
of the f (R,G)-theory and the parameters of the model. In [26], the authors develop the weak-field limit of f (R,G) considering
the Parametrized Post-Newtonian formalism. The possibility to obtain inflation considering a generic f (R,G) theory discussed
in [27]. Also in [3], the authors study ECs in terms of the Hubble, deceleration, jerk and snap parameters for f (R,G) modified
theories of gravity and consider their realization for flat Friedmann cosmological models. Motivated by these studies, this paper
is mainly organized to investigate ECs in terms of Ricci scalar in a quasi-conformally flat PFS obeying f (R,G)-gravity. Some
specific f (R,G)-models, for instance, f (R,G) � μRβ1Gβ2 , f (R,G) � α1R+α2RmGn (α1, α2, β1, β2, μ,m and n are constants)
suggested by de la Cruz-Dombriz et al. [12] and f (R,G) � R + a1Gα3 (a1 is an arbitrary constant and α3 is an even positive
number) suggested by Nojiri et al. [37] were developed to explain late-time acceleration as a pure gravitational phenomenon without
the usage of dark energy, and cosmic inflation without the use of scalar fields. Despite their limitations, these models managed to
increase the popularity of f (R,G)-models in general.

To study an infinitesimal nonhomothetic conformal transformation in compact orientable manifold of dim. n > 2 with constant
Ricci scalar, Yano and Sawaki [44] created a new tensor denoted by C∗ and defined by

C∗ h
k ji � aZh

k ji +
b

n − 2

{
δhk B ji − δhj Bki + g ji B

h
k − gki B

h
j

}
,

where a, b being constants, Zh
k ji � Rh

k ji − R
n(n − 1)

{
δhk g ji − δhj gki

}
is the concircular curvature tensor and Bhk � Rhk − R

n
ghk .

The authors [44] proved that if ££
(
C∗
k jihC∗ k jih

)
≤ 0 and a + b �� 0, then the manifold is isometric to a sphere, where £ stands for

the Lie derivative.
The above expression of C∗ for dim. 4 can be written explicitly as

C∗ h
i jk � γRh

i jk + δ
{
gi jRh

k − gikRh
j + δhkRi j − δhjRik

}
− R

4

(γ

3
+ 2δ

){
δhk gi j − δhj gik

}
, (5)

where γ and δ are constants, Rh
i jk denotes the curvature tensor. If γ � 1 and δ � −1

2
, then C∗ h

i jk takes the form

Chi jk � Rh
i jk − 1

2

{
gi jRh

k − gikRh
j + δhkRi j − δhjRik

}
+
R
6

{
δhk gi j − δhj gik

}
, (6)

where Chi jk is the conformal curvature tensor. Such a tensor C∗ h
i jk is named quasi-conformal curvature tensor. A quasi-conformally

flat manifold is known [2] to be either conformally flat for γ �� 0 or Einstein for γ � 0 and δ �� 0. We must keep in mind the
situation of γ �� 0 or δ �� 0 because they do not impose any restrictions on manifolds if γ � 0 and δ � 0. Throughout the paper
we adopt that γ + 2δ �� 0. Some researchers investigated C∗ h

i jk in Riemannian manifolds, contact manifolds and spacetimes, such as
([16, 32, 35, 39]) and many others.

Transvecting (5) with glh , we get

C∗
li jk �γRli jk + δ

{
gi jRlk − gikRl j + glkRi j − gl jRik

}

− R
4

(γ

3
+ 2δ

){
gi j glk − gikgl j

}
. (7)

It is well-known that

Ckli j,k �
(
n − 3

n − 2

)[{
Rli, j − Rl j,i

} − 1

2(n − 1)

{
gliR, j − gl jR,i

}]
. (8)

Here comma (, ) denotes the covariant differentiation.

Definition 1 [11] A generalized Ricci recurrent spacetime is characterized by

Rlk,h � ωhRlk + τhglk, (9)

where ωh and τh are nonzero vectors. Several researchers ([14, 15, 31]) and many others have investigated generalized Ricci recurrent
spacetime.
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After a brief introduction in Sect. 2, we characterize spacetimes with quasi-conformally flat curvature tensor. The physical
properties of PFS admitting quasi-conformally flat curvature tensor are examined in the next Section. The analysis of quasi-
conformally recurrent spacetimes is presented in Sect. 4. In the last Section, we explore quasi-conformally flat spacetimes in f
(R,G)-gravity theory.

2 Quasi-conformally flat spacetimes

Here we consider quasi-conformally flat
(
C∗
li jk � 0

)
spacetime of GR. Eq. (7) imply

Rli jk � − δ

γ

{
gi jRlk − gikRl j + glkRi j − gl jRik

}
+
R
4

(
1

3
+

2δ

γ

){
gi j glk − gikgl j

}
. (10)

Transvecting (10) with gi j we obtain

Rlk � R
4
glk . (11)

Hence provide the result:

Theorem 1 A spacetime which is C∗-flat reveals an Einstein spacetime.

Using (11) in (10) infers

Rli jk � R
12

{
gi j glk − gikgl j

}
. (12)

Thus, we might conclude that:

Theorem 2 A C∗-flat spacetime represents a spacetime of constant curvature.
Mn is referred to as a Yang pure space [21] if the metric fulfills the following

Ri j,l � Ril, j . (13)

Since the Einstein spacetime satisfying this requirement (13). Thus we write:

Theorem 3 A C∗-flat spacetime is a Yang pure space.

Definition 2 [18] A vector field ξ is known as conformal Ricci collineation (CRC), Ricci inheritance vector (RIV), conformal
collineation (CC) if, for a scalar β, it satisfies

£ξRi j � 2βgi j , (14)

£ξRi j � 2βRi j , (15)

£ξ gi j � 2βgi j , (16)

respectively. In particular, if β � 0, then Eqs. (14) and (16) reduces to Ricci collineation and Killing equation, respectively.

Considering the Lie derivative on both sides of (11), we reach

£ξRi j � R
4

£ξ gi j . (17)

If ξ is CRC, hence Eqs. (14) and (17) together imply

£ξ gi j � 2ψ1gi j , where ψ1 � 4β

R
. (18)

In contrast, if ξ is CC, then Eqs. (16) and (17) gives us

£ξRi j � 2ψ2gi j , where ψ2 � βR
4

. (19)

This fact prompts us to make the conclusion:

Theorem 4 A C∗-flat spacetime admits CC with respect to ξ if and only if it permits CRC with respect to ξ .

If ξ is RIV, then from Eqs. (11) and (15), it follows that

£ξRi j � 2ψ3gi j , where ψ3 � Rβ

4
. (20)

Consequently, we state:

Theorem 5 In a C∗-flat spacetime, RIV becomes CRC.
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3 Quasi-conformally flat perfect fluid spacetimes

In this part, we take a PFS with quasi-conformally flat curvature tensor obeying EFE. From (3), (4) and (11), it follows that
(

κ p +
R
4

)
gi j + κ( p + σ )uiu j � 0. (21)

Transvecting (21) with gi j entails that

κ(σ − 3 p) � R. (22)

Again, transvecting (21) with ui we find

R � 4κσ . (23)

From (22) and (23), we get

p + σ � 0. (24)

This represents a dark matter era [8]. Thus we conclude:

Theorem 6 A C∗-flat PFS represents a dark matter era.

Since the quasi-conformally flat spacetime is an Einstein spacetime, the Ricci scalar R is constant and Eq. (8) infers Cijkl,i � 0.

Mantica et al. [33] proved that a PFS with Cijkl,i � 0 and R,i � 0 is a GRW spacetime.
Thus, we assert the result:

Theorem 7 A C∗-flat PFS is a GRW spacetime.

Mantica et al. [34] established that in a GRW spacetime, uiC jkli � 0 (that is, the Weyl tensor is purely electric [25]) if and only
if Cijkl,i � 0.

Hence provide the result:

Theorem 8 In a C∗-flat PFS, the Weyl tensor is purely electric.

It is known ([42], p. 73) that if the Weyl tensor is purely electric in a spacetime admitting a unit timelike vector, then it is of
Petrov type I , D or O.

Consequently, we obtain:

Corollary 9 A C∗-flat PFS is of Petrov type I, D or O.

For dimension 4, uiC jkli � 0 is similar to uhCli jk +ulCih jk +uiChl jk � 0 ([30], p. 128). Transvecting with uh , we have Cli jk � 0.
In [6], the authors proved that a GRW spacetime is conformally flat if and only if it is a RW spacetime.

Hence we write:

Theorem 10 A C∗-flat PFS is a RW spacetime.

As the energy density cannot be negative, from (23) one gets

R ≥ 0. (25)

that is, R � 0 or, R > 0.

Case 1 If R � 0, then (12) infers Rli jk � 0. This represents that the spacetime is of zero sectional curvature. Therefore the
spacetime is locally isometric to Minkowski spacetime ([18], p. 67).

Case 2 If R > 0, then Eq. (12) indicates that the constant curvature is positive. Note that the spacetime with constant positive
curvature is a de-Sitter spacetime [18].

Therefore, we state:

Theorem 11 A C∗-flat PFS is either a de-Sitter spacetime or locally isometric to Minkowski spacetime.
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4 Quasi-conformally recurrent spacetimes

Definition 3 [43]Mn is said to be a recurrent spacetime if Rh
i jk fulfills the relation

Rh
i jk,l � θlRh

i jk, (26)

where θl is a nonzero vector.

A 4-dimensional Lorentzian manifold is called a C∗-recurrent spacetime if

C∗ h
i jk,l � λlC∗ h

i jk , (27)

where λl is a unit timelike vector.
Inserting (5) in (27), we deduce

γRh
i jk,l + δ

{
gi jRh

k,l − gikRh
j,l + δhkRi j,l − δhjRik,l

}

− R,l

4

(γ

3
+ 2δ

){
δhk gi j − δhj gik

}

� λl

[
γRh

i jk + δ
{
gi jRh

k − gikRh
j + δhkRi j − δhjRik

}

−R
4

(γ

3
+ 2δ

){
δhk gi j − δhj gik

}]
. (28)

Contracting h and k in (28), we infer

γRi j,l + δ
{
gi jR,l + 2Ri j,l

} − R,l

4
(γ + 6δ)gi j

� λl

[
γRi j + δ

{
gi jR + 2Ri j

} − R
4

(γ + 6δ)gi j

]
. (29)

Therefore

Ri j,l � λlRi j + μl gi j , where μl �
(
R,l − λlR

)

4
. (30)

This means that the spacetime represents a generalized Ricci recurrent spacetime.
Hence we write:

Theorem 12 A C∗-recurrent spacetime is a generalized Ricci recurrent spacetime.

It is known [15] that a generalized Ricci recurrent GRW spacetime is an Einstein spacetime. Hence from (8), we find that
Ckli j,k � 0. Also in [34], the authors demonstrated that a GRW spacetime with Ckli j,k � 0 becomes a PFS.

Thus we reach:

Corollary 13 A C∗-recurrent GRW spacetime is a PFS.

5 Quasi-conformally flat spacetimes fulfilling f (R, G)-gravity

Here, we focus on a few specific classes of f (R,G) modified gravity models. The term for gravitational action is

S � 1

2κ

∫ √−g f (R,G)d4x + Smat, (31)

Smat being the matter action and Gauss-Bonnet invariant G is presented as

G � R2 + Rli jkRli jk − 4RlkRlk . (32)

The action term (31) provides the widely used gravitational field equations of f (R,G)-gravity as

Ri j − R
2
gi j � κTi j + �i j � κT eff

i j , (33)

where

�i j � ∇i∇ j fR − gi j� fR + 2R∇i∇ j fG − 2gi jR� fG − 4Rl
i∇l∇ j fG

− 4Rl
j∇l∇i fG + 4Ri j� fG + 4gi jRlk∇l∇k fG + 4Rilk j∇l∇k fG
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− 1

2
gi j (R fR + G fG − f ) + (1 − fR)

(
Ri j − 1

2
gi jR

)
(34)

and T eff
i j is the effective EMT. Observe that fR ≡ ∂ f

∂R
, fG ≡ ∂ f

∂G
and � represents the d’Alembert operator.

The modified gravitational field equations are used to derive the ECs in the frame of f (R,G) modified gravity, and the results
are as follows

NEC ⇐⇒ σ + p ≥ 0, (35)

WEC ⇐⇒ σ ≥ 0 and σ + p ≥ 0, (36)

DEC ⇐⇒ σ ≥ 0 and σ ± p ≥ 0, (37)

SEC ⇐⇒ σ + 3 p ≥ 0 and σ + p ≥ 0, (38)

where DEC and SEC indicate the dominant and strong energy conditions, respectively.
From (11), it follows that

Rlk � R
4
glk . (39)

Equations (11) and (39) together imply

RlkRlk � R2

4
. (40)

From (12), it follows that

Rli jk � R
12

{
gi j glk − gikgl j

}
. (41)

Multiplying (12) and (41), one infers

Rli jkRli jk � R2

6
. (42)

Equations (32), (40) and (42) reflects that the Gauss-Bonnet invariant is

G � R2

6
. (43)

Since for a quasi-conformally flat spacetime R is constant, Eq. (34) becomes

�i j � Ri j +

(
f

2
− R

2

)
gi j . (44)

For a PFS the EMT is given by

Ti j � pgi j + ( p + σ )uiu j (45)

and

T eff
i j � p effgi j +

(
p eff + σ eff)uiu j , (46)

where p eff and σ eff are the effective isotropic pressure and the effective energy density of the effective matter.
Using (44) and (45) in (33), we obtain

(
κ p +

f

2

)
gi j + κ( p + σ )uiu j � 0. (47)

Transvecting twice with ui and gi j , we have

σ � f

2κ
(48)

and

p � − f

2κ
. (49)

Theorem 14 In a C∗-flat spacetime obeying f (R,G)-gravity, σ and p are given by (48) and (49), respectively.
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Equations (48) and (49) give p + σ � 0, that is, NEC is satisfied. Furthermore, NEC describes the null geodesic congruences,
and it is convergent in sufficiently small neighbourhood of every point of spacetime. The physical interpretation of NEC is that
particles following null geodesics will observe that gravity tends locally to be attractive (or at least not repulsive) when acting on
nearby particles also following null geodesics [29].

From (33), (44)–(46), (48) and (49), we have(
κ p eff − κ p − f

2
+
R
4

)
gi j + κ

(
p eff + σ eff)uiu j � 0. (50)

Transvecting (50) with ui and gi j , respectively and using (49), we get

σ eff � R
4κ

and p eff � − R
4κ

. (51)

Now, we consider the flat Friedmann-Robertson-Walker (FRW) metric

ds2 � −dt2 + a2(t)
(
dx2 + dy2 + dz2), (52)

where a(t) is the scale factor of the Universe. In the FRW background, and taking into account a perfect fluid equation of state for
ordinary matter, it follows that the field equations for f (R,G)-gravity are given by

2Ḣ fR + 8H Ḣ ḟG � H ˙fR − ¨fR + 4H3 ḟG − 4H2 f̈G , (53)

6H2 fR + 24H3 ḟG � fRR − f (R,G) − 6H ˙fR + G fG , (54)

where H � ȧ

a
is the Hubble parameter and the overdot denotes a derivative with respect to the time coordinate, t. In addition, we

have

R � 6
(
2H2 + Ḣ

)
(55)

and

G � 24H2(H2 + Ḣ
)
. (56)

From (43), (55) and (56), we get

H2 � R
12

and Ḣ � 0. (57)

As H � ȧ

a
,
ȧ

a
�

√
R
12

. Thus

ä � ȧ2

a
,

...
a � ȧ3

a2 and
....
a � ȧ4

a3 . (58)

To continue, in analogy with the standard mechanics we introduce velocity, acceleration, jerk and snap in the cosmological context.
It is appropriate to define the deceleration, jerk and snap parameters as

q � − 1

H2

ä

a
, j � 1

H3

...
a

a
and s � 1

H4

....
a

a
, (59)

respectively. Using (58) in (59), we obtain

s � j � −q. (60)

Hence, in a quasi-conformally flat PFS satisfying f (R,G)-gravity, the deceleration, jerk, and snap parameters are related by (60).
We now examine the ECs for three distinct f (R,G)-gravity models in the following subsections.

5.1 f (R,G) � μRβ1Gβ2

In this subsection, with the help of (43), the energy density and pressure are expressed as

σ �μRβ1+2β2

2κ6β2
, (61)

p � − μRβ1+2β2

2κ6β2
. (62)

The ECs for this setup can now be discussed using (61) and (62). Figures 1, 2 and 3, respectively, show the profiles of σ , DEC and
SEC. In this situation, σ + p becomes zero. The energy density cannot be negative for μ > 0 and R > 0. One can see from Fig. 1 that
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Fig. 1 Advancement of σ with
respect to μ, R (β1 � 3, β2 � 4)

Fig. 2 Advancement of DEC with
respect to μ, R (β1 � 5, β2 � 2)

Fig. 3 Advancement of SEC with
respect to μ, R (β1 � 4, β2 � 6)

the energy density is high for greater values of R. As NEC is a part of WEC. Consequently, NEC and WEC are satisfied. Figure 2
shows the DEC profile, which has a positive range for its value. SEC is disobeyed, and this outcome shows that the Universe’s
late-time acceleration ([13, 28]). Moreover, all of the results are compatible with the �CDM model [1].

5.2 f (R,G) � α1R + α2RmGn

Here, using (43), the energy density and pressure are represented as

σ � 1

2κ

(
α1R +

α2Rm+2n

6n

)
, (63)
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Fig. 4 Advancement of σ with
respect to α1, R
(α2 � 3,m � 4, n � 5)

Fig. 5 Advancement of DEC with
respect to α1, R
(α2 � 4,m � 7, n � −2)

Fig. 6 Advancement of SEC with
respect to α1, R
(α2 � 7,m � 6, n � 1)

p � − 1

2κ

(
α1R +

α2Rm+2n

6n

)
. (64)

Using (63) and (64), one can now talk about the ECs for this configuration. Figures 4, 5, and 6 indicate, in that order, the profiles of
σ , DEC, and SEC. From those figures, we notice that σ and DEC are satisfied but the SEC does not valid. Furthermore, as σ + p
goes to zero for this construction, WEC and NEC are also fulfilled.
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Fig. 7 Advancement of σ with
respect to R, a1 (α3 � 2)

Fig. 8 Advancement of DEC with
respect to R, a1 (α3 � 8)

Fig. 9 Advancement of SEC with
respect to R, a1 (α3 � 6)

5.3 f (R,G) � R + a1Gα3

For this model, the energy density and pressure are depicted as

σ � 1

2κ

(
R +

a1R2α3

6α3

)
, (65)

p � − 1

2κ

(
R +

a1R2α3

6α3

)
. (66)

We display σ , the DEC and SEC profiles in Figs. 7, 8, and 9, respectively, using (65) and (66). We see that the figures satisfy the σ

and DEC but not the SEC. Furthermore, NEC and WEC are also fulfilled as σ + p goes to zero for this construction.
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Remark 1 The equation of state is p+σ � 0, that is, |σ |� |− p|, that is, σ � | p| as the energy density cannot be negative. Hence in
f (R,G)-gravity, a quasi-conformally flat PFS satisfies the DEC. Thus in a quasi-conformally flat PFS satisfying f (R,G)-gravity,
the matter can not travel faster than the speed of light [18].

6 Conclusion

Spacetime, a torsion-free, time-oriented Lorentzian manifold, is the stage on which the physical world is now being modelled.
According to GR theory, the Universe’s matter content may be determined by choosing the appropriate EMT, and is accepted to act
like a PFS in the cosmological models.

Here, we study a spacetime of quasi-conformally flat PFS, and we have demonstrated that this spacetime represents a dark
matter era. Additionally, we show that a quasi-conformally flat PFS is either a de-Sitter spacetime or locally isometric to Minkowski
spacetime. We further establish that this spacetime implies a RW spacetime and is of Petrov type I, D, or O. Also, we prove that a
quasi-conformally recurrent GRW spacetime becomes a PFS and in a quasi-conformally flat PFS, the Weyl tensor is purely electric.

The investigation of quasi-conformally flat PFS within the context of f (R,G)-gravity has been the foremost concern of this
article. We have discussed the deceleration, jerk, and snap parameters and some physical interpretation of quasi-conformally flat
PFS satisfying f (R,G)-gravity. Here, both analytic and graphical analysis of our investigations have been done. For a better
understanding, we have applied the analytical method to develop our formulation and graphical analysis has been done to assess the
stability of cosmological models.

Additionally, we looked at the cosmological models’ stability analysis using ECs. However, SEC broke the agreement, whereas
DEC, NEC and WEC have been satisfied. The accelerated expansion of the cosmos is consistent with each of the aforementioned
ECs profiles. These results indicate the accelerated expansion of the Universe and compatible with the �CDM model.
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1. Introduction

An n-dimensional semi-Riemannian or Riemannian manifold (Mn, g) (n > 2) ,
is called an Einstein manifold if its Ricci tensor S satisfies the criteria

(1.1) S =
r

n
g,

where r denotes the scalar curvature of (Mn, g) . We can also say an Einstein man-
ifold is a Riemannian or pseudo Riemannian manifold whose Ricci tensor is pro-
portional to the metric. The notion of quasi-Einstein manifold was introduced by
M.C. Chaki and R.K. Maity [5]. A non-flat Riemannian manifold (Mn, g) , (n ≥ 3)
is a quasi-Einstein manifold if its Ricci tensor S satisfies the criteria

(1.2) S (X,Y ) = ag (X,Y ) + bA (X)A (Y )

Received August 19, 2021. accepted October 11, 2021.
Communicated by Uday Chand De
Corresponding Author: Dipankar Hazra, Department of Mathematics, Heramba Chandra College,
23/49, Gariahat Road, Kolkata - 700029, West Bengal, India | E-mail: dipankarsk524@gmail.com
2010 Mathematics Subject Classification. Primary 53C25; Secondary 53B50, 53C80
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and is not identically zero, where a, b are scalars, b 6= 0 and A is a non-zero 1-form
such that

g (X,U) = A (X) ,

for all vector field X. U being a unit vector field.
Here a and b are called the associated scalars, A is called the associated 1-form
and U is called the generator of the manifold. Such an n-dimensional manifold
is denoted by (QE)n . The quasi-Einstein manifolds have also been studied by De
and Ghosh [7], Bejan [1], De and De [6], Han, De and Zhao [15] and many others.
Quasi-Einstein manifolds have been generalized by many authors in several ways
such as generalized quasi-Einstein manifolds [3, 9, 11, 23], N (K)-quasi Einstein
manifolds [17, 24], super quasi-Einstein manifolds [4, 10, 19] etc.

Chaki [4] introduced the notion of a super quasi-Einstein manifold. His work
suggested a non-flat Riemannian or semi-Riemannian manifold (Mn, g) (n > 2) is
called a super quasi-Einstein manifold if its Ricci tensor S of type (0, 2) is not
identically zero and satisfies the condition

S (X,Y ) = ag (X,Y ) + bA (X)A (Y )

+ c [A (X)B (Y ) +A (Y )B (X)] + dD (X,Y ) ,(1.3)

where a, b, c, d are scalars in which b 6= 0, c 6= 0 d 6= 0 and A, B are non-zero
1-forms such that

g (X,U) = A (X) , g (X,V ) = B (X) ,

where U, V are mutually orthogonal unit vector fields, D is a symmetric (0, 2) tensor
with zero trace which satisfies the condition

D (X,U) = 0,

for all X. In that case a, b, c, d are called the associated scalars, A, B are called
the associated main and auxiliary 1-forms, U, V are called the main and auxiliary
generators of the manifold and D is called the associated tensor of the manifold.
Such an n-dimensional manifold is denoted by S (QE)n .

In [2], A. Bhattacharyya, M. Tarafdar and D. Debnath introduced the notion
of mixed super quasi-Einstein manifolds. Their work suggested that a non-flat
Riemannian manifold (Mn, g) , (n ≥ 3) is said to be mixed super quasi-Einstein
manifold if its Ricci tensor S of type (0, 2) is not identically zero and satisfies the
condition

S (X,Y ) = ag (X,Y ) + bA (X)A (Y ) + cB (X)B (Y )

+ d [A (X)B (Y ) +A (Y )B (X)] + eD (X,Y ) ,(1.4)

where a, b, c, d, e are scalars on (Mn, g) of which b 6= 0, c 6= 0, d 6= 0, e 6= 0 and A,
B are two non-zero 1-forms such that

(1.5) g (X,U) = A (X) , g (X,V ) = B (X) ,
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U, V being unit vector fields which are orthogonal, D is a symmetric (0, 2) tensor
with zero trace which satisfies the condition

(1.6) D (X,U) = 0,

for all X. Here a, b, c, d, e are called the associated scalars, A, B are called the
associated main and auxiliary 1-forms, U, V are called the main and auxiliary
generators of the manifold and D is called the associated tensor of the manifold.
If c = 0, then the manifold becomes S (QE)n . This type of manifold is denoted
by the symbol MS (QE)n . If c = d = 0, then the manifold is reduced to a pseudo
quasi-Einstein manifold which was studied by Shaikh [22].

On the other hand, Gray [14] introduced two classes of Riemannian manifolds
determined by the covariant differentiation of Ricci tensor. The class A consists of
all Riemannian manifolds whose Ricci tensor S is a Codazzi type tensor, i.e.,

(∇XS) (Y, Z) = (∇Y S) (X,Z) .

The class B contains all Riemannian manifolds whose Ricci tensor is cyclic parallel,
i.e.,

(∇XS) (Y, Z) + (∇Y S) (Z,X) + (∇ZS) (X,Y ) = 0.

A non-flat Riemannian or semi-Riemannian manifold (Mn, g) (n > 2) is called a
generalized Ricci recurrent manifold [8] if its Ricci tensor S of type (0, 2) satisfies
the condition

(∇XS) (Y,Z) = γ (X)S (Y, Z) + δ (X) g (Y,Z) ,

where γ (X) and δ (X) are non-zero 1-forms such that γ (X) = g (X, ρ) and δ (X) =
g (X,µ) ; ρ and µ being associated vector fields of the 1-forms γ and δ, respectively.
If δ = 0, then the manifold reduces to a Ricci recurrent manifold [20].

After studying and analyzing various papers [12, 13, 18], we got motivation to
work in this area. Recently in the paper [16], we have studied generalized Quasi-
Einstein manifolds satisfying certain vector fields. In the present work we have tried
to develop a new concept. This paper is organized as follows: After introduction in
Section 2, we have studied that if the generators U and V of a MS (QE)n are Killing
vector fields, then the manifold satisfies cyclic parallel Ricci tensor if and only if
the associated tensor D is cyclic parallel. Section 3 is concerned with MS (QE)n
satisfying Codazzi type of Ricci tensor. In the next two sections, we have studied
MS (QE)n with generators U and V both as concurrent and recurrent vector fields.
Finally the existence of MS (QE)n is shown by constructing non-trivial example.

2. The generators U and V as Killing vector fields

In this section we consider the generators U and V of the manifold are Killing
vector fields.



1172 D. Hazra

Theorem 2.1. If the generators of a MS (QE)n are Killing vector fields and the
associated scalars are constants, then the manifold satisfies cyclic parallel Ricci
tensor if and only if the associated tensor D is cyclic parallel.

Proof. Let us assume that the generators U and V of the manifold are Killing vector
fields. Then we have

(2.1) (£Ug) (X,Y ) = 0

and

(2.2) (£V g) (X,Y ) = 0,

where £ denotes the Lie derivative.
From (2.1) and (2.2), we get

(2.3) g (∇XU, Y ) + g (X,∇Y U) = 0

and

(2.4) g (∇XV, Y ) + g (X,∇Y V ) = 0.

Since g (∇XU, Y ) = (∇XA) (Y ) and g (∇XV, Y ) = (∇XB) (Y ) .
Thus from (2.3) and (2.4) we obtain

(2.5) (∇XA) (Y ) + (∇YA) (X) = 0

and

(2.6) (∇XB) (Y ) + (∇YB) (X) = 0,

for all X, Y.
Similarly, we have

(2.7) (∇XA) (Z) + (∇ZA) (X) = 0,

(2.8) (∇ZA) (Y ) + (∇YA) (Z) = 0,

(2.9) (∇XB) (Z) + (∇ZB) (X) = 0,

(2.10) (∇ZB) (Y ) + (∇YB) (Z) = 0,

for all X, Y, Z.
We assume that the associated scalars are constants. Then from (1.4) we have

(∇ZS) (X,Y ) = b [(∇ZA) (X)A (Y ) +A (X) (∇ZA) (Y )]

+ c [(∇ZB) (X)B (Y ) +B (X) (∇ZB) (Y )]

+ d [(∇ZA) (X)B (Y ) +A (X) (∇ZB) (Y )

+ (∇ZA) (Y )B (X) +A (Y ) (∇ZB) (X)]

+ e (∇ZD) (X,Y ) .(2.11)
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Using (2.11), we get

(∇XS) (Y,Z) + (∇Y S) (Z,X) + (∇ZS) (X,Y ) = b [{(∇XA) (Y )

+ (∇YA) (X)}A (Z) + {(∇XA) (Z) + (∇ZA) (X)}A (Y )

+ {(∇YA) (Z) + (∇ZA) (Y )}A (X)] + c [{(∇XB) (Y )

+ (∇YB) (X)}B (Z) + {(∇XB) (Z) + (∇ZB) (X)}B (Y )

+ {(∇YB) (Z) + (∇ZB) (Y )}B (X)] + d [{(∇XB) (Y )

+ (∇YB) (X)}A (Z) + {(∇XB) (Z) + (∇ZB) (X)}A (Y )

+ {(∇YB) (Z) + (∇ZB) (Y )}A (X) + {(∇XA) (Y )

+ (∇YA) (X)}B (Z) + {(∇XA) (Z) + (∇ZA) (X)}B (Y )

+ {(∇YA) (Z) + (∇ZA) (Y )}B (X)] + e [(∇XD) (Y,Z)

+ (∇YD) (Z,X) + (∇ZD) (X,Y )] .(2.12)

Using the equations (2.5) - (2.10) in (2.12), we get

(∇XS) (Y,Z) + (∇Y S) (Z,X) + (∇ZS) (X,Y ) = e [(∇XD) (Y, Z)

+ (∇YD) (Z,X) + (∇ZD) (X,Y )] .

Thus the proof of theorem is completed.

3. MS (QE)n admits Codazzi type of Ricci tensor

We know that a Riemannian or semi-Riemannian manifold satisfies Codazzi type
of Ricci tensor if its Ricci tensor S satisfies the following condition

(3.1) (∇XS) (Y, Z) = (∇Y S) (X,Z) ,

for all X, Y, Z.

Theorem 3.1. If a MS (QE)n admits the Codazzi type of Ricci tensor with the
associated tensor D satisfying the relation (∇XD) (Y, V ) = (∇YD) (V,X) , then
either d = ±

√
bc or the associated 1-forms A and B are closed.

Proof. Using (2.11) and (3.1), we obtain

b [(∇XA) (Y )A (Z) +A (Y ) (∇XA) (Z)] + c [(∇XB) (Y )B (Z)

+ B (Y ) (∇XB) (Z)] + d [(∇XA) (Y )B (Z) +A (Y ) (∇XB) (Z)

+ (∇XA) (Z)B (Y ) +A (Z) (∇XB) (Y )] + e (∇XD) (Y, Z)

− b [(∇YA) (Z)A (X) +A (Z) (∇YA) (X)]− c [(∇YB) (Z)B (X)

+ B (Z) (∇YB) (X)]− d [(∇YA) (Z)B (X) +A (Z) (∇YB) (X)

+ (∇YA) (X)B (Z) +A (X) (∇YB) (Z)]− e (∇YD) (Z,X) = 0.(3.2)

Putting Z = U in (3.2) and using (∇XA) (U) = 0, we have

b [(∇XA) (Y )− (∇YA) (X)] + d [(∇XB) (Y )− (∇YB) (X)] = 0,
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i.e.,

(3.3) bdA (X,Y ) = −ddB (X,Y ) .

Similarly, putting Z = V in (3.2) and using (∇XB) (V ) = 0, we have

c [(∇XB) (Y )− (∇YB) (X)] + d [(∇XA) (Y )− (∇YA) (X)]

+e [(∇XD) (Y, V )− (∇YD) (V,X)] = 0,

i.e.,

(3.4) cdB (X,Y ) + ddA (X,Y ) + e [(∇XD) (Y, V )− (∇YD) (V,X)] = 0.

If (∇XD) (Y, V ) = (∇YD) (V,X) , then from the equations (3.3) and (3.4) we get
either

d = ±
√
bc

or
dA (X,Y ) = 0

and
dB (X,Y ) = 0.

Thus, we complete the proof.

Theorem 3.2. If a MS (QE)n admits the Codazzi type of Ricci tensor with the
associated tensor D satisfying the condition (∇VD) (Y, V ) = (∇YD) (V, V ) , then
the integral curves of the parallel vector fields U and V are geodesics.

Proof. Putting X = Z = U in (3.2), we get

b (∇UA) (Y ) + d (∇UB) (Y ) = 0,

which means that

(3.5) bg (∇UU, Y ) + dg (∇UV, Y ) = 0.

Similarly, putting X = Z = V in (3.2), we get

c (∇VB) (Y ) + d (∇VA) (Y ) + e [(∇VD) (Y, V )− (∇YD) (V, V )] = 0,

i.e.,

(3.6) cg (∇V V, Y ) + dg (∇V U, Y ) + e [(∇VD) (Y, V )− (∇YD) (V, V )] = 0.

If U, V are parallel vector fields, then ∇UV = 0 = ∇V U.
We assume that (∇VD) (Y, V ) = (∇YD) (V, V ) . So from (3.5) and (3.6), we obtain

g (∇UU, Y ) = 0, for all Y, i.e., ∇UU = 0

and
g (∇V V, Y ) = 0, for all Y, i.e., ∇VV = 0.

Thus the theorem is proved.
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4. The generators U and V as concurrent vector fields

A vector field ξ is called concurrent if [21]

(4.1) ∇Xξ = ρX,

where ρ is a non-zero constant. If ρ = 0, then the vector field reduces to a parallel
vector field.

Theorem 4.1. If the associated vector fields of a MS (QE)n are concurrent vector
fields and the associated scalars are constants, then the manifold reduces to a pseudo
quasi-Einstein manifold.

Proof. We consider the vector fields U and V corresponding to the associated 1-
forms A and B respectively are concurrent. Then

(4.2) (∇XA) (Y ) = αg (X,Y )

and

(4.3) (∇XB) (Y ) = βg (X,Y ) ,

where α and β are non-zero constants.
Using (4.2) and (4.3) in (2.11), we get

(∇ZS) (X,Y ) = b [αg (Z,X)A (Y ) + αg (Z, Y )A (X)] + c [βg (Z,X)B (Y )

+ βg (Z, Y )B (X)] + d [αg (Z,X)B (Y ) + βg (Z, Y )A (X)

+ αg (Z, Y )B (X) + βg (Z,X)A (Y )] + e (∇ZD) (X,Y ) .(4.4)

Contracting (4.4) over X and Y, we obtain

(4.5) dr (Z) = 2 [(bα+ dβ)A (Z) + (cβ + dα)B (Z)] ,

where r is the scalar curvature of the manifold.
In a MS (QE)n if the associated scalars a, b, c, d and e are constants, then con-
tracting (1.4) over X and Y we get

r = an+ b+ c,

which implies that the scalar curvature r is constant, i.e., dr (X) = 0, for all X.
Thus equation (4.5) gives

(4.6) (bα+ dβ)A (Z) + (cβ + dα)B (Z) = 0.

Since α and β are non-zero constants, using (4.6) in (1.4), we finally get

S (X,Y ) = ag (X,Y )+

[
b+ c

(
bα+ dβ

cβ + dα

)2

− 2d

(
bα+ dβ

cβ + dα

)]
A (X)A (Y )+eD (X,Y ) .

Thus the manifold reduces to a pseudo quasi-Einstein manifold.
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5. The generators U and V as recurrent vector fields

Definition 5.1. A non-flat Riemannian or semi-Riemannian manifold (Mn, g)
(n > 2) will be called a pseudo generalized Ricci recurrent manifold if its Ricci
tensor S of type (0, 2) satisfies the condition

(∇XS) (Y,Z) = β (X)S (Y, Z) + γ (X) g (Y, Z) + δ (X)D (Y,Z) ,

where β (X) , γ (X) and δ (X) are non-zero 1-forms such that

β (X) = g (X, ξ1) , γ (X) = g (X, ξ2) , δ (X) = g (X, ξ3) ;

ξ1, ξ2 and ξ3 are associated vector fields of the 1-forms β, γ and δ respectively, D
is a symmetric (0, 2) tensor with zero trace which satisfies the condition

D (X, ξ1) = 0,

for all X.

Theorem 5.1. If the generators of a MS (QE)n corresponding to the associated
1-forms are recurrent with the same vector of recurrence and the associated scalars
are constants with an additional condition that D is covariant constant, then the
manifold is a pseudo generalized Ricci recurrent manifold.

Proof. A vector field ξ corresponding to the associated 1-form η is said to be recur-
rent if [21]

(5.1) (∇Xη) (Y ) = ψ (X) η (Y ) ,

where ψ is a non-zero 1-form.

Here, we consider the generators U and V corresponding to the associated 1-
forms A and B as recurrent. Then we have

(5.2) (∇XA) (Y ) = λ (X)A (Y )

and

(5.3) (∇XB) (Y ) = µ (X)B (Y ) ,

where λ and µ are non-zero 1-forms.
Using (5.2) and (5.3) in (2.11), we obtain

(∇ZS) (X,Y ) = 2bλ (Z)A (X)A (Y ) + 2cµ (Z)B (X)B (Y )

+ d [λ (Z) + µ (Z)] [A (X)B (Y ) +A (Y )B (X)]

+ e (∇ZD) (X,Y ) .(5.4)

We assume that the 1-forms λ and µ are equal, i.e.,

(5.5) λ (Z) = µ (Z) ,
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for all Z. From the equations (5.4) and (5.5), we get

(∇ZS) (X,Y ) = 2λ (Z) [bA (X)A (Y ) + cB (X)B (Y )

+ d {A (X)B (Y ) +A (Y )B (X)}]
+ e (∇ZD) (X,Y ) .(5.6)

Using (1.4) and (5.6), we obtain

(∇ZS) (X,Y ) = α1 (Z)S (X,Y )+α2 (Z) g (X,Y )+α3 (Z)D (X,Y )+e (∇ZD) (X,Y ) ,

where α1 (Z) = 2λ (Z) , α2 (Z) = −2aλ (Z) and α3 (Z) = −2eλ (Z) .
So the proof is complete.

6. Example of MS (QE)4

In this section, we prove the existence of MS (QE)4 by constructing a non-trivial
concrete example.

Let
(
x1, x2, . . . , xn

)
∈ Rn, where Rn is an n-dimensional real number space. We

consider a Riemannian metric g on R4 =
(
x1, x2, x3, x4

)
, by

(6.1) ds2 = gijdx
idxj =

(
dx1
)2

+
(
x1
)2 (

dx2
)2

+
(
x2
)2 (

dx3
)2

+
(
dx4
)2
,

where i, j = 1, 2, 3, 4. Using (6.1), we see the non-vanishing components of Rieman-
nian metric are

(6.2) g11 = 1, g22 =
(
x1
)2
, g33 =

(
x2
)2
, g44 = 1

and its associated components are

(6.3) g11 = 1, g22 =
1

(x1)
2 , g33 =

1

(x2)
2 , g44 = 1.

Using (6.2) and (6.3), we can calculate that the non-vanishing components of
Christoffel symbols, curvature tensor and Ricci tensor are given by

Γ1
22 = −x1, Γ2

33 = − x2

(x1)
2 , Γ2

12 =
1

x1
, Γ3

23 =
1

x2
, R1332 = −x

2

x1
, S12 = − 1

x1x2

and the other components are obtained by the symmetric properties. It can be
easily shown that the scalar curvature r of the resulting manifold

(
R4, g

)
is zero.

We shall show that
(
R4, g

)
is a MS (QE)4 .

Let us consider the associated scalars as follows:

(6.4) a =
1

x1 (x2)
2 , b =

1

(x2)
3 , c = − 1

x2
, d =

1

x1
, e = − 1

(x1)
2
x2
.

We choose the 1-form as follows:

Ai (x) =

{
x1, when i = 2

0, otherwise
(6.5)
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and

Bi (x) =

{
x2, when i = 3

0, otherwise
(6.6)

at any point x ∈ R4.
We take the associated tensor as follows:

Dij (x) =


1, when i = j = 1, 3

−2, when i = j = 2

x1, when i = 1, j = 2

0, otherwise

(6.7)

at any point x ∈ R4. Now the equation (1.4) reduces to the equation

S12 = ag12 + bA1A2 + cB1B2 + d [A1B2 +A2B1] + eD12,(6.8)

since, for the other cases (1.4) holds trivially.
From the equations (6.4), (6.5), (6.6), (6.7) and (6.8) we get

Right hand side of (6.8) = ag12 + bA1A2 + cB1B2 + d [A1B2 +A2B1] + eD12

=
1

x1 (x2)
2 · 0 +

1

(x2)
3 · 0 · x

1 +

(
− 1

x2

)
· 0 · 0

+
1

x1
[
0 + x1 · 0

]
+

(
− 1

(x1)
2
x2

)
· x1

= − 1

x1x2
= S12.

Clearly, the trace of the (0, 2) tensor D is zero.
We shall now show that the 1-forms Ai and Bi are unit and also they are orthogonal.
Here,

gijAiAj = 1, gijBiBj = 1, gijAiBj = 0.

So,
(
R4, g

)
is a MS (QE)4 .
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Abstract. In this study we introduce a new tensor in a semi-Riemannian manifold, named the M∗-
projective curvature tensor which generalizes the m-projective curvature tensor. We start by deducing
some fundamental geometric properties of the M∗-projective curvature tensor. After that, we study pseudo
M∗-projective symmetric manifolds (PM∗S)n. A non-trivial example has been used to show the existence of
such a manifold. We introduce a series of interesting conclusions. We establish, among other things, that
if the scalar curvature ρ is non-zero, the associated 1-form is closed for a (PM∗S)n with divM∗ = 0. We also
deal with pseudo M∗-projective symmetric spacetimes, M∗-projectively flat perfect fluid spacetimes, and
M∗-projectively flat viscous fluid spacetimes. As a result, we establish some significant theorems.

1. Introduction

In Differential geometry, the investigation of curvature characteristics is the prime problem among
others. In this context, S. S. Chern had uttered in [7] “A fundamental notion is curvature, in its different
forms”. Hence, the discovery of the Riemann curvature tensor creates an extremely significant subject
matter. In this paper, due to the above sense, we have introduced a new curvature tensor, called M∗-
projective curvature tensor which generalizes some known curvature tensors.

According to Chaki [3], for a non-vanishing 1-form D, a non-flat Riemannian or a semi-Riemannian
manifold

(
Mn, 1

)
, (n > 2) is named pseudosymmetric if its curvature tensor obeys

(∇ZR) (G,H, J,K) = 2D (Z)R (G,H, J,K) +D (G)R (Z,H, J,K) +D (H)R (G,Z, J,K)
+D (J)R (G,H,Z,K) +D (K)R (G,H, J,Z) ,

∇ is the Levi-Civita connection andR (G,H, J,K) = 1 (R (G,H) J,K), R being the curvature tensor of type (1, 3).
Let π be the associated vector field corresponding to the 1-form D, i.e.,

1 (H, π) = D (H) ,
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for all H. Pseudosymmetric manifolds have been investigated by several authors ([18], [20], [21], [32], [33])
and many others.

In a Riemannian or a semi-Riemannian manifold the Ricci tensor S is said to be of Codazzi type [10] if
the covariant derivative of Ricci tensor satisfies

(∇GS) (H, J) = (∇HS) (G, J)

and the Ricci tensor is said to be cyclic parallel [10] if

(∇GS) (H, J) + (∇HS) (J,G) +
(
∇JS

)
(G,H) = 0.

A non-flat semi-Riemannian manifold obeying the condition

(∇GS) (H, J) = γ (G)S (H, J) + δ (G) 1 (H, J) ,

where γ and δ are non-zero 1-forms, is named a generalized Ricci recurrent manifold [8]. The manifold
becomes a Ricci recurrent manifold when δ = 0.

In a Riemannian or a semi-Riemannian manifold
(
Mn, 1

)
(n ≥ 2), the m-projective curvature tensor M is

defined as [25]

M (G,H) J = R (G,H) J −
1

2 (n − 1)
[
S (H, J) G − S (G, J) H + 1 (H, J)QG − 1 (G, J)QH

]
,

where R is the curvature tensor of type (1, 3), S is the Ricci tensor of type (0, 2) and Q is the Ricci operator
defined by 1 (QG,H) = S (G,H).

We define the M∗-projective curvature tensor of type (1, 3) as

M∗ (G,H) J = R (G,H) J −
φ

2 (n − 1)
[
S (H, J) G − S (G, J) H + 1 (H, J)QG − 1 (G, J)QH

]
, (1)

φ being scalar. The M∗-projective curvature tensor reduces to the m-projective curvature tensor whenφ = 1.
The M∗-projective curvature tensor and the curvature tensor are identical if φ = 0. Equation (1) can be
expressed as

M∗ (G,H, J,K) = R (G,H, J,K)−
φ

2 (n − 1)
[
S (H, J) 1 (G,K) − S (G, J) 1 (H,K)

+1 (H, J)S (G,K) − 1 (G, J)S (H,K)
]
, (2)

where M∗ (G,H, J,K) = 1 (M∗ (G,H) J,K) and R (G,H, J,K) = 1 (R (G,H) J,K).
A non-flat Riemannian or a semi-Riemannian manifold

(
Mn, 1

)
, (n > 2) is said to be a pseudo M∗-

projective symmetric manifold if the M∗-projective curvature tensor of type (0, 4) satisfies the relation

(∇ZM
∗) (G,H, J,K) = 2D (Z)M∗ (G,H, J,K) +D (G)M∗ (Z,H, J,K) +D (H)M∗ (G,Z, J,K)

+D (J)M∗ (G,H,Z,K) +D (K)M∗ (G,H, J,Z) , (3)

D being a non-vanishing 1-form and π is the associated vector field corresponding to the 1-form D, i.e.,

1 (H, π) = D (H) .

An n-dimensional pseudo M∗-projective symmetric manifold is denoted by (PM∗S)n, where P indicates
pseudo, M∗ is the M∗-projective curvature tensor and S indicates symmetric. When φ = 0, the pseudo
M∗-projective symmetric manifold reduces to the pseudosymmetric manifold denoted by (PS)n. Further, if
φ = 1, pseudo M∗-projective symmetric manifolds contain pseudo m-projective symmetric manifolds. Thus
(PM∗S)n recovers some known geometric structures. We organized the paper as follows:

After preliminaries in section 3,we investigate the curvature property of (PM∗S)n. The study of (PM∗S)n
with Codazzi type of Ricci tensor is covered in section 4. In section 5, we analyze (PM∗S)n with divM∗ = 0.
After that, in section 6, we construct an example of (PM∗S)4. Pseudo M∗-projective symmetric spacetimes
are discussed in section 7. Section 8 is devoted to study M∗-projectively flat spacetimes. We focus at
M∗-projectively flat perfect fluid and viscous fluid spacetimes in the last two sections.
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2. Preliminaries

We can see from (1) the tensor M∗ fulfills the following:

(i) M∗ (G,H) J = −M∗ (H,G) J,
(ii) M∗ (G,H) J +M∗ (H, J) G +M∗ (J,G) H = 0.

(4)

It is also clear from (2) that

n∑
i=1

εiM
∗ (G,H, ei, ei) = 0 =

n∑
i=1

εiM
∗ (ei, ei, J,K) (5)

and
n∑

i=1

εiM
∗ (ei,G,H, ei) =

[
1 −

(n − 2)φ
2 (n − 1)

]
S (G,H) −

φρ

2 (n − 1)
1 (G,H)

=

n∑
i=1

εiM
∗ (G, ei, ei,H)

=M∗ (G,H) ,
(
say

)
(6)

where at each point of the manifold {ek}, k = 1, 2, . . . ,n be an orthonormal basis of the tangent space,

ρ =
n∑

i=1
εiS (ei, ei) is the scalar curvature and εi = 1 (ei, ei) = ±1.

The followings are derived from (1) and (4):

(i) M∗ (G,H, J,K) = −M∗ (H,G, J,K) ,
(ii) M∗ (G,H, J,K) = −M∗ (G,H,K, J) ,

(iii) M∗ (G,H, J,K) =M∗ (J,K,G,H) ,
(iv) M∗ (G,H, J,K) +M∗ (H, J,G,K) +M∗ (J,G,H,K) = 0,

(7)

where M∗ (G,H, J,K) = 1 (M∗ (G,H) J,K).

Proposition 2.1. A M∗-projectively flat semi-Riemannnian manifold is an Einstein manifold.

Proof. The M∗-projective curvature tensor is given by

M∗ (G,H, J,K) = R (G,H, J,K)−
φ

2 (n − 1)
[
S (H, J) 1 (G,K) − S (G, J) 1 (H,K)

+1 (H, J)S (G,K) − 1 (G, J)S (H,K)
]
,

φ being an arbitrary scalar. If M∗-projective curvature tensor vanishes, then

R (G,H, J,K) =
φ

2 (n − 1)
[
S (H, J) 1 (G,K) − S (G, J) 1 (H,K) + 1 (H, J)S (G,K) − 1 (G, J)S (H,K)

]
. (8)

In (8), we obtain by contracting H and J

S (G,K) =
φρ

2 (n − 1) − (n − 2)φ
1 (G,K) . (9)

Thus, we complete the proof.
In (9), contracting G and K we have

ρ (n − 1)
(
1 − φ

)
= 0,



D. Hazra et al. / Filomat 37:8 (2023), 2465–2482 2468

which implies either ρ = 0 or φ = 1. If ρ , 0, then the M∗-projective curvature tensor is the same as the
m-projective curvature tensor M for φ = 1. As a result, M∗-projectively flatness and m-projectively flatness
are the same.

The following corollary was established by the author in [31]:

Corollary 2.2. m-projectively flat Riemannian manifold is an Einstein manifold.

Proposition 2.3. If M∗-projective curvature tensor is parallel, then the manifold reduces to a generalized Ricci
recurrent manifold.

Proof. The M∗-projective curvature tensor is given by

M∗ (G,H) J = R (G,H) J −
φ

2 (n − 1)
[
S (H, J) G − S (G, J) H + 1 (H, J)QG − 1 (G, J)QH

]
, (10)

φ being an arbitrary scalar. Taking the covariant derivative of (10) gives us

(∇ZM∗) (G,H) J = (∇ZR) (G,H) J −
dφ (Z)

2 (n − 1)
[
S (H, J) G − S (G, J) H + 1 (H, J)QG − 1 (G, J)QH

]
−

φ

2 (n − 1)
[
(∇ZS) (H, J) G − (∇ZS) (G, J) H + 1 (H, J) (∇ZQ) G − 1 (G, J) (∇ZQ) H

]
.

By hypothesis, M∗-projective curvature tensor is parallel. As a result of the previous equation,

(∇ZR) (G,H) J =
dφ (Z)

2 (n − 1)
[
S (H, J) G − S (G, J) H + 1 (H, J)QG − 1 (G, J)QH

]
+

φ

2 (n − 1)
[
(∇ZS) (H, J) G − (∇ZS) (G, J) H + 1 (H, J) (∇ZQ) G − 1 (G, J) (∇ZQ) H

]
. (11)

Contracting G in (11) we find

(∇ZS) (H, J) =
(n − 2)

2 (n − 1) − (n − 2)φ
dφ (Z)S (H, J) +

1
2 (n − 1) − (n − 2)φ

[
ρdφ (Z) + φdρ (Z)

]
1 (H, J) . (12)

Again, contracting H and J in (12) reveals that(
1 − φ

)
dρ (Z) = ρdφ (Z) . (13)

This implies

dφ (Z) =
(
1 − φ

) (
Z logρ

)
. (14)

From (12), (13) and (14) we obtain

(∇ZS) (H, J) =
(n − 2)

(
1 − φ

) (
Z logρ

)
2 (n − 1) − (n − 2)φ

S (H, J) +
(
Zρ

)
2 (n − 1) − (n − 2)φ

1 (H, J) .

So the proof is completed.

Proposition 2.4. For a M∗-projective curvature tensor with divM∗ = 0, the curvature conditions divM = 0 and
divR = 0 are equivalent, provided φ is constant.

Proof. The M∗-projective curvature tensor is given by

M∗ (G,H) J = R (G,H) J −
φ

2 (n − 1)
[
S (H, J) G − S (G, J) H + 1 (H, J)QG − 1 (G, J)QH

]
, (15)



D. Hazra et al. / Filomat 37:8 (2023), 2465–2482 2469

φ being an arbitrary scalar. Taking covariant derivative of the foregoing equation we find

(∇ZM∗) (G,H) J = (∇ZR) (G,H) J −
dφ (Z)

2 (n − 1)
[
S (H, J) G − S (G, J) H + 1 (H, J)QG − 1 (G, J)QH

]
−

φ

2 (n − 1)
[
(∇ZS) (H, J) G − (∇ZS) (G, J) H + 1 (H, J) (∇ZQ) G − 1 (G, J) (∇ZQ) H

]
. (16)

Contracting Z in (16), we have

(divM∗) (G,H) J = (divR) (G,H) J −
1

2 (n − 1)
[
S (H, J)

(
Gφ

)
− S (G, J)

(
Hφ

)
+ 1 (H, J)

(
QGφ

)
−1 (G, J)

(
QHφ

)]
−

φ

2 (n − 1)

[
(∇GS) (H, J) − (∇HS) (G, J) +

1
2
1 (H, J) dρ (G) −

1
2
1 (G, J) dρ (H)

]
.

Now if φ is constant, then the above equation reduces to

(divM∗) (G,H) J =
(
1 − φ

)
(divR) (G,H) J + φ (divM) (G,H) J.

Using divM∗ = 0, we have the following:

(divM) (G,H) J =
(
φ − 1
φ

)
(divR) (G,H) J.

This completes the proof.

3. Some curvature properties of (PM∗S)n (n > 2)

In this section, we show that the M∗-projective curvature tensor satisfies Bianchi’s second identity for a
(PM∗S)n (n > 2), i.e.,

(∇ZM
∗) (G,H, J,K) + (∇GM

∗) (H,Z, J,K) + (∇HM
∗) (Z,G, J,K) = 0. (17)

By virtue of (3) and (17) we acquire

2D (Z) [M∗ (G,H, J,K) +M∗ (H,G, J,K)] + 2D (G) [M∗ (Z,H, J,K) +M∗ (H,Z, J,K)]
+ 2D (H) [M∗ (G,Z, J,K) +M∗ (Z,G, J,K)] +D (J) [M∗ (G,H,Z,K) +M∗ (H,Z,G,K)
+M∗ (Z,G,H,K)] +D (K) [M∗ (G,H, J,Z) +M∗ (H,Z, J,G) +M∗ (Z,G, J,H)]
= (∇ZM

∗) (G,H, J,K) + (∇GM
∗) (H,Z, J,K) + (∇HM

∗) (Z,G, J,K) . (18)

Using (7) in (18) we find

(∇ZM
∗) (G,H, J,K) + (∇GM

∗) (H,Z, J,K) + (∇HM
∗) (Z,G, J,K) = 0. (19)

This leads to the following theorem:

Theorem 3.1. The M∗-projective curvature tensor in (PM∗S)n (n > 2) satisfies Bianchi’s second identity.
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4. (PM∗S)n (n > 2) with Codazzi type of Ricci tensor

Equation (2) provides us

−
φ

2 (n − 1)
[
(∇ZS) (H, J) 1 (G,K) − (∇ZS) (G, J) 1 (H,K) + 1 (H, J) (∇ZS) (G,K) − 1 (G, J) (∇ZS) (H,K)

+ (∇GS) (Z, J) 1 (H,K) − (∇GS) (H, J) 1 (Z,K) + 1 (Z, J) (∇GS) (H,K) − 1 (H, J) (∇GS) (Z,K)
+ (∇HS) (G, J) 1 (Z,K) − (∇HS) (Z, J) 1 (G,K) + 1 (G, J) (∇HS) (Z,K) − 1 (Z, J) (∇HS) (G,K)

]
−

(
Zφ

)
2 (n − 1)

[
S (H, J) 1 (G,K) − S (G, J) 1 (H,K) + 1 (H, J)S (G,K) − 1 (G, J)S (H,K)

]
−

(
Gφ

)
2 (n − 1)

[
S (Z, J) 1 (H,K) − S (H, J) 1 (Z,K) + 1 (Z, J)S (H,K) − 1 (H, J)S (Z,K)

]
−

(
Hφ

)
2 (n − 1)

[
S (G, J) 1 (Z,K) − S (Z, J) 1 (G,K) + 1 (G, J)S (Z,K) − 1 (Z, J)S (G,K)

]
= (∇ZM

∗) (G,H, J,K) + (∇GM
∗) (H,Z, J,K) + (∇HM

∗) (Z,G, J,K) . (20)

If (PM∗S)n admits the Codazzi type of Ricci tensor, then (20) becomes

−

(
Zφ

)
2 (n − 1)

[
S (H, J) 1 (G,K) − S (G, J) 1 (H,K) + 1 (H, J)S (G,K) − 1 (G, J)S (H,K)

]
−

(
Gφ

)
2 (n − 1)

[
S (Z, J) 1 (H,K) − S (H, J) 1 (Z,K) + 1 (Z, J)S (H,K) − 1 (H, J)S (Z,K)

]
−

(
Hφ

)
2 (n − 1)

[
S (G, J) 1 (Z,K) − S (Z, J) 1 (G,K) + 1 (G, J)S (Z,K) − 1 (Z, J)S (G,K)

]
= (∇ZM

∗) (G,H, J,K) + (∇GM
∗) (H,Z, J,K) + (∇HM

∗) (Z,G, J,K) . (21)

Using (19) in (21), we obtain(
Zφ

)
2 (n − 1)

[
S (H, J) 1 (G,K) − S (G, J) 1 (H,K) + 1 (H, J)S (G,K) − 1 (G, J)S (H,K)

]
+

(
Gφ

)
2 (n − 1)

[
S (Z, J) 1 (H,K) − S (H, J) 1 (Z,K) + 1 (Z, J)S (H,K) − 1 (H, J)S (Z,K)

]
+

(
Hφ

)
2 (n − 1)

[
S (G, J) 1 (Z,K) − S (Z, J) 1 (G,K) + 1 (G, J)S (Z,K) − 1 (Z, J)S (G,K)

]
= 0. (22)

Contracting G and K in (22), we infer that(
Zφ

) [
(n − 2)S (H, J) + ρ1 (H, J)

]
+ S (Z, J)

(
Hφ

)
− S (H, J)

(
Zφ

)
+ 1 (Z, J) 1

(
QH,gradφ

)
− 1 (H, J) 1

(
QZ,gradφ

)
+

(
Hφ

) [
(2 − n)S (J,Z) − ρ1 (J,Z)

]
= 0. (23)

Again contracting H and J in (23) yields(
Zφ

)
ρ = 1

(
QZ,gradφ

)
which gives

S
(
Z,gradφ

)
= ρ1

(
Z,gradφ

)
.

Thus we conclude the following theorem:

Theorem 4.1. For a (PM∗S)n admitting Codazzi type of Ricci tensor, ρ is an eigenvalue of the Ricci tensor S
corresponding to the eigenvector 1radφ.
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If φ is constant, we can deduce from (20) and Bianchi’s second identity

(∇ZS) (H, J) 1 (G,K) − (∇ZS) (G, J) 1 (H,K) + 1 (H, J) (∇ZS) (G,K) − 1 (G, J) (∇ZS) (H,K)
+ (∇GS) (Z, J) 1 (H,K) − (∇GS) (H, J) 1 (Z,K) + 1 (Z, J) (∇GS) (H,K) − 1 (H, J) (∇GS) (Z,K)
+ (∇HS) (G, J) 1 (Z,K) − (∇HS) (Z, J) 1 (G,K) + 1 (G, J) (∇HS) (Z,K) − 1 (Z, J) (∇HS) (G,K) = 0. (24)

Contracting G and K in (24) reveals that

(n − 3) (∇ZS) (H, J) +
1
2
1 (H, J)

(
Zρ

)
−

1
2
1 (Z, J)

(
Hρ

)
− (n − 3) (∇HS) (Z, J) = 0. (25)

Further, if ρ remains constant, (25) becomes

(∇ZS) (H, J) = (∇HS) (Z, J) .

As a result, we can deduce the following corollary:

Corollary 4.2. In a (PM∗S)n the Ricci tensor is of Codazzi type provided φ and the scalar curvature ρ are constants.

Using (6) once again,

M∗ (G,H) =
[
1 −

(n − 2)φ
2 (n − 1)

]
S (G,H) −

φρ

2 (n − 1)
1 (G,H) .

Contracting G and H gives

m∗ =
(
1 − φ

)
ρ. (26)

The M∗-projective curvature tensor satisfies the relation for a (PM∗S)n:

(∇ZM
∗) (G,H, J,K) = 2D (Z)M∗ (G,H, J,K) +D (G)M∗ (Z,H, J,K) +D (H)M∗ (G,Z, J,K)

+D (J)M∗ (G,H,Z,K) +D (K)M∗ (G,H, J,Z) , (27)

D being a non-vanishing 1-form and π is the associated vector field corresponding to the 1-form D, i.e.,

1 (H, π) = D (H) .

Contracting G and K in (27) we get(
∇ZM∗

)
(H, J) = 2D (Z)M∗ (H, J) +M∗ (Z,H, J, π) +D (H)M∗ (Z, J) +D (J)M∗ (H,Z) +M∗ (π,H, J,Z) . (28)

Again contracting H and J in (28) we find

∇Zm∗ = 2D (Z) m∗ + 4M∗ (Z, π) . (29)

If we use (26) in (29), we obtain(
1 − φ

)
dρ (Z) − dφ (Z)ρ = 2D (Z)

(
1 − φ

)
ρ + 4M∗ (Z, π) . (30)

Between (6) and (30), we have

(
1 − φ

)
dρ (Z) − dφ (Z)ρ =

[
2
(
1 − φ

)
ρ −

2φρ
(n − 1)

]
D (Z) + 4

[
1 −

(n − 2)φ
2 (n − 1)

]
D (QZ) .

Thus we can state the following theorem:
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Theorem 4.3. For a (PM∗S)n (n > 2) the following identity holds:

(
1 − φ

)
dρ (Z) − dφ (Z)ρ =

[
2
(
1 − φ

)
ρ −

2φρ
(n − 1)

]
D (Z) + 4

[
1 −

(n − 2)φ
2 (n − 1)

]
D (QZ) .

In particular, let us consider φ = 0, then from Theorem 4.2. we get

dρ (Z) = 2D (Z)ρ + 4D (QZ) .

Chaki established the following corollary in [3]:

Corollary 4.4. For a (PS)n the following identity holds:

dρ (Z) = 2D (Z)ρ + 4D (QZ) .

5. (PM∗S)n (n > 2) with divM∗ = 0

We know that for a (PM∗S)n (n > 2),

(∇ZM∗) (G,H) J = 2D (Z) M∗ (G,H) J +D (G) M∗ (Z,H) J +D (H) M∗ (G,Z) J
+D (J) M∗ (G,H) Z + 1 (M∗ (G,H) J,Z)π,

D being a non-vanishing 1-form and π is the associated vector field corresponding to the 1-form D, i.e.,

1 (H, π) = D (H) .

Hence,

(divM∗) (G,H) J =
n∑

i=1

εi1
((
∇ei M

∗
)

(G,H) J, ei
)

=

n∑
i=1

εi
[
2D (ei) 1 (M∗ (G,H) J, ei) +D (G) 1 (M∗ (ei,H) J, ei) +D (H) 1 (M∗ (G, ei) J, ei)

+D (J) 1 (M∗ (G,H) ei, ei) + 1 (M∗ (G,H) J, ei) 1 (π, ei)
]

= 3D (M∗ (G,H) J) +D (G)M∗ (H, J) −D (H)M∗ (G, J) .

Now (divM∗) (G,H) J = 0 implies

3D (M∗ (G,H) J) +D (G)M∗ (H, J) −D (H)M∗ (G, J) = 0. (31)

In (31), by contracting H and J,

2M∗ (G, π) + ρ
(
1 − φ

)
D (G) = 0. (32)

Using (6) in (32) we deduce that

S (G, π) =
ρ
(
φn − n + 1

)[
(n − 1)

(
2 − φ

)
+ φ

]1 (G, π) .

This implies

S (G, π) = µ1 (G, π) , (33)

where µ =
ρ
(
φn − n + 1

)[
(n − 1)

(
2 − φ

)
+ φ

] is a scalar. Thus we can say that:
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Theorem 5.1. In a (PM∗S)n (n > 2) with divM∗ = 0, µ is an eigenvalue of the Ricci tensor S corresponding to the
eigenvector π.

Now if we take covariant derivative of (29), then we find

∇W∇Zm∗ = 2 (∇WD) (Z) m∗ + 2D (Z)
(
∇Wm∗

)
+ 4

(
∇WM∗

)
(Z, π) . (34)

Using (28) and (29) in (34) we reach

∇W∇Zm∗ = 2 (∇WD) (Z) m∗ + 4D (Z) D (W) m∗ + 8D (Z)M∗ (W, π) + 8D (W)M∗ (Z, π)

+ 4M∗ (W,Z, π, π) + 4D (Z)M∗ (W, π) + 4D (π)M∗ (Z,W) + 4M∗ (π,Z, π,W) . (35)

Changing Z and W in (35) and subtracting these two equations, we obtain from (6) and (7) that

2
[
1 −

(n − 2)φ
2 (n − 1)

]
[D (W)S (Z, π) −D (Z)S (W, π)] + (∇ZD) (W) m∗ − (∇WD) (Z) m∗ = 0. (36)

Assume that the scalar curvature ρ is non-zero, then from (26), (33) and (36) we can derive

(∇ZD) (W) = (∇WD) (Z) .

As a result, we may say the following:

Theorem 5.2. The associated 1-form of a (PM∗S)n (n > 2) with divM∗ = 0 is closed provided the scalar curvature ρ
is non-zero.

6. Example of a (PM∗S)4

Let us consider a Lorentzian metric 1 on R4 by [15]

ds2 = 1i jdxidx j =
(
dx1

)2
+

(
x1

)2 (
dx2

)2
+

(
x2

)2 (
dx3

)2
−

(
dx4

)2
,

where i, j = 1, 2, 3, 4. We calculate the non-vanishing components of the Christoffel symbols, the curvature
tensor and the Ricci tensor are

Γ1
22 = −x1, Γ2

33 = −
x2

(x1)2 , Γ
2
12 =

1
x1 , Γ

3
23 =

1
x2 , R1332 = −

x2

x1 , S12 = −
1

x1x2

and using the symmetry properties, the other components are obtained.
Let us consider the scalar φ as follows:

φ = 6x1. (37)

The only non-vanishing M∗-projective curvature tensor and its covariant derivatives are written by

M∗1332 = −
x2

x1 + x2, M∗1332,1 =
x2

(x1)2 , M∗1332,2 = −
1
x1 + 1. (38)

The 1-form is chosen as follows:

Di (x) =


1

3x1 (x1 − 1)
, when i = 1

1
3x2 , when i = 2

0, otherwise

(39)
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Now, using these 1-forms, the equation (3) may be reduced to the following equations:

M∗1332,1 = 3D1M
∗

1332 (40)

and

M∗1332,2 = 3D2M
∗

1332. (41)

From the equations (38), (39) and (41) we get

Right hand side of (41) = 3D2M
∗

1332

= 3 ·
1

3x2 ·

(
−

x2

x1 + x2

)
= −

1
x1 + 1 =M∗1332,2.

It may be proved that (40) is also true using similar argument.
So, the manifold

(
R4, 1

)
under consideration is a (PM∗S)4.

7. Pseudo M∗-projective symmetric spacetimes

The spacetime of general relativity is a connected four-dimensional semi-Riemannian manifold
(
M4, 1

)
with Lorentzian metric 1 whose signature (−,+,+,+). The study of the casual character of vector of the
manifold is the first step in the Lorentzian geometry. The Lorentzian manifold is a useful choice for studying
general relativity because of this coincidence. Spacetimes have been studied by several authors in different
ways such as ([2], [6], [9], [11], [12], [13], [16], [17], [19], [22], [26], [29], [34]).

Lorentzian manifolds with the Ricci tensor

S (G,H) = α1 (G,H) + βD (G) D (H) , (42)

where α and β are scalars and π is a unit timelike vector field that corresponds to the 1-form D, are called
perfect fluid spacetimes.

If the matter content of the spacetime is perfect fluid with velocity vector field π, the above form (42) of
the Ricci tensor is derived from Einstein’s equation. The energy momentum tensor T represents the matter
content of spacetime, which is considered to be fluid. The energy momentum tensor for a perfect fluid
spacetime has the form [24]

T (G,H) =
(
σ + p

)
D (G) D (H) + p1 (G,H) , (43)

where σ represents the energy density and p represents the isotropic pressure. The velocity vector field π is
a time-like vector that is metrically equal to the non-zero 1-form D. Because there are no heat conduction
terms and stress factors corresponding to viscosity, the fluid is called perfect [14]. Furthermore, an equation
of state governing the type of perfect fluid under consideration connects p and σ. In general, this is an
equation of the form p = p (σ,T0), where T0 denotes absolute temperature. We will just look at cases where
T0 is effectively constant and the state equation becomes p = p (σ). The perfect fluid in this situation is
known as isentropic [14]. In addition, if p = σ, the perfect fluid is referred to as stiffmatter ([27], p. 66).

The Einstein’s field equations (briefly, EFE) without cosmological constant is as follows:

S (G,H) −
ρ

2
1 (G,H) = κT (G,H) , (44)

where the Ricci tensor and scalar curvature are denoted byS and ρ, respectively. The gravitational constant
is κ, whereas the energy momentum tensor is T. According to EFE, matter controls the geometry of
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spacetime, while the motion of matter is dictated by the non-flat metric of space.
In this paper, we look at a special type of spacetime known as pseudoM∗-projective symmetric spacetime.

The results obtained for the pseudo M∗-projective symmetric manifolds also holds for the Lorentzian
setting. A 4-dimensional Lorentzian manifold

(
M, 1

)
is said to be pseudoM∗-projective symmetric spacetime

if the M∗-projective curvature tensor satisfies the relation (3). Here we consider the associated vector
corresponding to the 1-form D is a unit timelike vector field, i.e., 1 (π, π) = −1. Thus equation (3) can be
represented for a pseudo M∗-projective symmetric spacetime as

(∇ZR) (G,H, J,K) −
φ

6
[
(∇ZS) (H, J) 1 (G,K) − (∇ZS) (G, J) 1 (H,K) + 1 (H, J) (∇ZS) (G,K)

−1 (G, J) (∇ZS) (H,K)
]
−

dφ (Z)
6

[
S (H, J) 1 (G,K) − S (G, J) 1 (H,K) + 1 (H, J)S (G,K) − 1 (G, J)S (H,K)

]
= 2D (Z)

[
R (G,H, J,K) −

φ

6
{
S (H, J) 1 (G,K) − S (G, J) 1 (H,K) + 1 (H, J)S (G,K)

−1 (G, J)S (H,K)
}]
+D (G)

[
R (Z,H, J,K) −

φ

6
{
S (H, J) 1 (Z,K) − S (Z, J) 1 (H,K)

+1 (H, J)S (Z,K) − 1 (Z, J)S (H,K)
}]
+D (H)

[
R (G,Z, J,K) −

φ

6
{
S (Z, J) 1 (G,K)

−S (G, J) 1 (Z,K) + 1 (Z, J)S (G,K) − 1 (G, J)S (Z,K)
}]
+D (J) [R (G,H,Z,K)

−
φ

6
{
S (H,Z) 1 (G,K) − S (G,Z) 1 (H,K) + 1 (H,Z)S (G,K) − 1 (G,Z)S (H,K)

}]
+D (K)

[
R (G,H, J,Z) −

φ

6
{
S (H, J) 1 (G,Z) − S (G, J) 1 (H,Z) + 1 (H, J)S (G,Z) − 1 (G, J)S (H,Z)

}]
. (45)

Taking a frame field and contracting G and K in (45) we get

2D (Z)
[(

1 −
φ

3

)
S (H, J) −

φρ

6
1 (H, J)

]
+D (H)

[(
1 −

φ

3

)
S (Z, J) −

φρ

6
1 (Z, J)

]
+D (J)

[(
1 −

φ

3

)
S (H,Z) −

φρ

6
1 (H,Z)

]
+D (R (Z,H) J) −

φ

6
[D (Z)S (H, J)

−D (H)S (Z, J) +D (QZ) 1 (H, J) −D (QH) 1 (Z, J)
]
+D (R (Z, J) H)

−
φ

6
[
D (Z)S (H, J) −D (QJ) 1 (H,Z) +D (QZ) 1 (H, J) −D (J)S (H,Z)

]
=

(
1 −

φ

3

)
(∇ZS) (H, J) −

φ

6
dρ (Z) 1 (H, J) −

dφ (Z)
6

[
2S (H, J) + ρ1 (H, J)

]
. (46)

In (PM∗S)4 spacetimes, we take the associated vector field π to be a parallel vector field. Then

∇Gπ = 0, (47)

for every vector field G.
Using Ricci identity, we can now deduce

R (G,H)π = 0. (48)

It is clear from (48) that

R (G,H, J, π) = 0, (49)

where R (G,H, J, π) = 1 (R (G,H) J, π).
Hence,

D (R (G,H) J) = 0. (50)
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Contracting H in (48) we infer that

S (G, π) = 0. (51)

Now,

(∇ZS) (G, π) = ∇ZS (G, π) − S (∇ZG, π) − S (G,∇Zπ) .

As a result, if we use (47) and (51) in the previous equation, we find

(∇ZS) (G, π) = 0. (52)

Using (50), (51) and (52) in (46) we reach by putting H = π,(
1 −

φ

6

)
S (Z, J) =

φρ

6
1 (Z, J) −

φρ

2
D (Z) D (J) +

1
6
[
φdρ (Z) + ρdφ (Z)

]
D (J) . (53)

Using J = π, in the preceding equation once more, we get

1
6
[
φdρ (Z) + ρdφ (Z)

]
=

2φρ
3

D (Z) . (54)

By combining the equations (53) and (54), we arrive to the following result:

S (Z, J) = α1 (Z, J) + βD (Z) D (J) ,

where α = β =
φρ

6 − φ
.

As a result, we may say the following:

Theorem 7.1. A pseudo M∗-projective symmetric spacetime with associated vector field as a parallel vector field is a
perfect fluid spacetime.

According to EFEwithout cosmological constant, the Ricci tensor takes the form

S (G,H) = κ
(p − σ
−2

)
1 (G,H) + κ

(
p + σ

)
D (G) D (H) .

In contrast to equation (42) we notice α =
κ
2

(
σ − p

)
and β = κ

(
p + σ

)
.

Now α = β gives p = −
1
3
σ.

In view of this observation, we can conclude:

Theorem 7.2. A pseudo M∗-projective symmetric spacetime with associated vector field as a parallel vector field
represents the limiting case of dark energy and the limiting case of violating the strong energy condition.

Now, we consider the pseudo M∗-projective symmetric spacetime with cyclic parallel Ricci tensor. Then

(∇ZS) (H, J) + (∇HS) (J,Z) +
(
∇JS

)
(Z,H) = 0. (55)

Since the scalar curvature ρ is constant in a spacetime with cyclic parallel Ricci tensor, dρ (G) = 0, for all G.
If we consider that the scalar φ is constant, then dφ (G) = 0, for all G.
Using (46) in (55), we now have

4D (Z)
[(

1 −
φ

3

)
S (H, J) −

φρ

6
1 (H, J)

]
+ 4D (H)

[(
1 −

φ

3

)
S (Z, J) −

φρ

6
1 (Z, J)

]
+ 4D (J)

[(
1 −

φ

3

)
S (H,Z) −

φρ

6
1 (H,Z)

]
+D (R (Z,H) J) +D (R (Z, J) H)

+D (R (H, J) Z) +D (R (H,Z) J) +D (R (J,Z) H) +D (R (J,H) Z) = 0.
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Following some computations, we arrive at

D (Z) E (H, J) +D (H) E (Z, J) +D (J) E (H,Z) = 0,

where E (G,H) =
(
6 − 2φ

)
S (G,H) − φρ1 (G,H). The above equation can be expressed in local coordinates

as

DiE jk +D jEki +DkEi j = 0.

Walker’s Lemma [30] is now listed as follows:

Lemma 7.3. If αi j, βi are numbers satisfying αi j = α ji, αi jβk + α jkβi + αkiβ j = 0 for i, j, k = 1, 2, 3, . . . ,n, then either
all αi j are zero or all βi are zero.

As D (G) , 0, according to Walker’s Lemma, we have E (H, J) = 0, i.e.,

S (H, J) =
(
φρ

6 − 2φ

)
1 (H, J) .

As a result, we arrive at the following theorem:

Theorem 7.4. If the scalar φ is constant, then a pseudo M∗-projective symmetric spacetime satisfying the cyclic
parallel Ricci tensor is an Einstein spacetime.

8. M∗-projectively flat spacetimes

In this section we consider M∗-projectively flat spacetimes, which are 4-dimensional Lorentzian mani-
folds with a timelike vector field. Hence from (2) we have

R (G,H, J,K) =
φ

6
[
S (H, J) 1 (G,K) − S (G, J) 1 (H,K) + 1 (H, J)S (G,K) − 1 (G, J)S (H,K)

]
. (56)

Contracting H and J we can get

S (G,K) =
φρ

2
(
3 − φ

)1 (G,K) . (57)

Again contracting G and K we reach(
1 − φ

)
ρ = 0.

This means φ = 1, if ρ , 0.
Using this in (57) we obtain

S (G,K) =
ρ

4
1 (G,K) . (58)

As a consequence, M∗-projectively flatness implies

R (G,H) J =
ρ

12
[
1 (H, J) G − 1 (G, J) H

]
,

which reflects that the spacetime is of constant curvature. It is well known that space of constant curvature
implies the spacetime is conformally flat and hence the spacetime is of Petrov type O.
Thus we get to the following conclusion:

Theorem 8.1. A M∗-projectively flat spacetime with non-zero scalar curvature is a space of constant curvature and
of Petrov type O.
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Using (58) in (44) we find

T (G,H) = −
ρ

4κ
1 (G,H) . (59)

Covariant differentiation of (59) yields(
∇JT

)
(G,H) = −

1
4κ

dρ (J) 1 (G,H) . (60)

The scalar curvature ρ is constant because the M∗-projectively flat spacetime is Einstein. Thus

dρ (J) = 0, (61)

for all J.
Equations (60) and (61) implies(

∇JT
)

(G,H) = 0.

Thus we can say that:

Theorem 8.2. For aM∗-projectively flat spacetime obeyingEFEwithout cosmological constant the energy-momentum
tensor is covariant constant.

Remark 8.3. It may be mentioned that Chaki and Ray [4] proved that a general relativistic spacetime with covariant
constant energy-momentum tensor is Ricci symmetric.

The matter collineation is defined by the energy momentum tensor T(
£ηT

)
(G,H) = 0, (62)

where η is the symmetry-generating vector field and £η is the Lie derivative operator along the η vector
field.
Let η be a Killing vector field with vanishing M∗-projective curvature tensor on the spacetime. Then(

£η1
)

(G,H) = 0. (63)

Taking the Lie derivatives on both sides of (59) with respect to η we reach(
£ηT

)
(G,H) = −

ρ

4κ

(
£η1

)
(G,H) . (64)

We have from (63) and (64)(
£ηT

)
(G,H) = 0.

This means that matter collineation is possible in the spacetime.
If

(
£ηT

)
(G,H) = 0, on the other hand, we get from (64) that(

£η1
)

(G,H) = 0.

As a consequence, the following theorem can be formulated:

Theorem 8.4. For a M∗-projectively flat spacetime obeying EFE without cosmological constant, the spacetime
admits matter collineation with respect to a vector field η if and only if η is a Killing vector field.
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η is taken to be a conformal Killing vector field. Then we have(
£η1

)
(G,H) = 2ψ1 (G,H) , (65)

where ψ being scalar.
Then from (64) and (65) we get(

£ηT
)

(G,H) = −
ρ

4κ
2ψ1 (G,H) . (66)

Using (59) in (66) we deduce that(
£ηT

)
(G,H) = 2ψT (G,H) . (67)

According to (67), the energy-momentum tensor possesses the Lie inheritance property along η. If (67)
holds, then (65) holds as well, indicating that η is a conformal Killing vector field. As a result, we can say
that:

Theorem 8.5. If a M∗-projectively flat spacetime obeying EFE without cosmological constant, then a vector field η
on the spacetime is a conformal Killing vector field if and only if the energy-momentum tensor has the Lie inheritance
property along η.

9. M∗-projectively flat perfect fluid spacetimes

Now imagine a matter distribution in a perfect fluid whose velocity vector field is the vector field π,
which is identical with 1-form D of the spacetime. As a result, T is given by [24]:

T (G,H) =
(
σ + p

)
D (G) D (H) + p1 (G,H) . (68)

The energy density and isotropic pressure are represented by σ and p, respectively.
As a result, we get from EFEwithout cosmological constant

S (G,H) −
ρ

2
1 (G,H) = κ

[(
σ + p

)
D (G) D (H) + p1 (G,H)

]
. (69)

Contracting the previous equation, we acquire

ρ = κ
(
σ − 3p

)
. (70)

Using (57) in (69) we infer that[
φρ

2
(
3 − φ

) − ρ
2

]
1 (G,H) = κ

[(
σ + p

)
D (G) D (H) + p1 (G,H)

]
. (71)

Setting H = π in (71) and using D (G) , 0, we acquire

ρ
(
3 − 2φ

)(
6 − 2φ

) = κσ. (72)

Equations (70) and (72) also produce

σ =
(
2φ − 3

)
p. (73)

As a result, based on the above, we can conclude:

Theorem 9.1. The energy density and the isotropic pressure are related by (73) for a M∗-projectively flat perfect fluid
spacetime obeying EFE without the cosmological constant.
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Remark 9.2. p =
σ(

2φ − 3
) , i.e., p = p (σ), in this situation. So we can conclude that the fluid is isentropic [14].

From (73) we obtain
p
σ
> −1, when φ < 1. In most cases, the dark energy is characterised by an “equation-

of-state” parameter ω ≡
p
σ

, the ratio of the spatially homogenous dark-energy pressure p and its energy
density σ. Now ω > −1 denotes that the model describes the evaluation in Quintessence region.
We can conclude the following from the preceding discussion:

Theorem 9.3. A M∗-projectively flat perfect fluid spacetime obeying EFE without the cosmological constant de-
scribes the model of the evaluation in Quintessence region, provided the scalar φ < 1.

Now we consider the radiation era in M∗-projectively flat perfect fluid spacetimes. In a perfect fluid

spacetime,
p
σ
=

1
3

defines the radiation era. In such instances, the energy–momentum tensor is of the form

T (G,H) = p1 (G,H) + 4pD (G) D (H) . (74)

As a result, the EFEwithout the cosmological constant yields

S (G,H) −
ρ

2
1 (G,H) = κ

[
p1 (G,H) + 4pD (G) D (H)

]
. (75)

Using (57) in (75) reveals that(
φρ

6 − 2φ
−
ρ

2

)
1 (G,H) = κ

[
p1 (G,H) + 4pD (G) D (H)

]
. (76)

Contracting the foregoing equation by taking a frame field, we obtain

4
(
φρ

6 − 2φ
−
ρ

2

)
= 0. (77)

Setting H = π in (76) we find(
φρ

6 − 2φ
−
ρ

2

)
= −3κp. (78)

By combining the equations (77) and (78), we arrive to the following result:

p = 0. (79)

Thus, we can conclude from (74) and (79) that

T (G,H) = 0.

This indicates that the spacetime is devoid of matter. Thus we can state the following:

Theorem 9.4. A radiation era in M∗-projectively flat perfect fluid spacetime satisfying EFE without cosmological
constant is vacuum.

10. M∗-projectively flat viscous fluid spacetimes

In a viscous fluid spacetime, the T is given by [23, 24]:

T (G,H) = p1 (G,H) +
(
σ + p

)
D (G) D (H) +N (G,H) , (80)
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where N (G,H) is the fluid’s anisotropic pressure. Also trace of N = 0 and N (G, π) = 0,where π is a velocity
vector field.
Using (44) and (57) in (80) we get(

φρ

6 − 2φ
−
ρ

2

)
1 (G,H) = κ

[
p1 (G,H) +

(
σ + p

)
D (G) D (H) +N (G,H)

]
. (81)

Putting G = H = π in (81), yields

σ = −
ρ
(
2φ − 3

)
κ
(
6 − 2φ

) . (82)

Again contracting (81) over G and H, we infer that

4
(
φρ

6 − 2φ
−
ρ

2

)
= κ

[
4p −

(
σ + p

)]
,

implying

p =
ρ
(
2φ − 3

)
κ
(
6 − 2φ

) . (83)

By combining the equations (82) and (83), we arrive to the following result:

σ + p = 0.

We know the scalar curvature ρ of a M∗-projectively flat spacetime is constant. If the scalar φ is constant,
then σ = constant follows from (82) and therefore σ + p = 0 gives p = constant. Now, σ + p = 0 indicates
that the fluid behaves as a cosmological constant [28]. It is also known as a phantom barrier [5]. In
cosmology, such a choice σ = −p entails rapid expansion of spacetime, which is known as inflation [1].
In view of this observation, we can conclude:

Theorem 10.1. If a M∗-projectively flat viscous fluid spacetime obeying EFE without cosmological constant, then
the spacetime has constant energy density and isotropic pressure and the spacetime represents inflation and also the
fluid behaves as a cosmological constant provided the scalar φ is constant.

We will now consider whether or not a M∗-projectively flat viscous fluid spacetime can accept heat flux.
Assume T has the following shape: [23, 24]:

T (G,H) = p1 (G,H) +
(
σ + p

)
D (G) D (H) +D (G) B (H) +D (H) B (G) , (84)

where B (G) = 1 (G, ν) for all vector fields G, ν being the heat flux vector field. Thus we have 1 (π, ν) = 0, i.e.,
B (π) = 0.
In virtue of (44) and (57), equation (84) takes the form(

φρ

6 − 2φ
−
ρ

2

)
1 (G,H) = κ

[
p1 (G,H) +

(
σ + p

)
D (G) D (H) +D (G) B (H) +D (H) B (G)

]
. (85)

Setting H = π in (85), we notice that

B (G) = −
1
κ

[
ρ
(
2φ − 3

)(
6 − 2φ

) + κσ] D (G) .

As a result, we arrive at the following theorem:

Theorem 10.2. A M∗-projectively flat viscous fluid spacetime obeying EFE without cosmological constant admits

heat flux, provided
[
ρ
(
2φ − 3

)(
6 − 2φ

) + κσ] , 0.
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In this study, we analyze mixed quasi-Einstein spacetimes endowed with Gray’s decom-
position, as well as generalized Robertson–Walker spacetimes. For mixed quasi-Einstein
spacetimes, the shape of the Ricci tensor in all O(n)-invariant subspaces can be iden-
tified using Gray’s decomposition of the gradient of the Ricci tensor. In case one, such
a spacetime is found to be static; in three cases, the Ricci tensor is found to be in the
form of a perfect fluid; and in the other three situations, the spacetime becomes a quasi-
Einstein spacetime under certain restrictions on the associated vector fields. Finally, it
is established that a mixed quasi-Einstein generalized Robertson–Walker spacetime is a
perfect fluid spacetime.

Keywords: Mixed quasi-Einstein spacetime; Gray’s decomposition; static spacetime; per-
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1. Introduction

Lorentzian manifold is the subclass of a semi-Riemannian manifold. The index of the
Lorentzian metric g is 1. A Lorentzian manifold Mn (n ≥ 4) admitting a globally
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timelike vector is physically known as spacetime. Several authors have explored
spacetimes in various ways, such as Refs. 1–9 and also numerous others.

A mixed quasi-Einstein manifold [10] (briefly, (MQE)n) is a non-flat semi-
Riemannian manifold (Mn, g) (n ≥ 3) with its Ricci tensor (non-vanishing) S of
type (0, 2) meets the following requirements:

S(Z1, Z2) = ag(Z1, Z2) + b[H(Z1)F (Z2) +H(Z2)F (Z1)], (1)

a, b are scalars Â with b being nonzero and H, F are nonzero 1-forms in the sense
that

g(Z1,U) = H(Z1), g(Z1,V) = F (Z1), g(U,V) = 0,

where unit vector fields are represented by U and V. In this circumstance, H and
F are referred to as associated 1-forms, while the generators of the manifold are
referred to as U and V. (MQE)n is transformed into an Einstein manifold for b = 0
and to a quasi-Einstein manifold if H equals F .

If the Ricci tensor fulfills the condition (1), a Lorentzian manifold is referred
to as mixed quasi-Einstein spacetime. The existence of such a spacetime has been
proved by Mallick et al. [11]. In this case, the vector field V related to the 1-form
F is treated as a unit timelike vector field, that is, F (V) = g(V,V) = −1.

The conformal curvature tensor of a Lorentzian manifold (Mn, g) (n ≥ 4) is
stated as

C(Z1, Z2)Z3 = R(Z1, Z2)Z3 −
1

(n− 2)
[g(Z2, Z3)QZ1 − g(Z1, Z3)QZ2

+ S(Z2, Z3)Z1 − S(Z1, Z3)Z2]

+
ρ

(n− 1)(n− 2)
[g(Z2, Z3)Z1 − g(Z1, Z3)Z2], (2)

Q is the Ricci operator satisfying the relation S(Z1, Z2) = g(QZ1, Z2) and ρ being
the scalar curvature.

An n-dimensional (n > 2) Lorentzian manifold is referred to be a generalized
Robertson–Walker (briefly, GRW) spacetime if the metric adopts the following local
structure:

ds2 = −(dε)2 + q2(ε)g∗u1u2
dxu1dxu2 , (3)

where q is a ε-dependent function and g∗u1u2
= g∗u1u2

(xu3 ) are only functions of
xu3 (u1, u2, u3 = 2, 3, . . . , n). Thus a GRW spacetime can be represented as −I ×
q2M̄, where M̄ is a Riemannian manifold of dimension (n − 1). If M̄ is of dim.
3 and possesses the constant sectional curvature, then the spacetime shrinks to a
Robertson–Walker (briefly, RW) spacetime.

Lorentzian manifolds with the Ricci tensor

S(Z1, Z2) = a1g(Z1, Z2) + a2F (Z1)F (Z2), (4)

where a1 = κ(
p− σ

2 − n
) and a2 = κ(p+ σ) are scalars and V is a unit timelike vector

field corresponding to the 1-form F, are called perfect fluid spacetimes (briefly,

2350020-2
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PFS). If in particular a1 and a2 are constants, then the geometers called quasi-
Einstein spacetimes.

The energy–momentum tensor (briefly, EMT ) T represents the matter content
of the spacetime, which is considered to be fluid. The EMT for a PFS resembles
the shape [12]

T(Z1, Z2) = pg(Z1, Z2) + (p+ σ)F (Z1)F (Z2), (5)

where σ stands for energy density and p stands for isotropic pressure. The velocity
vector field V is the metrically analogous unit timelike vector field to the nonzero
1-form F .

Einstein’s field equations (briefly, EFE) without cosmological constant are as
follows:

S(Z1, Z2) −
ρ

2
g(Z1, Z2) = κT(Z1, Z2), (6)

where S stands for the Ricci tensor and ρ stands for the scalar curvature, κ is the
gravitational constant. According to EFE , the geometry of spacetime is determined
by matter, whereas the non-flat metric of spacetime governs matter motion. The
above form (4) of the Ricci tensor is determined from Einstein’s equation using (5).

Definition 1. If

∇Z1ζ = �Z1, (7)

� is a constant (� �= 0), the vector field ζ is said to be concurrent.

If the vector fields U and V related to the 1-forms H and F are concurrent, then

(∇Z1H)(Z2) = γg(Z1, Z2) (8)

and

(∇Z1F )(Z2) = δg(Z1, Z2) (9)

where γ and δ are nonzero constants.
We will look at mixed quasi-Einstein spacetime in this work, which is a unique

kind of spacetime. The Lorentzian setting supports the results obtained for mixed
quasi-Einstein manifolds. This paper is arranged as follows. After preliminaries in
Sec. 3, we investigate each of the seven cases of Gray’s decomposition of (MQE)n.
The analysis of (MQE)n with GRW spacetime is presented in Sec. 4.

2350020-3
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2. Preliminaries

At any point on the manifold, consider an orthonormal frame field and contracting
Z1 and Z2 in (1), yields

ρ = na. (10)

Taking the covariant derivative of (1) gives us

(∇Z3S)(Z1, Z2) = da(Z3)g(Z1, Z2) + db(Z3)[H(Z1)F (Z2) +H(Z2)F (Z1)]

+ b[(∇Z3H)(Z1)F (Z2) +H(Z1)(∇Z3F )(Z2)

+ (∇Z3H)(Z2)F (Z1) +H(Z2)(∇Z3F )(Z1)]. (11)

Setting Z2 = U and Z2 = V in (1) successively, we have the following:

S(Z1,U) = aH(Z1) + bF (Z1) (12)

and

S(Z1,V) = aF (Z1) − bH(Z1). (13)

3. Gray’s Decompositions

According to Gray, [13] ∇S can also be split into terms that are O(n)-invariant (for
additional information, read [14,15]. In O(n)-invariant terms, ∇S can be represented
as follows [16]:

(∇Z1S)(Z2, Z3) = R̂(Z1, Z2)Z3 + α1(Z1)g(Z2, Z3) + α2(Z2)g(Z1, Z3)

+α2(Z3)g(Z1, Z2), (14)

for all Z1, Z2, Z3, where

α1(Z1) =
n

(n− 1)(n+ 2)
∇Z1ρ, α2(Z1) =

(n− 2)
2(n− 1)(n+ 2)

∇Z1ρ

with R̂(Z1, Z2)Z3 = R̂(Z1, Z3)Z2 is the tensor which has vanishing trace and rep-
resented as

R̂(Z1, Z2)Z3 =
1
3
[R̂(Z1, Z2)Z3 + R̂(Z2, Z3)Z1 + R̂(Z3, Z1)Z2]

+
1
3
[R̂(Z1, Z2)Z3 − R̂(Z2, Z1)Z3]

+
1
3
[R̂(Z1, Z2)Z3 − R̂(Z3, Z1)Z2]. (15)

The decompositions (14) and (15) yield O(n)-invariant subspace, which is charac-
terized by linear invariant equations in ∇S.

2350020-4
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The following equation can be used to determine the relationship between ∇S

and div C:

(div C)(Z1, Z2)Z3 =
(
n− 3
n− 2

)
[R̂(Z1, Z2)Z3 − R̂(Z2, Z1)Z3]. (16)

The subspaces in Gray’s decomposition are as described in the following:

(i) ∇S = 0 characterizes the subspaces that are trivial.
(ii) R̂(Z1, Z2)Z3 = 0 characterizes the subspace J , i.e.

(∇Z1S)(Z2, Z3) = α1(Z1)g(Z2, Z3) + α2(Z2)g(Z1, Z3)

+α2(Z3)g(Z1, Z2), (17)

where α1, α2 are 1-forms. Manifolds satisfying this requirement (17) are called
Sinyukov manifolds. [17]

(iii) The subspace J ′ (referred to as the subspace A) is defined as follows:

(∇Z1S)(Z2, Z3) + (∇Z2S)(Z3, Z1) + (∇Z3S)(Z1, Z2) = 0, (18)

which yields that the scalar curvature ρ is constant. Also, the Ricci tensor
is Killing [18] if Eq. (18) holds.

(iv) The Ricci tensor is of Codazzi type in the subspaces B and B′ i.e.

(∇Z1S)(Z2, Z3) = (∇Z2S)(Z1, Z3). (19)

(v) The cyclic condition for the Ricci tensor in the subspace J ⊕A is

(∇Z1S)(Z2, Z3) + (∇Z2S)(Z3, Z1) + (∇Z3S)(Z1, Z2)

=
2 g(Z2, Z3)

(n+ 2)
dρ(Z1) +

2 g(Z3, Z1)
(n+ 2)

dρ(Z2) +
2 g(Z1, Z2)

(n+ 2)
dρ(Z3),

(20)

that is, S is conformal Killing. [19]
(vi) The Ricci tensor fulfills the following Codazzi condition in the subspace

J ⊕ B:

∇Z1

[
S(Z2, Z3) −

ρ

2(n− 1)
g(Z2, Z3)

]

= ∇Z2

[
S(Z1, Z3) −

ρ

2(n− 1)
g(Z1, Z3)

]
, (21)

which gives div C = 0.
(vii) The scalar curvature is covariant constant in the subspace A⊕ B.

Consider each of these seven scenarios separately.

2350020-5
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Case (i). ∇S = 0, therefore from (11) we find

da(Z3)g(Z1, Z2) + db(Z3)[H(Z1)F (Z2) +H(Z2)F (Z1)]

+ b[(∇Z3H)(Z1)F (Z2) +H(Z1)(∇Z3F )(Z2)

+ (∇Z3H)(Z2)F (Z1) +H(Z2)(∇Z3F )(Z1)] = 0. (22)

Putting Z1 = U, Z2 = V in (22), we infer that

db(Z3) = 0. (23)

Since ∇S = 0 implies ρ = constant, therefore by Eq. (10) we conclude that

da(Z3) = 0. (24)

Using (23) and (24) in (22) infers

(∇Z3H)(Z1)F (Z2) +H(Z1)(∇Z3F )(Z2)

+ (∇Z3H)(Z2)F (Z1) +H(Z2)(∇Z3F )(Z1) = 0. (25)

Now setting Z1 = Z2 = U in (25) we deduce that

(∇Z3F )(U) = 0. (26)

Again setting Z2 = U in (25) and using (26) we reach

g(∇Z3V, Z1) = 0, (27)

for all Z1. This implies that V is parallel.
A spacetime is called static (Ref. 20, p. 283) if it admits a unit timelike vector

field V such that

(∇Z1F )(Z2) = −F (Z1)Ḟ (Z2) and Ḟ (Z1)F̈ (Z2) − F̈ (Z1)Ḟ (Z2) = 0,

where

Ḟ (Z1) = (∇VF )(Z1), F̈ (Z1) = (∇VḞ )(Z1), F (Z1) = g(Z1,V),

for all Z1. Since V is parallel, therefore (∇Z1F )(Z2) = 0 and hence the above
conditions hold for a static spacetime.

As a result, we are able to state the result.

Theorem 2. If an (MQE)n spacetime is included in the trivial subspace, then the
spacetime becomes a static spacetime.
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Case (ii). The Ricci tensor satisfies the relation R̂(Z1, Z2)Z3 = 0 in the subspace
J and hence from the relation (16) we obtain div C = 0. So we arrive

(∇Z1S)(Z2, Z3) − (∇Z3S)(Z1, Z2)

=
1

2(n− 1)
[dρ(Z1)g(Z2, Z3) − dρ(Z3)g(Z1, Z2)]. (28)

Equations (10), (11) and (28) together yield

da(Z1)g(Z2, Z3) + db(Z1)[H(Z2)F (Z3) +H(Z3)F (Z2)]

+ b[(∇Z1H)(Z2)F (Z3) +H(Z2)(∇Z1F )(Z3) + (∇Z1H)(Z3)F (Z2)

+H(Z3)(∇Z1F )(Z2)] − da(Z3)g(Z1, Z2)

− db(Z3)[H(Z1)F (Z2) +H(Z2)F (Z1)] − b[(∇Z3H)(Z1)F (Z2)

+H(Z1)(∇Z3F )(Z2) + (∇Z3H)(Z2)F (Z1) +H(Z2)(∇Z3F )(Z1)]

=
n

2(n− 1)
[da(Z1)g(Z2, Z3) − da(Z3)g(Z1, Z2)]. (29)

We now impose the condition that the scalars a and b are constants. After that,
Eq. (29) turns into

(∇Z1H)(Z2)F (Z3) +H(Z2)[(∇Z1F )(Z3) − (∇Z3F )(Z1)]

+F (Z2)[(∇Z1H)(Z3) − (∇Z3H)(Z1)] +H(Z3)(∇Z1F )(Z2)

−H(Z1)(∇Z3F )(Z2) − (∇Z3H)(Z2)F (Z1) = 0. (30)

Let us suppose that the vector fields U and V are concurrent. Then adopting (8)
and (9) in (30) we obtain

[γF (Z3) + δH(Z3)]g(Z1, Z2) − [δH(Z1) + γF (Z1)]g(Z3, Z2) = 0. (31)

Setting Z1 = U, Z3 = V in (31), we obtain

H(Z2) = − δ

γ
F (Z2). (32)

In view of (1) and (32) we get

S(Z1, Z2) = ag(Z1, Z2) −
2bδ
γ
F (Z1)F (Z2), (33)

a quasi-Einstein spacetime. Thus, we might conclude the following.

Theorem 3. If an (MQE)n spacetime belongs to the subspace J , then the spacetime
is a quasi-Einstein spacetime, provided the associated scalars are constants and the
associated vector fields are concurrent.

Case (iii). If (MQE)n is included in the subspace A, then

(∇Z1S)(Z2, Z3) + (∇Z2S)(Z3, Z1) + (∇Z3S)(Z1, Z2) = 0.

The above equation reflects that ρ is constant.
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In light of (10), (11) and (18) we have

db(Z1)[H(Z2)F (Z3) +H(Z3)F (Z2)] + db(Z2)[H(Z3)F (Z1) +H(Z1)F (Z3)]

+ db(Z3)[H(Z1)F (Z2) +H(Z2)F (Z1)] + b[{(∇Z2F )(Z3)

+ (∇Z3F )(Z2)}H(Z1) + {(∇Z1F )(Z3) + (∇Z3F )(Z1)}H(Z2) + {(∇Z1F )(Z2)

+ (∇Z2F )(Z1)}H(Z3) + {(∇Z2H)(Z3) + (∇Z3H)(Z2)}F (Z1) + {(∇Z1H)(Z3)

+ (∇Z3H)(Z1)}F (Z2) + {(∇Z1H)(Z2) + (∇Z2H)(Z1)}F (Z3)] = 0. (34)

Assume that the vector fields U and V are concurrent. From (8) and (9), we turn
up

db(Z1)[H(Z2)F (Z3) +H(Z3)F (Z2)] + db(Z2)[H(Z3)F (Z1) +H(Z1)F (Z3)]

+ db(Z3)[H(Z1)F (Z2) +H(Z2)F (Z1)] + 2b[{γF (Z3) + δH(Z3)}g(Z1, Z2)

+ {γF (Z1) + δH(Z1)}g(Z2, Z3) + {γF (Z2) + δH(Z2)}g(Z1, Z3)] = 0. (35)

Now, contraction of (35) gives

H(Z1) = −
[
bγ(n+ 2) + (Ub)
bδ(n+ 2) + (Vb)

]
F (Z1). (36)

From (1) and (36) it follows that

S(Z1, Z2) = ag(Z1, Z2) − 2b
[
bγ(n+ 2) + (Ub)
bδ(n+ 2) + (Vb)

]
F (Z1)F (Z2). (37)

This leads the following results.

Theorem 4. If an (MQE)n spacetime is included in the subspace A, then the
spacetime becomes a PFS, provided the associated vector fields are concurrent.

Also, Eqs. (18) and (6) reflect that the EMT is Killing, i.e.

(∇Z1T)(Z2, Z3) + (∇Z2T)(Z3, Z1) + (∇Z3T)(Z1, Z2) = 0,

for all Z1, Z2, Z3 ∈ χ(M).
In Ref. 21, Sharma and Ghosh describe the following outcome.

Theorem A. Let (M, g) be a PFS with Killing EMT . Then

(i) the flow of spacetime is geodesic and the spacetime is expansion-free and shear-
free, but not vorticity-free and

(ii) the spacetime admits constant energy density and pressure.

Therefore, by Theorem A, we conclude the following.

Corollary 5. Let (MQE)n spacetime belong to the subspace A. Then

(i) the flow of spacetime is geodesic and the spacetime is expansion-free and shear-
free, but not vorticity-free and
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(ii) the spacetime admits constant energy density and pressure, provided the asso-
ciated vector fields are concurrent.

Case (iv). If (MQE)n is included in B and B′, then

(∇Z1S)(Z2, Z3) = (∇Z2S)(Z1, Z3),

from which it follows that ρ is constant, i.e. dρ(Z1) = 0, for all Z1.

Hence, in view of (10) and (11), we acquire

(∇Z1S)(Z2, Z3) = db(Z1)[H(Z2)F (Z3) +H(Z3)F (Z2)]

+ b[(∇Z1H)(Z2)F (Z3) +H(Z2)(∇Z1F )(Z3)

+ (∇Z1H)(Z3)F (Z2) +H(Z3)(∇Z1F )(Z2)]. (38)

We now impose the condition that the associated vector fields U and V are concur-
rent. By virtue of (8), (9) and the foregoing equation, we provide

(∇Z1S)(Z2, Z3) = db(Z1)[H(Z2)F (Z3) +H(Z3)F (Z2)]

+ b[{γF (Z3) + δH(Z3)}g(Z1, Z2)

+ {γF (Z2) + δH(Z2)}g(Z1, Z3)]. (39)

Now, contraction of (39) gives

dρ(Z1) = 2b[γF (Z1) + δH(Z1)]. (40)

Since dρ(Z1) = 0, then from (40) we arrive at

H(Z1) = −γ
δ
F (Z1). (41)

Adopting (41) in (1), we can derive

S(Z1, Z2) = ag(Z1, Z2) −
2bγ
δ
F (Z1)F (Z2). (42)

Thus we write the following.

Theorem 6. If an (MQE)n spacetime is included in the class B and B′, then the
spacetime becomes a PFS, provided the associated vector fields are concurrent.

A four-dimensional Lorentzian manifold is named a Yang pure space [22] whose
metric satisfies Yang’s equation:

(∇Z1S)(Z2, Z3) = (∇Z2S)(Z1, Z3).

They are identical to the condition div C = 0 in any dimension.
Mantica and Molinari [23] established the following result for n ≥ 4.

Proposition 7. A perfect fluid Yang pure space of dim. n ≥ 4 with p+ σ �= 0 is a
GRW spacetime.
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In contrast to Eq. (42) we notice κ(
p− σ

2 − n
) = a and κ(p + σ) = − 2bγ

δ , i.e.

p+ σ �= 0.
In view of this observation, we can conclude the following.

Corollary 8. An (MQE)n spacetime is belonging to the class B and B′ is a GRW
spacetime, provided the associated vector fields are concurrent.

Also, Eqs. (19) and (6) reflect that T satisfying

(∇Z1T)(Z2, Z3) = (∇Z2T)(Z1, Z3),

for all Z1, Z2, Z3 ∈ χ(M).
However, it has been established [24] that if the EMT is of Codazzi type in a

PFS, then the fluid is of vanishing shear and vorticity, and its velocity vector field
becomes hypersurface orthogonal.

Barnes [25] observed that the probable local cosmological structures of the PFS
are of Petrov types I, D, or O if the PFS is of vanishing shear and vorticity, the
velocity vector field V is hypersurface orthogonal and the constant energy density
over a hypersurface orthogonal to V.

As a result of the foregoing facts, we arrive at the following.

Corollary 9. If an (MQE)n spacetime belongs to the class B and B′, then the
probable local cosmological structures of the spacetime are of Petrov types I, D, or
O, provided the associated vector fields are concurrent.

Case (v). In this subspace, S is conformal Killing (20). Mantica et al. [16] show
that the subspaces J ⊕ A and J are equivalent. In this circumstance, we reach
div C = 0. Consequently, the result is the same as in Theorem 3.

Case (vi). Let (MQE)n belong to J ⊕ B. In this case, we obtain div C = 0. So in
this case, also we get the same outcome of Theorem 3.

Case (vii). The scalar curvature is covariant constant in the subspace A⊕ B and
hence in this case, we have the same outcome of Theorem 6.

4. Mixed Quasi-Einstein GRW Spacetimes

We will assume that (MQE)n is a GRW spacetime during this whole section. In
Ref. [23], the authors established that a Lorentzian manifold of dim. n ≥ 3 admits
a unit timelike torse forming vector field if and only if it is a GRW spacetime:

(∇Z1F )(Z2) = ψ[g(Z1, Z2) + F (Z1)F (Z2)] (43)

and

S(Z1,V) = μg(Z1,V), (44)

for some smooth functions ψ (�= 0) and μ on M.
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Now,

(∇Z1S)(Z2,V) = Z1S(Z2,V) − S(∇Z1Z2,V) − S(Z2,∇Z1V). (45)

Using (43) and (44) in (45), we arrive

(∇Z1S)(Z2,V) = (Z1μ)F (Z2) + μψg(Z1, Z2) − ψS(Z1, Z2), (46)

where (Z1μ) = g(Z1, gradμ).
Differentiating (13) covariantly and applying (43) we reach

(∇Z1S)(Z2,V) = da(Z1)F (Z2) + aψ[g(Z1, Z2) + F (Z1)F (Z2)]

− db(Z1)H(Z2) − b(∇Z1H)(Z2). (47)

Combining Eqs. (46) and (47), we reveal

(Z1μ)F (Z2) + μψg(Z1, Z2) − ψS(Z1, Z2)

= da(Z1)F (Z2) + aψ[g(Z1, Z2) + F (Z1)F (Z2)]

− db(Z1)H(Z2) − b(∇Z1H)(Z2). (48)

Setting Z2 = V in (48) and using F (V) = −1, we turn up

(Z1μ) = da(Z1) + b(∇Z1H)(V). (49)

Equations (48) and (49) imply

ψS(Z1, Z2) = μψg(Z1, Z2) + db(Z1)H(Z2) + b(∇Z1H)(V)F (Z2)

+ b(∇Z1H)(Z2) − aψ[g(Z1, Z2) + F (Z1)F (Z2)]. (50)

Now from (13) and (44), we can derive

H(Z2) =
(
a− μ

b

)
F (Z2). (51)

Setting Z2 = U in (50) and then applying (12), we reach

db(Z1) = ψ[(2a− μ)H(Z1) + bF (Z1)]. (52)

Equations (51) and (52) together yield

db(Z1) = ψ

[
(2a− μ)(a− μ)

b
+ b

]
F (Z1). (53)

In light of (50), (51) and (53) we infer that

ψS(Z1, Z2) = μψg(Z1, Z2) + ψ

[
(2a− μ)(a− μ)

b
+ b

]

×
(
a− μ

b

)
F (Z1)F (Z2) + b(∇Z1H)(V)F (Z2)

+ b(∇Z1H)(Z2) − aψ[g(Z1, Z2) + F (Z1)F (Z2)]. (54)
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Let us impose the condition that the associated vector field U is concurrent. Hence,
in view of (8) and (54) we acquire

S(Z1, Z2) =
(
μ− a+

bγ

ψ

)
g(Z1, Z2)

+

[(
a− μ

b

)2

(2a− μ) +
bγ

ψ
− μ

]
F (Z1)F (Z2).

Thus we arrive to the following result.

Theorem 10. An (MQE)n GRW spacetime is a PFS, provided the associated
vector field U is concurrent.
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In this study, we analyze generalized quasi-Einstein spacetimes endowed with Gray’s
decomposition, as well as generalized Robertson–Walker spacetimes. It is shown that
the Ricci tensor of a generalized quasi-Einstein spacetime assumes the form of a perfect
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1. Introduction

A Lorentzian manifold is the subclass of a semi-Riemannian manifold. The index of
the Lorentzian metric g is one. A spacetime is a Lorentzian manifold Mn (n ≥ 4)
which admits a globally timelike vector field. Different types of spacetimes have
been studied in various ways, such as [4, 7, 9, 13, 15, 21, 25, 33, 34] and many others.

Lorentzian manifolds with the Ricci tensor

S = β1g + β2A ⊗ A, (1.1)

where β1, β2 are scalars and ρ is a unit timelike vector field corresponding to the
non-vanishing one-form A, that is, A(ρ) = g(ρ, ρ) = −1, are called perfect fluid

‡Corresponding author.
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spacetimes (briefly, PFS). Throughout this paper, we consider ρ is a unit timelike
vector field, which is called velocity vector field or flow vector field.

The energy–momentum tensor (briefly, EMT ) T represents the matter content
of the spacetimes in general relativity theory. In general relativity theory, the fluid
is termed perfect fluid, since it does not have the heat conduction terms [22]. The
EMT for a PFS resembles the shape [26]

T = pg + (p + σ)A ⊗ A, (1.2)

where σ stands for energy density and p stands for isotropic pressure. The velocity
vector field ρ is metrically analogous unit timelike vector field to the non-vanishing
one-form A.

Einstein’s field equations (briefly, EFE) are as follows:

S − r

2
g = κT , (1.3)

S stands for the Ricci tensor and r stands for the scalar curvature, κ is the gravi-
tational constant. According to EFE , the geometry of spacetime is determined by
matter, whereas the non-flat metric of spacetime governs the motion of matter. The
above form (1.1) of the Ricci tensor is determined from Einstein’s field equations
using (1.2).

Using (1.1) and (1.2) from (1.3) we infer that

β1 = κ

(
p − σ

2 − n

)
and β2 = κ(p + σ). (1.4)

An n-dimensional (n > 2) Lorentzian manifold is said to be a generalized
Robertson–Walker (briefly, GRW) [1] spacetime if the metric adopts the follow-
ing local structure:

ds2 = −(dζ)2 + q2(ζ)g∗u1u2
dxu1dxu2 , (1.5)

where q is a ζ-dependent function and g∗u1u2
= g∗u1u2

(xu3) are only functions of xu3

(u1, u2, u3 = 2, 3, . . . , n). Thus, a GRW spacetime can be represented as −I× q2M̄ ,
where M̄ is a Riemannian manifold of dimension (n − 1). If the dimension of M̄ is
three and of constant sectional curvature, then the spacetime becomes a Robertson–
Walker (briefly, RW) spacetime.

In 2001, Chaki [6] introduced the notion of generalized quasi-Einstein manifold.
In [11], De and Ghosh introduced the same notion in another way. According to
them, a generalized quasi-Einstein manifold (briefly, (GQE)n) is a non-flat semi-
Riemannian manifold (Mn, g) (n ≥ 3) with its Ricci tensor (non-vanishing) S of
type (0, 2) meeting the following requirements:

S(U1,V1) = γ1g(U1,V1) + γ2A(U1)A(V1) + γ3B(U1)B(V1), (1.6)

in which γ1, γ2, γ3 are nontrivial functions and A, B are non-vanishing one-forms
such that

A(U1) = g(U1, ρ), B(U1) = g(U1, μ) for all U1 and g(ρ, μ) = 0,
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where A, B are referred to as associated one-forms, while the generators of the
manifold are referred to as ρ, μ and γ1, γ2, γ3 are called associated scalars. In the
same paper, the authors proved the existence of a (GQE)n by showing that a two-
quasi-umbilical hypersurface of an Euclidean space is a (GQE)n. Several authors
continued to study generalized quasi-Einstein manifolds, especially [19, 20, 27, 32].
There is another notion of generalized quasi-Einstein manifolds in the literature. A
complete Riemannian manifold is named a generalized quasi-Einstein manifold [5]
if the Ricci tensor obeys

S(U1,V1) + ∇U1∇V1φ − ν(U1φ)(V1φ) − θg(U1,V1) = 0,

where φ being a smooth function and ν, θ ∈ R.
If the Ricci tensor fulfills the condition (1.6), a Lorentzian manifold is referred to

as generalized quasi-Einstein spacetime. The existence of such a spacetime has been
proved by De and Mallick [12]. In this case, the vector field ρ related to the one-form
A is treated as a unit timelike vector field, that is, A(ρ) = g(ρ, ρ) = −1. We will
look at generalized quasi-Einstein spacetime in this work, which is a unique kind
of spacetime. The Lorentzian setting supports the results obtained for (GQE)n.
(GQE)n spacetime is transformed into a PFS for γ3 = 0.

The conformal curvature tensor of a Lorentzian manifold (Mn, g)(n ≥ 4) is
stated as

C(U1,V1)W1 = R(U1,V1)W1 −
1

n − 2
[g(V1,W1)QU1 − g(U1,W1)QV1

+S(V1,W1)U1 − S(U1,W1)V1]

+
r

(n − 1)(n − 2)
[g(V1,W1)U1 − g(U1,W1)V1], (1.7)

Q is the Ricci operator satisfying the relation S(U1,V1) = g(QU1,V1) and r being
the scalar curvature.

From the above definition, it can be seen that

(div C)(U1,V1)W1 =
(

n − 3
n − 2

) [
{(∇U1S)(V1,W1) − (∇V1S)(U1,W1)}

− 1
2(n − 1)

{g(V1,W1)dr(U1) − g(U1,W1)dr(V1)}
]
. (1.8)

Definition 1.1 ( [28]). A vector field ρ corresponding to the associated one-form
A is said to be recurrent if

(∇U1A)(V1) = ω(U1)A(V1), (1.9)

where ω is a non-vanishing one-form.

In a series of recent studies, many manifolds were widely studied in Gray’s sub-
spaces. In [24], the authors studied GRW spacetimes in Gray’s subspaces. They
proved that such spacetimes in all Gray’s subspaces but one are perfect fluid or
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Einstein. In [18], the authors studied PFS in Gray’s decomposition. Weakly Ricci-
symmetric spacetimes under Gray’s decomposition were considered in [10]. Moti-
vated by these studies and many others, this paper is mainly organized to investigate
(GQE)n spacetimes under Gray’s decomposition subspaces, and to study (GQE)n
GRW spacetimes. The following is the outline of the paper.

After preliminaries in Sec. 3, we investigate each of the seven cases of Gray’s
decomposition of (GQE)n. The analysis of (GQE)n with GRW spacetime is pre-
sented in Sec. 4.

2. Preliminaries

At any point on the manifold, consider an orthonormal frame field and contracting
U1 and V1 in (1.6) yields

r = nγ1 − γ2 + γ3, (2.1)

which implies

dr(W1) = ndγ1(W1) − dγ2(W1) + dγ3(W1). (2.2)

Taking the covariant derivative of (1.6) gives us

(∇W1S)(U1,V1) = dγ1(W1)g(U1,V1) + dγ2(W1)A(U1)A(V1)

+ γ2[(∇W1A)(U1)A(V1) + A(U1)(∇W1A)(V1)]

+ γ3[(∇W1B)(U1)B(V1) + B(U1)(∇W1B)(V1)]

+ dγ3(W1)B(U1)B(V1). (2.3)

Setting U1 = ρ in (1.6), we have

S(V1, ρ) = (γ1 − γ2)A(V1). (2.4)

Since g(ρ, μ) = 0, (∇W1g)(ρ, μ) = 0 implies

(∇W1A)(μ) + (∇W1B)(ρ) = 0. (2.5)

3. (GQE)n Spacetimes in Gray’s Decomposition Subspaces

In [16], Gray showed that the gradient of the Ricci tensor ∇S can be decomposed
into O(n)-invariant terms (for additional information, read [3, Chap. 16]). The
decomposition of the gradient of the Ricci tensor gives O(n)-invariant subspaces.
These generated subspaces are called Gray’s decomposition subspaces. Each sub-
space has a characteristic equation that is linear in ∇S. In Gray’s trivial subspace,
the characteristic equation is ∇S = 0. Manifolds lie in trivial subspace are called
Ricci symmetric manifolds. The characteristic equation of Gray’s subspace J is
(∇U1S)(V1,W1) = δ1(U1)g(V1,W1) + δ2(V1)g(U1,W1) + δ2(W1)g(U1,V1), where
δ1(U1) = n

(n−1)(n+2)∇U1r, δ2(U1) = n−2
2(n−1)(n+2)∇U1r. A manifold belonging to sub-

space J is called Sinyukov manifolds [31]. In Gray’s subspace A, the Ricci tensor is
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Killing, that is, (∇U1S)(V1,W1) + (∇V1S)(U1,W1) + (∇W1S)(U1,V1) = 0 whereas
in Gray’s subspace B the Ricci tensor is of Codazzi type, that is, (∇U1S)(V1,W1) =
(∇W1S)(U1,V1). In Gray’s subspace J ⊕A, the tensor (S− 2rg

n+2 ) is Killing, while in
Gray’s subspace J ⊕B the tensor [S − rg

2(n−1) ] is of Codazzi type. Gray’s subspace
A⊕B is distinguished by constant scalar curvature. In this part, we will investigate
(GQE)n spacetimes in all Gray’s subspaces.

Case 1. The trivial subspace.

Gray’s trivial class contains spacetimes whose Ricci tensor is symmetric, that is,
∇S = 0. Thus, Eq. (2.3) becomes

dγ1(W1)g(U1,V1) + dγ2(W1)A(U1)A(V1) + dγ3(W1)B(U1)B(V1)

+ γ2[(∇W1A)(U1)A(V1) + A(U1)(∇W1A)(V1)]

+ γ3[(∇W1B)(U1)B(V1) + B(U1)(∇W1B)(V1)] = 0. (3.1)

Putting U1 = V1 = ρ in (3.1), we infer that

−dγ1(W1) + dγ2(W1) = 0. (3.2)

Again, putting U1 = V1 = μ in (3.1), we find

dγ1(W1) + dγ3(W1) = 0. (3.3)

Since ∇S = 0, r is constant. Therefore, by Eqs. (2.2), (3.2) and (3.3) we conclude
that

dγ1(W1) = dγ2(W1) = dγ3(W1) = 0. (3.4)

Using (3.4) in (3.1) infers

γ2[(∇W1A)(U1)A(V1) + A(U1)(∇W1A)(V1)]

+ γ3[(∇W1B)(U1)B(V1) + B(U1)(∇W1B)(V1)] = 0. (3.5)

Setting U1 = ρ, V1 = μ in (3.5), we deduce that

−γ2(∇W1A)(μ) + γ3(∇W1B)(ρ) = 0. (3.6)

Utilizing (2.5) in (3.6) we reach

(γ2 + γ3)(∇W1B)(ρ) = 0, (3.7)

which implies either γ2 + γ3 = 0 or, γ2 + γ3 �= 0.
If γ2 + γ3 �= 0, then from (3.7) we get

(∇W1B)(ρ) = 0. (3.8)

Replacing U1 by ρ in (3.5) and using (3.8), we obtain

γ2(∇W1A)(V1) = 0. (3.9)

Since in a (GQE)n, γ2 �= 0 and hence (∇W1A)(V1) = 0, that is, g(V1,∇W1ρ) = 0,

which demonstrates that ρ is parallel.
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If γ2 + γ3 = 0, then (3.5) gives

γ3[(∇W1A)(U1)A(V1) + A(U1)(∇W1A)(V1)

− (∇W1B)(U1)B(V1) − B(U1)(∇W1B)(V1)] = 0. (3.10)

Since in a (GQE)n, γ3 �= 0 and hence the foregoing equation reduces to

[(∇W1A)(U1)A(V1) + A(U1)(∇W1A)(V1)

− (∇W1B)(U1)B(V1) − B(U1)(∇W1B)(V1)] = 0. (3.11)

Contracting the previous Eq. (3.11) entails that

divρA(V1) + (∇ρA)(V1) − divμB(V1) − (∇μB)(V1) = 0. (3.12)

Setting U1 = W1 = ρ in (3.11), we infer

(∇ρA)(V1) = −(∇ρB)(ρ)B(V1). (3.13)

Replacing U1 and W1 by μ in (3.11) implies

(∇μB)(V1) = (∇μA)(μ)A(V1). (3.14)

In virtue of (3.12)–(3.14), we acquire that

B(V1) = α1A(V1), (3.15)

where α1 = divρ−(∇μA)(μ)
divμ+(∇ρB)(ρ) . Equations (1.6) and (3.15) give us

S(U1,V1) = γ1g(U1,V1) + (γ2 + γ3α
2
1)A(U1)A(V1). (3.16)

This represents a PFS.
Also, from Eqs. (2.5) and (3.6) we obtain

(γ2 + γ3)(∇W1A)(μ) = 0, (3.17)

which implies either γ2 + γ3 = 0 or, γ2 + γ3 �= 0.
If γ2+γ3 = 0, then from (3.16) we conclude that the spacetime becomes a PFS.
If γ2 + γ3 �= 0, then from (3.17) we get

(∇W1A)(μ) = 0. (3.18)

Putting U1 = μ in (3.5) and using (3.18), we have

γ3(∇W1B)(V1) = 0. (3.19)

Since in a (GQE)n, γ3 �= 0 and hence (∇W1B)(V1) = 0, that is, g(V1,∇W1μ) = 0,

which implies that μ is parallel. But, by the hypothesis ρ and μ are orthogonal.
Hence, ρ and μ must be zero vector fields. But, by the hypothesis, ρ and μ are
nonzero. This case cannot occur. Therefore, γ2 + γ3 = 0.

As a result, we are able to state the result.

Theorem 3.1. A (GQE)n spacetime belonging to Gray’s trivial subspace is a
PFS.
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Case 2. Gray’s subspace J .

The gradient of the Ricci tensor in Gray’s subspace J has the form

(∇U1S)(V1,W1)

= δ1(U1)g(V1,W1) + δ2(V1)g(U1,W1) + δ2(W1)g(U1,V1). (3.20)

Using (2.3) in (3.20), we arrive at

dγ1(U1)g(V1,W1) + dγ2(U1)A(V1)A(W1) + dγ3(U1)B(V1)B(W1)

+ γ2[(∇U1A)(V1)A(W1) + A(V1)(∇U1A)(W1)]

+ γ3[(∇U1B)(V1)B(W1) + B(V1)(∇U1B)(W1)]

=
n

(n − 1)(n + 2)
g(V1,W1)∇U1r +

n − 2
2(n − 1)(n + 2)

g(U1,W1)∇V1r

+
n − 2

2(n − 1)(n + 2)
g(U1,V1)∇W1r. (3.21)

Setting V1 = ρ, W1 = μ in (3.21), we obtain

−γ2(∇U1A)(μ) + γ3(∇U1B)(ρ)

=
(n − 2)

2(n − 1)(n + 2)
[dr(ρ)B(U1) + dr(μ)A(U1)]. (3.22)

Equations (2.5) and (3.22) together yield

−(γ2 + γ3)(∇U1A)(μ) =
(n − 2)

2(n − 1)(n + 2)
[dr(ρ)B(U1) + dr(μ)A(U1)]. (3.23)

We now impose the condition that the velocity vector field is recurrent. Using this
Eqs. (1.9) and (3.23) turn into

B(U1) = −dr(μ)
dr(ρ)

A(U1), (3.24)

provided the scalar curvature is non-constant. Adopting (1.6) and (3.24), we obtain

S(U1,V1) = γ1g(U1,V1) + [γ2 + γ3

{
dr(μ)
dr(ρ)

}2

]A(U1)A(V1). (3.25)

Thus, we might conclude that

Theorem 3.2. A (GQE)n spacetime with non-constant scalar curvature belong-
ing to Gray’s subspace J represents a PFS, provided the velocity vector field is
recurrent.

Case 3. Gray’s subspace A.

Spacetimes in Gray’s subspace A are characterized by Killing Ricci tensor, that is,

(∇U1S)(V1,W1) + (∇V1S)(U1,W1) + (∇W1S)(U1,V1) = 0. (3.26)
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In light of (2.3) and (3.26) we have

dγ1(U1)g(V1,W1) + dγ2(U1)A(V1)A(W1) + dγ3(U1)B(V1)B(W1)

+ dγ1(V1)g(U1,W1) + dγ2(V1)A(U1)A(W1) + dγ3(V1)B(U1)B(W1)

+ dγ1(W1)g(U1,V1) + dγ2(W1)A(U1)A(V1) + dγ3(W1)B(U1)B(V1)

+ γ2[{(∇U1A)(V1) + (∇V1A)(U1)}A(W1) + {(∇U1A)(W1)

+ (∇W1A)(U1)}A(V1) + {(∇V1A)(W1) + (∇W1A)(V1)}A(U1)]

+ γ3[{(∇U1B)(V1) + (∇V1B)(U1)}B(W1) + {(∇U1B)(W1)

+ (∇W1B)(U1)}B(V1) + {(∇V1B)(W1) + (∇W1B)(V1)}B(U1)]

= 0. (3.27)

Let us assume that the unit timelike vector field ρ and spacelike vector field μ are
Killing vector field. Then we have

(£ρg)(U1,V1) = 0 (3.28)

and

(£μg)(U1,V1) = 0, (3.29)

where £ stands for the Lie derivative.
In view of (3.28) and (3.29) we get

g(∇U1ρ,V1) + g(∇V1ρ,U1) = 0 (3.30)

and

g(∇U1μ,V1) + g(∇V1μ,U1) = 0. (3.31)

Since g(∇U1ρ,V1) = (∇U1A)(V1) and g(∇U1μ,V1) = (∇U1B)(V1), Eqs. (3.30)
and (3.31) turn into

(∇U1A)(V1) + (∇V1A)(U1) = 0 (3.32)

and

(∇U1B)(V1) + (∇V1B)(U1) = 0. (3.33)

Similarly, we infer that

(∇U1A)(W1) + (∇W1A)(U1) = 0, (3.34)

(∇W1A)(V1) + (∇V1A)(W1) = 0, (3.35)

(∇U1B)(W1) + (∇W1B)(U1) = 0 (3.36)

and

(∇W1B)(V1) + (∇V1B)(W1) = 0, (3.37)

for all U1, V1, W1.
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Utilizing Eqs. (3.32)–(3.37) in (3.27), we reach

dγ1(U1)g(V1,W1) + dγ2(U1)A(V1)A(W1) + dγ3(U1)B(V1)B(W1)

+ dγ1(V1)g(U1,W1) + dγ2(V1)A(U1)A(W1) + dγ3(V1)B(U1)B(W1)

+ dγ1(W1)g(U1,V1) + dγ2(W1)A(U1)A(V1)

+ dγ3(W1)B(U1)B(V1) = 0. (3.38)

Setting V1 = ρ, W1 = μ in (3.38), we obtain

B(U1) = α2A(U1), (3.39)

where α2 = dγ2(μ)−dγ1(μ)
dγ1(ρ)+dγ3(ρ) , provided γ1 + γ3 �= constant.

From (1.6) and (3.39), it follows that

S(U1,V1) = γ1g(U1,V1) + (γ2 + γ3α
2
2)A(U1)A(V1). (3.40)

This leads to the following results.

Theorem 3.3. A (GQE)n spacetime belonging to Gray’s subspace A becomes a
PFS, provided the generators are Killing and the sum of the associated scalars γ1

and γ3 is non-constant.

Also, Eqs. (1.3) and (3.26) reflect that the EMT is Killing, i.e.

(∇U1T )(V1,W1) + (∇V1T )(U1,W1) + (∇W1T )(U1,V1) = 0,

for all U1,V1,W1 ∈ χ(M).
In [30], Sharma and Ghosh describe the following outcome.

Theorem A. Let (M, g) be a PFS with Killing EMT . Then

(i) the flow of spacetime is geodesic and the spacetime is expansion-free and shear-
free, but not vorticity-free and

(ii) the spacetime admits constant energy density and pressure.

Therefore, by Theorem A we conclude the following.

Corollary 3.1. Let a (GQE)n spacetime belong to the subspace A and the gener-
ators ρ and μ are Killing vector fields. Then

(i) the flow of spacetime is geodesic and the spacetime is expansion-free and shear-
free, but not vorticity-free and

(ii) the spacetime admits constant energy density and pressure, provided the sum of
the associated scalars γ1 and γ3 is non-constant.

Case 4. Gray’s subspace B.

The Ricci tensor of a spacetime belonging to Gray’s subspace B obeys

(∇U1S)(V1,W1) = (∇W1S)(U1,V1). (3.41)
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In view of (2.3) and (3.41) we acquire

dγ1(U1)g(V1,W1) + dγ2(U1)A(V1)A(W1) + dγ3(U1)B(V1)B(W1)

− dγ1(W1)g(U1,V1) − dγ2(W1)A(U1)A(V1) − dγ3(W1)B(U1)B(V1)

+ γ2[(∇U1A)(V1)A(W1) + A(V1)(∇U1A)(W1) − (∇W1A)(U1)A(V1).

−A(U1)(∇W1A)(V1)] + γ3[(∇U1B)(V1)B(W1) + B(V1)(∇U1B)(W1).

− (∇W1B)(U1)B(V1) − B(U1)(∇W1B)(V1)] = 0. (3.42)

Setting V1 = ρ, W1 = μ in (3.42), we find

[dγ1(μ) − dγ2(μ)]A(U1) − γ2(∇μA)(U1) + γ3B(U1)(∇μB)(ρ)

= −γ2(∇U1A)(μ) + γ3(∇U1B)(ρ). (3.43)

Again, setting U1 = ρ, V1 = W1 = μ in (3.42), we deduce that

dγ1(ρ) + dγ3(ρ) + γ2(∇μA)(μ) = γ3(∇μB)(ρ). (3.44)

By virtue of (2.5), (3.43) and (3.44) we arrive at

[dγ1(μ) − dγ2(μ)]A(U1) + [dγ1(ρ) + dγ3(ρ) + γ2(∇μA)(μ)]B(U1)

+ (γ2 + γ3)(∇U1A)(μ) − γ2(∇μA)(U1) = 0. (3.45)

Adopting (1.9) in (3.45), we can derive

B(U1) = α3A(U1), (3.46)

where α3 = dγ2(μ)+γ2ω(μ)−dγ1(μ)
dγ1(ρ)+dγ3(ρ) , provided γ1 + γ3 �= constant.

Equations (1.6) and (3.46) give

S(U1,V1) = γ1g(U1,V1) + (γ2 + γ3α
2
3)A(U1)A(V1). (3.47)

Thus, we write the following theorem.

Theorem 3.4. A (GQE)n spacetime belonging to Gray’s subspace B reduces to a
PFS, provided the velocity vector field is recurrent and the sum of the associated
scalars γ1 and γ3 is non-constant.

A Lorentzian manifold is named a Yang pure space [17] whose metric satisfies
Yang’s equation:

(∇U1S)(V1,W1) = (∇V1S)(U1,W1).

Mantica and Molinari [23] established the following result for n ≥ 4.

Proposition 3.1. A perfect fluid Yang pure space of dim. n ≥ 4 with p + σ �= 0 is
a GRW spacetime.

In contrast to Eq. (3.47) we notice κ(p−σ
2−n ) = γ1 and κ(p + σ) = γ2 + γ3α

2
3,

that is, p + σ �= 0 for γ2 �= −γ3α
2
3.
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In view of this observation, we can conclude as follows.

Corollary 3.2. A (GQE)n spacetime belonging to Gray’s subspace B is a GRW
spacetime, provided the velocity vector field is recurrent and the associated scalars
satisfies the relations γ2 + γ3α

2
3 �= 0 and γ1 + γ3 �= constant.

Also, Eqs. (1.3) and (3.41) reflect that T satisfies

(∇U1T )(V1,W1) = (∇V1T )(U1,W1),

for all U1, V1, W1 ∈ χ(M).
However, it has been established [14] that if the EMT is of Codazzi type in a

PFS, then the fluid is of vanishing shear and vorticity, and its velocity vector field
becomes hypersurface orthogonal.

Barnes [2] observed that the probable local cosmological structures of the PFS
are of Petrov types I, D or O if the PFS is of vanishing shear and vorticity, the
velocity vector field ρ is hypersurface orthogonal and the constant energy density
over a hypersurface orthogonal to ρ.

As a result of the foregoing facts, we arrive at the following.

Corollary 3.3. If a (GQE)n spacetime belongs to Gray’s subspace B, then the
probable local cosmological structures of the spacetime are of Petrov types I, D or
O, provided the velocity vector field is recurrent and the sum of the associated scalars
γ1 and γ3 is non-constant.

Case 5. Gray’s subspace J ⊕A.

Gray’s subspace J⊕A possesses a spacetime whose Ricci tensor is conformal Killing,
that is,

(∇U1S)(V1,W1) + (∇V1S)(U1,W1) + (∇W1S)(U1,V1)

=
2dr(U1)
(n + 2)

g(V1,W1) +
2dr(V1)
(n + 2)

g(U1,W1) +
2dr(W1)
(n + 2)

g(U1,V1). (3.48)

The use of (2.3) and (3.48) implies

dγ1(U1)g(V1,W1) + dγ2(U1)A(V1)A(W1) + dγ3(U1)B(V1)B(W1)

+ dγ1(V1)g(U1,W1) + dγ2(V1)A(U1)A(W1) + dγ3(V1)B(U1)B(W1)

+ dγ1(W1)g(U1,V1) + dγ2(W1)A(U1)A(V1) + dγ3(W1)B(U1)B(V1)

+ γ2[{(∇U1A)(V1) + (∇V1A)(U1)}A(W1) + {(∇U1A)(W1)

+ (∇W1A)(U1)}A(V1) + {(∇V1A)(W1) + (∇W1A)(V1)}A(U1)]

+ γ3[{(∇U1B)(V1) + (∇V1B)(U1)}B(W1) + {(∇U1B)(W1)

+ (∇W1B)(U1)}B(V1) + {(∇V1B)(W1) + (∇W1B)(V1)}B(U1)]

=
2dr(U1)
(n + 2)

g(V1,W1) +
2dr(V1)
(n + 2)

g(U1,W1) +
2dr(W1)
(n + 2)

g(U1,V1). (3.49)
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Utilizing Eqs. (3.32)–(3.37) in (3.49), we reach

dγ1(U1)g(V1,W1) + dγ2(U1)A(V1)A(W1) + dγ3(U1)B(V1)B(W1)

+ dγ1(V1)g(U1,W1) + dγ2(V1)A(U1)A(W1) + dγ3(V1)B(U1)B(W1)

+ dγ1(W1)g(U1,V1) + dγ2(W1)A(U1)A(V1) + dγ3(W1)B(U1)B(V1)

=
2dr(U1)
(n + 2)

g(V1,W1) +
2dr(V1)
(n + 2)

g(U1,W1) +
2dr(W1)
(n + 2)

g(U1,V1). (3.50)

Setting V1 = ρ, W1 = μ in (3.50), we get

B(U1) = α4A(U1), (3.51)

where α4 = (n−2)dγ1(μ)+ndγ2(μ)+2dγ3(μ)
−(n−2)dγ1(ρ)+2dγ2(ρ)+ndγ3(ρ) , provided (2−n)γ1 +2γ2+nγ3 �= constant.

From (1.6) and (3.51), it follows that

S(U1,V1) = γ1g(U1,V1) + (γ2 + γ3α
2
4)A(U1)A(V1). (3.52)

Thus, we can conclude the following result.

Theorem 3.5. A (GQE)n spacetime of class type J ⊕A is a PFS, provided the
generators are Killing and the associated scalars satisfies the relation (2 − n)γ1 +
2γ2 + nγ3 �= constant.

Case 6. Gray’s subspace J ⊕ B.

In Gray’s subspace J ⊕ B, the tensor [S − rg
2(n−1) ] is of Codazzi type, that is,

∇U1

[
S(V1,W1) −

r

2(n − 1)
g(V1,W1)

]

= ∇V1

[
S(U1,W1) −

r

2(n − 1)
g(U1,W1)

]
, (3.53)

which gives div C = 0. So, we arrive
1

2(n − 1)
[dr(U1)g(V1,W1) − dr(W1)g(U1,V1)]

= (∇U1S)(V1,W1) − (∇W1S)(U1,V1). (3.54)

Equations (2.3) and (3.54) together yield
1

2(n − 1)
[dr(U1)g(V1,W1) − dr(W1)g(U1,V1)]

= dγ1(U1)g(V1,W1) + dγ2(U1)A(V1)A(W1) + dγ3(U1)B(V1)B(W1)

− dγ1(W1)g(U1,V1) − dγ2(W1)A(U1)A(V1) − dγ3(W1)B(U1)B(V1)

+ γ2[(∇U1A)(V1)A(W1) + A(V1)(∇U1A)(W1) − (∇W1A)(U1)A(V1)

−A(U1)(∇W1A)(V1)] + γ3[(∇U1B)(V1)B(W1) + B(V1)(∇U1B)(W1)

− (∇W1B)(U1)B(V1) − B(U1)(∇W1B)(V1)]. (3.55)
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Substituting V1 by ρ and W1 by μ in (3.55), we have

γ2(∇μA)(U1) − γ3B(U1)(∇μB)(ρ) +
1

2(n − 1)
dr(μ)A(U1)

− γ2(∇U1A)(μ) + γ3(∇U1B)(ρ) + [dγ2(μ) − dγ1(μ)]A(U1) = 0. (3.56)

Putting U1 = ρ, V1 = W1 = μ in (3.55), we obtain

γ3(∇μB)(ρ) = dγ1(ρ) + dγ3(ρ) + γ2(∇μA)(μ) − dr(ρ)
2(n − 1)

. (3.57)

Equations (2.5), (3.56) and (3.57) turn into

[dγ2(μ) − dγ1(μ)]A(U1) − (γ2 + γ3)(∇U1A)(μ) +
dr(μ)

2(n − 1)
A(U1)

+ γ2(∇μA)(U1) −
[
dγ1(ρ) + dγ3(ρ) + γ2(∇μA)(μ) − dr(ρ)

2(n − 1)

]

×B(U1) = 0. (3.58)

Adopting (1.9) in (3.58) we get

B(U1) = α5A(U1), (3.59)

where α5 = (2−n)dγ1(μ)+(2n−3)dγ2(μ)+dγ3(μ)+2(n−1)γ2ω(μ)
(n−2)dγ1(ρ)+dγ2(ρ)+(2n−3)dγ3(ρ) , provided (n− 2)γ1 + γ2 +

(2n − 3)γ3 �= constant.
Using (3.59) in (1.6) we infer

S(U1,V1) = γ1g(U1,V1) + (γ2 + γ3α
2
5)A(U1)A(V1). (3.60)

Hence, we write the following.

Theorem 3.6. A (GQE)n spacetime of class type J ⊕ B is a PFS, provided
the flow vector field is recurrent and the associated scalars satisfies the relation
(n − 2)γ1 + γ2 + (2n − 3)γ3 �= constant.

In [29], Sharma proved the following.

Theorem B. The conformal curvature tensor of a relativistic perfect fluid space-
time M is divergence-free if and only if M is shear-free, irrotational, and its energy
density is constant over the space-like hypersurface orthogonal to the four-velocity
vector.

Therefore, from Theorem 3.6 and Theorem B, we can state the following.

Corollary 3.4. If a (GQE)n spacetime belongs to Gray’s subspace J ⊕ B, then
the spacetime is shear-free, irrotational, and its energy density is constant over
the space-like hypersurface orthogonal to the four-velocity vector, provided the flow
vector field is recurrent and the associated scalars satisfies the relation (n− 2)γ1 +
γ2 + (2n − 3)γ3 �= constant.
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Case 7. Gray’s subspace A⊕ B.

Spacetimes belong to Gray’s subspace A⊕B are characterized by having a constant
scalar curvature, that is, ∇r = 0. Therefore, from (1.8), we reach

(div C)(U1,V1)W1 =
(

n − 3
n − 2

)
[(∇U1S) (V1,W1) − (∇V1S)(U1,W1)] , (3.61)

which means that the divergence of the conformal curvature tensor vanishes if and
only if the Ricci tensor is of Codazzi type.

Therefore, we conclude the following.

Theorem 3.7. If a (GQE)n spacetime belongs to Gray’s subspace A⊕B, then the
subspaces B and J ⊕ B coincide.

4. (GQE)n GRW Spacetimes

In this part, we assume that (GQE)n spacetime is a GRW spacetime. Mantica
and Molinari [23] proved that a Lorentzian manifold of dimension n ≥ 3 is a GRW
spacetime if and only if it admits a unit timelike torse-forming vector field ρ:

(∇U1A)(V1) = Ψ [g(U1,V1) + A(U1)A(V1)] (4.1)

and

S(U1, ρ) = λg(U1, ρ), (4.2)

for some smooth functions Ψ(�= 0) and λ on M. Now,

(∇U1S)(V1, ρ) = U1S(V1, ρ) − S(∇U1V1, ρ) − S(V1,∇U1ρ). (4.3)

Using (4.1) and (4.2) in (4.3), we arrive at

(∇U1S)(V1, ρ) = (U1λ)A(V1) + λΨg(U1,V1) − ΨS(U1,V1), (4.4)

where (U1λ) = g(U1, gradλ).
Differentiating (2.4) covariantly and applying (4.1) we reach

(∇U1S)(V1, ρ) = [dγ1(U1) − dγ2(U1)]A(V1)

+ Ψ(γ1 − γ2)[g(U1,V1) + A(U1)A(V1)]. (4.5)

Combining Eqs. (4.4) and (4.5), we reveal

[dγ1(U1) − dγ2(U1)]A(V1) + Ψ(γ1 − γ2)[g(U1,V1) + A(U1)A(V1)]

= (U1λ)A(V1) + λΨg(U1,V1) − ΨS(U1,V1). (4.6)

Setting V1 = ρ in (4.6) and using A(ρ) = −1, we turn up

(U1λ) = dγ1(U1) − dγ2(U1). (4.7)

Contracting U1 and V1 in (4.6) reveals that

(ρλ) + nλΨ − rΨ = dγ1(ρ) − dγ2(ρ) + (n − 1)Ψ(γ1 − γ2). (4.8)
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Equations (2.1), (4.7) and (4.8) imply

λ =
(2n − 1)γ1 − nγ2 + γ3

n
. (4.9)

From (4.2) and (4.9), we can derive

S(U1, ρ) =
[
(2n − 1)γ1 − nγ2 + γ3

n

]
g(U1, ρ). (4.10)

This means that (2n−1)γ1−nγ2+γ3
n is an eigenvalue corresponding to the eigenvector

ρ. In light of (4.6), (4.7) and (4.9), we acquire

S(U1,V1) =
[
(n − 1)γ1 + γ3

n

]
g(U1,V1) − (γ1 − γ2)A(U1)A(V1). (4.11)

This leads to the following result.

Theorem 4.1. A (GQE)n GRW spacetime represents a PFS.

According to EFE without cosmological constant, the Ricci tensor becomes

S(U1,V1) = κ

(
p − σ

2 − n

)
g (U1,V1) + κ(p + σ)A(U1)A(V1). (4.12)

From (4.11) and (4.12), it follows that

κ

(
p − σ

2 − n

)
=

(n − 1)γ1 + γ3

n
(4.13)

and

κ(p + σ) = γ2 − γ1. (4.14)

It is known that [23] a four-dimensional perfect fluid GRW spacetime is a RW
spacetime. Guilfoyle and Nolan [17] proved that a four-dimensional perfect fluid
spacetime with p + σ �= 0 is a Yang pure space if and only if it is a RW spacetime.

Since γ1 �= γ2 in general, so we obtain p + σ �= 0.

This leads to the following corollary.

Theorem 4.2. A (GQE)4 GRW spacetime is a Yang pure space.

If γ1 = γ2, then we infer that p + σ = 0. This represents a dark matter era [8].
Hence, we conclude the result as follows.

Corollary 4.1. A (GQE)n GRW spacetime represents a dark matter era for γ1 =
γ2.

For n = 4, Eqs. (4.13) and (4.14) give us
p − σ

p + σ
=

3γ1 + γ3

2(γ1 − γ2)
. (4.15)

If γ2 = 4γ1 +γ3, then (4.15) entails that σ = 3p. This represents a radiation era
[8]. For 4γ2 = 7γ1 + γ3, the foregoing equation (4.15) assumes the form σ +3p = 0.

It is observed that the matter with p
σ = − 1

3 represents quintessence phase.
Hence, we have the following two corollaries.
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Corollary 4.2. A (GQE)4 GRW spacetime represents a radiation era for γ2 =
4γ1 + γ3.

Corollary 4.3. A (GQE)4 GRW spacetime represents quintessence phase for
4γ2 = 7γ1 + γ3.
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[20] S. Güler and S. A. Demirbağ, A study of generalized quasi-Einstein spacetimes with
applications in general relativity, Int. J. Theor. Phys. 55 (2016) 548–562.
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A COMPARATIVE STUDY OF N(k)-QUASI EINSTEIN MANIFOLDS

WITH CONHARMONIC CURVATURE TENSOR
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Abstract. The present paper deals with study of N(k)-quasi Einstein manifolds which

satisfies the curvature conditions L (ξ,X) · L = 0, L (ξ,X) · V = 0, L (ξ,X) ·W2 = 0 and

W2 (ξ,X) ·L = 0, where L, V and W2 denotes the conharmonic curvature tensor, the con-
circular curvature tensor and W2-curvature tensor respectively. Finally, an example has

been constructed to verify various theorems related to the study of N(k)-quasi Einstein

manifold.

1. INTRODUCTION

An n-dimensional semi-Riemannian or Riemannian manifold (Mn, g), n > 2, is called
an Einstein manifold if its Ricci tensor S satisfies the criteria

S =
r

n
g,

where r denotes the scalar curvature of (Mn, g). We can also say an Einstein manifold is
a Riemannian or pseudo Riemannian manifold whose Ricci tensor is proportional to the
metric. The notion of quasi-Einstein manifold was introduced by M.C. Chaki and R.K.
Maity [2]. A non-flat Riemannian manifold (Mn, g), n ≥ 3, is a quasi-Einstein manifold if
its Ricci tensor S satisfies the criteria

S (X,Y ) = ag (X,Y ) + bη (X) η (Y ) (1.1)

and is not identically zero, where a and b are smooth functions of which b 6= 0 and η is a
non-zero 1-form such that

g (X, ξ) = η (X) , g (ξ, ξ) = η (ξ) = 1, (1.2)

for all vector field X.
We call η as associated 1-form and ξ as generator of the manifold, which is also an unit

vector field. The study of quasi-Einstein manifolds was further continued by Guha [11], De
and Ghosh [8], Bejan [1], De and De [6], Debnath and Konar [10], Jana and Shaikh [15] and
many others.

Let R denotes the Riemannian curvature tensor of a Riemannian manifold M . The
k-nullity distribution N(k) [22] of a Riemannian manifold M is defined by

N(k) : p −→ Np (k) = {Z ∈ TpM : R (X,Y )Z = k [g (Y,Z)X − g (X,Z)Y ]} ,
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where k is a smooth function. M.M. Tripathi and Jeong Sik-Kim [24] introduced the notion
of N(k)-quasi Einstein manifolds which is defined as follows: If the generator ξ belongs to
the k-nullity distribution N(k), then a quasi-Einstein manifold (Mn, g) is called N(k)-quasi
Einstein manifold.

Lemma 1.1 ([19]). In an n-dimensional N(k)-quasi Einstein manifold it follows that

k =
a+ b

n− 1
.

In [24], Tripathi and Kim proved that an n-dimensional conformally flat quasi-Einstein

manifold is an N
( a+ b

n− 1

)
-quasi Einstein manifold and in particular a 3-dimensional quasi-

Einstein manifold is an N
(a+ b

2

)
-quasi Einstein manifold. Various geometrical properties

of N(k)-quasi Einstein manifolds have been discussed by Taleshian and Hosseinzadeh [13,21],
De, De and Gazi [7], Yang and Xu [25], Crâşmăreanu [5], Mallick and De [16], Chaubey [3],
Chaubey, Bhaishya and Siddiqi [4] and many others. The above works inspired me to write
up a study on this type of manifold.

In 1957, Ishii [14] defined the conharmonic curvature tensor L on a Riemannian manifold
as

L (X,Y )Z = R (X,Y )Z − 1

n− 2
[S (Y,Z)X − S (X,Z)Y + g (Y,Z)QX − g (X,Z)QY ] ,

where Q is the Ricci operator, i.e., S (X,Y ) = g (QX,Y ), for all X,Y.
The concircular curvature tensor V in a Riemannian manifold (Mn, g) is defined by ([26], [27])

V (X,Y )Z = R (X,Y )Z − r

n (n− 1)
[g (Y, Z)X − g (X,Z)Y ] ,

where r is the scalar curvature.
In [20], Pokhariyal and Mishra defined the W2-curvature tensor by

W2 (X,Y )Z = R (X,Y )Z − 1

n− 1
[g (Y,Z)QX − g (X,Z)QY ] ,

where Q is the Ricci operator.
The derivation conditionsR (ξ,X)·R = 0 andR (ξ,X)·S = 0 have been discussed in [24],

where R and S denotes the curvature tensor and Ricci tensor of the manifold respectively. In
[19], Özgür and Tripathi studied the derivation conditions V (ξ,X)·V = 0 and V (ξ,X)·R = 0
on N(k)-quasi Einstein manifolds, where V denotes the concircular curvature tensor. In [17],

Özgür studied the conditions R (ξ,X) · P = 0, P (ξ,X) · S = 0 and P (ξ,X) · P = 0, for
an N(k)-quasi Einstein manifolds, where P denotes the projective curvature tensor and
some physical examples of N(k)-quasi Einstein manifold are given. Again, in 2008, zgr and
Sular [18] continued the study of N(k)-quasi Einstein manifolds satisfying the conditions
R (ξ,X) · C = 0 and R (ξ,X) · C∗ = 0, where C and C∗ denotes the Weyl conformal and
quasi-conformal curvature tensors, respectively. In 2011, Taleshian and Hosseinzadeh [21]
continued the study of N(k)-quasi Einstein manifolds with conditions R (ξ,X) · L = 0,
L (ξ,X) · S = 0, P (ξ,X) · L = 0, R (ξ,X) · P∗ = 0 and P∗ (ξ,X) · S = 0, where L, P and
P∗ denotes the conharmonic curvature tensor, the projective curvature tensor and pseudo
projective curvature tensor, respectively.
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After studying and analyzing the above mentioned papers and ( [23], [9]), we got mo-
tivated to work in this area. Recently, in the paper [12] we have studied generalized Quasi-
Einstein manifolds satisfying certain vector fields. In the present work we have tried to
develop a new concept. This paper is organized as follows: After discussing preliminaries in
Section 3, we have studied that an N(k)-quasi Einstein manifold satisfies L (ξ,X) · L = 0.
Section 4 is concerned with an N(k)-quasi Einstein manifold satisfies L (ξ,X) · V = 0. In
the next two sections, we study an N(k)-quasi Einstein manifold satisfies L (ξ,X) ·W2 = 0
and W2 (ξ,X) ·L = 0 respectively. Finally, we construct an example of N(k)-quasi Einstein
manifold to verify Theorem 3.1, Theorem 5.1 and Theorem 6.1.

2. PRELIMINARIES

From (1.1) and (1.2) it follows that

r = na+ b, QX = aX + bη (X) ξ and S (X, ξ) = k (n− 1) η (X) ,

where r is the scalar curvature and Q is the Ricci operator.
In an n-dimensional N(k)-quasi Einstein manifold M, the conharmonic curvature tensor

L takes the form

L (X,Y )Z =
nb− na− 2b

(n− 1) (n− 2)
[g (Y, Z)X − g (X,Z)Y ]− b

n− 2
[η (Y ) η (Z)X − η (X) η (Z)Y

+g (Y,Z) η (X) ξ − g (X,Z) η (Y ) ξ] .

Consequently, we have

L (ξ, Y )Z = − na+ b

(n− 1) (n− 2)
[g (Y, Z) ξ − η (Z)Y ] , (2.1)

L (X,Y, Z,W ) = g (L (X,Y )Z,W )

=
nb− na− 2b

(n− 1) (n− 2)
[g (Y, Z) g (X,W )− g (X,Z) g (Y,W )]

− b

n− 2
[g (X,W ) η (Y ) η (Z)− g (Y,W ) η (X) η (Z)

+g (Y,Z) η (X) η (W )− g (X,Z) η (Y ) η (W )] , (2.2)

η (L (X,Y )Z) = − na+ b

(n− 1) (n− 2)
[g (Y, Z) η (X)− g (X,Z) η (Y )] , (2.3)

η (L (X,Y ) ξ) = 0,

η (L (X, ξ)Z) = − na+ b

(n− 1) (n− 2)
[η (X) η (Z)− g (X,Z)] ,

η (L (ξ, Y )Z) = − na+ b

(n− 1) (n− 2)
[g (Y, Z)− η (Y ) η (Z)] , (2.4)

for all vector fields X, Y , Z, W on M .
Also the concircular curvature tensor V in an n-dimensional N(k)-quasi Einstein man-

ifold satisfies the following relations:

V (X,Y )Z =
b

n
[g (Y,Z)X − g (X,Z)Y ] , (2.5)

V (X,Y ) ξ =
b

n
[η (Y )X − η (X)Y ] ,
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V (X, ξ)Z =
b

n
[η (Z)X − g (X,Z) ξ] ,

V (ξ, Y )Z =
b

n
[g (Y,Z) ξ − η (Z)Y ] , (2.6)

V (X,Y, Z,W ) = g (V (X,Y )Z,W ) =
b

n
[g (Y,Z) g (X,W )− g (X,Z) g (Y,W )] ,

η (V (X,Y )Z) =
b

n
[g (Y,Z) η (X)− g (X,Z) η (Y )] , (2.7)

for all vector fields X, Y , Z, W on M .
Again in an n-dimensional N(k)-quasi Einstein manifold M, the W2-curvature tensor

satisfies:

W2 (X,Y )Z =
b

n− 1
[g (Y,Z)X − g (X,Z)Y + g (X,Z) η (Y ) ξ − g (Y,Z) η (X) ξ] ,

W2 (ξ, Y )Z =
b

n− 1
[η (Z) η (Y ) ξ − η (Z)Y ] , (2.8)

W2 (X,Y, Z, U) = g (W2 (X,Y )Z,U)

=
b

n− 1
[g(Y,Z)g(X,U)− g(X,Z)g(Y,U) + g(X,Z)η(Y )η(U)

−g(Y, Z)η(X)η(U)] (2.9)

η(W2(X,Y )Z) = 0, (2.10)

for all vector fields X, Y , Z, U on M.

3. N(K)-QUASI EINSTEIN MANIFOLD SATISFYING L (ξ,X) · L = 0

In this section we consider an n-dimensional N(k)-quasi Einstein manifold M satisfying
the condition (L (ξ,X) · L) (Y,Z)W = 0.

Theorem 3.1. An n-dimensional N(k)-quasi Einstein manifold satisfies the condition
L (ξ,X) · L = 0 if and only if the scalar curvature is zero.

Proof. Let us assume that an n-dimensional N(k)-quasi Einstein manifold M satisfying the
condition (L (ξ,X) · L) (Y,Z)W = 0. Then we have

L (ξ,X)L (Y,Z)W − L (L (ξ,X)Y,Z)W − L (Y,L (ξ,X)Z)W − L (Y,Z)L (ξ,X)W = 0.
(3.1)

Using (2.1) in (3.1) we have

(na+ b) [L (Y,Z,W,X) ξ − η (L (Y, Z)W )X − g (X,Y )L (ξ, Z)W + η (Y )L (X,Z)W
−g (X,Z)L (Y, ξ)W + η (Z)L (Y,X)W −g (X,W )L (Y, Z) ξ + η (W )L (Y, Z)X] = 0.

Then either na+ b = 0 or,

L (Y,Z,W,X) ξ − η (L (Y,Z)W )X − g (X,Y )L (ξ, Z)W + η (Y )L (X,Z)W

− g (X,Z)L (Y, ξ)W + η (Z)L (Y,X)W − g (X,W )L (Y,Z) ξ + η (W )L (Y,Z)X = 0.
(3.2)
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Taking the inner product on both sides of (3.2) with ξ we get

L (Y, Z,W,X)− η (L (Y, Z)W ) η (X)− g (X,Y ) η (L (ξ, Z)W ) + η (Y ) η (L (X,Z)W )

− g (X,Z) η (L (Y, ξ)W ) + η (Z) η (L (Y,X)W )− g (X,W ) η (L (Y,Z) ξ)

+ η (W ) η (L (Y,Z)X) = 0. (3.3)

Now using the equations (2.2) to (2.4) in (3.3) we have

b [g (Y,X) η (Z) η (W )− g (Z,X) η (Y ) η (W ) + g (Z,W ) η (Y ) η (X)

− g (Y,W ) η (Z) η (X) +g (X,Z) g (Y,W )− g (X,Y ) g (Z,W )] = 0.

In an N(k)-quasi Einstein manifold b 6= 0. So we obtain the following:

g (Y,X) η (Z) η (W )− g (Z,X) η (Y ) η (W ) + g (Z,W ) η (Y ) η (X)

− g (Y,W ) η (Z) η (X) + g (X,Z) g (Y,W )− g (X,Y ) g (Z,W ) = 0. (3.4)

Contracting X and Y in (3.4) we get η (Z) η (W ) − g (Z,W ) = 0. From (1.1) it follows
that the manifold becomes an Einstein manifold. This is a cotradiction. Thus we have
na + b = 0, that is, r = 0. Conversely, if r = 0, then in view of (2.1) the manifold satisfies
L (ξ,X) · L = 0.

Thus the proof of theorem is completed. �

4. N(K)-QUASI EINSTEIN MANIFOLD SATISFYING L(ξ,X) · V = 0

In this section we show that an n-dimensional N(k)-quasi Einstein manifold M satisfies
the condition L (ξ,X) · V = 0.

Theorem 4.1. An n-dimensional N(k)-quasi Einstein manifold M always satisfies the
relation L (ξ,X) · V = 0.

Proof. Now,

(L (ξ,X) · V) (Y,Z)W =L (ξ,X)V (Y,Z)W − V (L (ξ,X)Y,Z)W

− V (Y,L (ξ,X)Z)W − V (Y,Z)L (ξ,X)W. (4.1)

From (2.1) and (4.1) we have

(L (ξ,X) · V) (Y, Z)W =
na+ b

(n− 1) (n− 2)
[−V (Y,Z,W,X) ξ + η (V (Y,Z)W )X

+ g (X,Y )V (ξ, Z)W − η (Y )V (X,Z)W + g (X,Z)V (Y, ξ)W

− η (Z)V (Y,X)W +g (X,W )V (Y,Z) ξ − η (W )V (Y,Z)X] .
(4.2)

Using (2.5) to (2.7) in (4.2) we get (L (ξ,X) · V) (Y,Z)W = 0.
Thus, we complete the proof. �

Theorem 4.2. There is no n-dimensional N(k)-quasi Einstein manifold satisfying the con-
dition V (ξ,X) · L = 0.

Proof. We consider an n-dimensional N(k)-quasi Einstein manifold satisfying the condition

(V (ξ,X) · L) (Y,Z)W = 0.
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Then

V (ξ,X)L (Y,Z)W − L (V (ξ,X)Y,Z)W − L (Y,V (ξ,X)Z)W − L (Y,Z)V (ξ,X)W = 0.
(4.3)

Using (2.6) in (4.3) yields

b [L (Y,Z,W,X) ξ − η (L (Y,Z)W )X − g (X,Y )L (ξ, Z)W + η (Y )L (X,Z)W

− g (X,Z)L (Y, ξ)W + η (Z)L (Y,X)W −g (X,W )L (Y,Z) ξ + η (W )L (Y,Z)X] = 0.

Since in an N(k)-quasi Einstein manifold b 6= 0, we have

L (Y,Z,W,X) ξ − η (L (Y, Z)W )X − g (X,Y )L (ξ, Z)W + η (Y )L (X,Z)W

− g (X,Z)L (Y, ξ)W + η (Z)L (Y,X)W − g (X,W )L (Y,Z) ξ + η (W )L (Y,Z)X = 0.
(4.4)

Taking the inner product on both sides of (4.4) with ξ we get

L (Y, Z,W,X)− η (L (Y, Z)W ) η (X)− g (X,Y ) η (L (ξ, Z)W ) + η (Y ) η (L (X,Z)W )

− g (X,Z) η (L (Y, ξ)W ) + η (Z) η (L (Y,X)W )− g (X,W ) η (L (Y,Z) ξ)

+ η (W ) η (L (Y, Z)X) = 0. (4.5)

By virtue of (2.2) to (2.4) we obtain from (4.5) that

b [g (X,Y ) g (Z,W )− g (X,Z) g (Y,W ) − g (Y,X) η (Z) η (W ) + g (Z,X) η (Y ) η (W )

−g (Z,W ) η (Y ) η (X) + g (Y,W ) η (Z) η (X)] = 0.

Since b 6= 0,

g (X,Y ) g (Z,W )− g (X,Z) g (Y,W )− g (Y,X) η (Z) η (W ) + g (Z,X) η (Y ) η (W )

− g (Z,W ) η (Y ) η (X) + g (Y,W ) η (Z) η (X) = 0. (4.6)

Putting X = Y = ei in (4.6), where {ei}, i = 1, 2, . . . , n, be an orthonormal basis of the
tangent space at any point of the manifold and taking summation over i, 1 ≤ i ≤ n, we have

g (Z,W )− η (W ) η (Z) = 0.

From (1.1) it follows that the manifold becomes an Einstein manifold, which is a contradic-
tion. Thus the theorem is proved. �

5. N(K)-QUASI EINSTEIN MANIFOLD SATISFYING L (ξ,X) ·W2 = 0

Theorem 5.1. An N(k)-quasi Einstein manifold (Mn, g) satisfies the condition
L (ξ,X) ·W2 = 0 if and only if the scalar curvature is zero.

Proof. Let us suppose that the manifold (Mn, g) be an N(k)-quasi Einstein manifold. Then
the condition L (ξ,X) ·W2 = 0 gives

L (ξ,X)W2 (Y,Z)U −W2 (L (ξ,X)Y,Z)U −W2 (Y,L (ξ,X)Z)U

−W2 (Y,Z)L (ξ,X)U = 0. (5.1)

In view of (2.1) and (5.1) we get

(na+ b) [W2 (Y, Z, U,X) ξ − η (W2 (Y, Z)U)X − g (X,Y )W2 (ξ, Z)U + η (Y )W2 (X,Z)U

− g (X,Z)W2 (Y, ξ)U + η (Z)W2 (Y,X)U − g (X,U)W2 (Y,Z) ξ

+η (U)W2 (Y,Z)X] = 0,
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which implies either na+ b = 0 or

W2 (Y,Z, U,X) ξ − η (W2 (Y, Z)U)X − g (X,Y )W2 (ξ, Z)U + η (Y )W2 (X,Z)U

− g (X,Z)W2 (Y, ξ)U + η (Z)W2 (Y,X)U − g (X,U)W2 (Y,Z) ξ

+ η (U)W2 (Y,Z)X = 0. (5.2)

Taking the inner product on both sides of (5.2) with ξ we have

W2 (Y,Z, U,X)− η (W2 (Y, Z)U) η (X)− g (X,Y ) η (W2 (ξ, Z)U) + η (Y ) η (W2 (X,Z)U)

− g (X,Z) η (W2 (Y, ξ)U) + η (Z) η (W2 (Y,X)U)− g (X,U) η (W2 (Y, Z) ξ)

+ η (U) η (W2 (Y, Z)X) = 0. (5.3)

Using (2.9) and (2.10) in (5.3) we obtain

b [g (Z,U) g (Y,X)− g (Y,U) g (Z,X) + g (Y,U) η (Z) η (X)− g (Z,U) η (Y ) η (X)] = 0.

In an N(k)-quasi Einstein manifold b 6= 0. So we have the following:

g (Z,U) g (Y,X)− g (Y,U) g (Z,X) + g (Y, U) η (Z) η (X)− g (Z,U) η (Y ) η (X) = 0.
(5.4)

Contracting (5.4) over U and Z, we get g (Y,X) − η (Y ) η (X) = 0, which contradicts the
definition of an N(k)-quasi Einstein manifold. Then we have na + b = 0, i.e., r = 0.
Conversely, let r = 0, then from (2.1), we have L (ξ,X) ·W2 = 0.

So the proof is complete. �

6. N(K)-QUASI EINSTEIN MANIFOLD SATISFYING W2 (ξ,X) · L = 0

In this section we assume that an n-dimensional N(k)-quasi Einstein manifold M sat-
isfying the condition (W2 (ξ,X) · L) (Y,Z)U = 0.

Theorem 6.1. An n-dimensional N(k)-quasi Einstein manifold (Mn, g) satisfies the con-
dition W2 (ξ,X) · L = 0 if and only if the scalar curvature is zero.

Proof. We first consider an n-dimensional N(k)-quasi Einstein manifold M satisfying the
condition (W2 (ξ,X) · L) (Y, Z)U = 0. Then we have

W2 (ξ,X)L (Y,Z)U − L (W2 (ξ,X)Y, Z)U − L (Y,W2 (ξ,X)Z)U

− L (Y, Z)W2 (ξ,X)U = 0, (6.1)

for all vector fields X, Y , Z, U on M.
From (2.8) and (6.1) we get

b [η (L (Y,Z)U) η (X) ξ − η (L (Y,Z)U)X − η (Y ) η (X)L (ξ, Z)U + η (Y )L (X,Z)U

− η (Z) η (X)L (Y, ξ)U + η (Z)L (Y,X)U − η (U) η (X)L (Y,Z) ξ

+η (U)L (Y,Z)X] = 0.

Since b 6= 0,

η (L (Y,Z)U) η (X) ξ − η (L (Y,Z)U)X − η (Y ) η (X)L (ξ, Z)U + η (Y )L (X,Z)U

− η (Z) η (X)L (Y, ξ)U + η (Z)L (Y,X)U − η (U) η (X)L (Y, Z) ξ

+ η (U)L (Y,Z)X = 0. (6.2)
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Taking the inner product on both sides of (6.2) with ξ we have

η (Y ) η (X) η (L (ξ, Z)U)− η (Y ) η (L (X,Z)U) + η (Z) η (X) η (L (Y, ξ)U)

− η (Z) η (L (Y,X)U) + η (U) η (X) η (L (Y,Z) ξ)− η (U) η (L (Y, Z)X) = 0. (6.3)

Using (2.3) to (2.4) in (6.3) we obtain

(na+ b) η (U) [g (Y,X) η (Z)− g (Z,X) η (Y )] = 0. (6.4)

Putting Z = ξ in (6.4) we get

(na+ b) η (U) [g (Y,X)− η (X) η (Y )] = 0. (6.5)

Since in an N(k)-quasi Einstein manifold the 1-form η is non-zero and

g (Y,X)− η (X) η (Y ) 6= 0,

from equation (6.5) it follows that na+ b = 0, i.e., r = 0. Again, if we take r = 0, then the
converse is trivial. This completes the proof. �

Therefore, by Theorem 3.1, Theorem 5.1 and Theorem 6.1 we can state the following
corollary:

Corollary 6.1. Let (Mn, g) be an n-dimensional N(k)-quasi Einstein manifold. Then the
following statements are equivalent:

(i) L (ξ,X) · L = 0,
(ii) L (ξ,X) ·W2 = 0,
(iii) W2 (ξ,X) · L = 0,
(iv) the scalar curvature is zero,

for every vector field X on (Mn, g).

7. EXAMPLE OF N(K)-QUASI EINSTEIN MANIFOLDS

Let (x1, x2, . . . , xn) ∈ Rn, where Rn is an n-dimensional real number space. We consider
a Riemannian metric g on R4 = (x1, x2, x3, x4), by [9]

ds2 = gijdx
idxj = (dx1)2 + (x1)2(dx2)2 + (x2)2(dx3)2 + (dx4)2, (7.1)

where i, j = 1, 2, 3, 4. Using (7.1), we see the non-vanishing components of Riemannian
metric are

g11 = 1, g22 = (x1)2, g33 = (x2)2, g44 = 1 (7.2)

and its associated components are

g11 = 1, g22 =
1

(x1)2
, g33 =

1

(x2)2
, g44 = 1. (7.3)

Using (7.2) and (7.3), we can calculate that the non-vanishing components of Christoffel
symbols, curvature tensor and Ricci tensor are given by

Γ1
22 = −x1, Γ2

33 = − x2

(x1)
2 , Γ2

12 =
1

x1
, Γ3

23 =
1

x2
, R1332 = −x

2

x1
, S12 = − 1

x1x2

and the other components are obtained by the symmetric properties. It can be easily shown
that the scalar curvature r of the resulting manifold (R4, g) is zero. We shall now show that
this (R4, g) is an N(k)-quasi Einstein manifold.



164 Dipankar Hazra

Let us consider the associated scalars as follows:

a =
3

x1 (x2)
2 , b = − 3

(x1)
2
x2
. (7.4)

We choose the 1-form as follows:

ηi (x) =



1√
3
, when i = 1,

x1√
3
, when i = 2,

x2√
3
, when i = 3,

0, when i = 4

(7.5)

at any point x ∈ R4. Now the equation (1.1) reduces to the equation

S12 = ag12 + bη1η2, (7.6)

since, for the other cases (1.1) holds trivially.
From the equations (7.4), (7.5) and (7.6) we get:

Right hand side of (7.6) = ag12 + bη1η2 =
3

x1(x2)2
· 0 +

(
− 3

(x1)2x2

)
· 1√

3
· x

1

√
3

= − 1

x1x2
= S12.

By Lemma 1.1., here we see that k =
x1 − x2

(x1)2(x2)2
. So,

(
R4, g

)
is an N

( x1 − x2

(x1)2(x2)2

)
-quasi

Einstein manifold.
Again, since the scalar curvature r is zero, therefore L (ξ,X) ·L = 0, L (ξ,X) ·W2 = 0

and W2 (ξ,X) · L = 0. Thus Theorem 3.1, Theorem 5.1 and Theorem 6.1 are verified.

CONCLUSIONS

Quasi Einstein manifold plays an important role in both mathematics and physics. In
the present paper, an N(k)-quasi Einstein manifold has been considered, which is a special
case of quasi-Einstein manifold. We have proven that in an N(k)-quasi Einstein manifold,
the condition L (ξ,X) · V = 0 holds, for all X. We noticed N(k)-quasi Einstein manifold
satisfies the conditions L (ξ,X) ·L = 0, L (ξ,X) ·W2 = 0,W2 (ξ,X) ·L = 0 if and only if the
scalar curvature is zero. We have also shown that there is no N(k)-quasi Einstein manifold
that satisfies V (ξ,X) ·L = 0. Finally, an example of N(k)-quasi Einstein manifold has been
discussed to verify certain theorems.

Acknowledgement. The author is thankful to the referee for his valuable suggestions
towards the improvement of the paper.
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QUASI-CONFORMAL CURVATURE TENSOR ON N (k)-QUASI

EINSTEIN MANIFOLDS

Dipankar Hazra and Avijit Sarkar∗

Abstract. This paper deals with the study of N (k)-quasi Einstein manifolds that

satisfies the certain curvature conditions C∗·C∗ = 0, S·C∗ = 0 andR·C∗ = fQ̃ (g,C∗),
where C∗, S and R denotes the quasi-conformal curvature tensor, Ricci tensor and
the curvature tensor respectively. Finally, we construct an example of N (k)-quasi
Einstein manifold.

1. Introduction

An n-dimensional semi-Riemannian or Riemannian manifold (Mn, g) (n > 2), is
called an Einstein manifold if its Ricci tensor S satisfies the criteria

S =
ρ

n
g,

where ρ denotes the scalar curvature of (Mn, g). We can also say an Einstein manifold
is a Riemannian or pseudo Riemannian manifold whose Ricci tensor is proportional to
the metric. The notion of quasi-Einstein manifold was introduced by M. C. Chaki and
R. K. Maity [3]. A non-flat Riemannian manifold (Mn, g) (n ≥ 3), is a quasi-Einstein
manifold if its Ricci tensor S satisfies the criteria

(1) S (U, V ) = ag (U, V ) + bη (U) η (V )

and is not identically zero, where a and b are smooth functions of which b 6= 0 and η
is a non-zero 1-form such that

(2) g (U, ξ) = η (U) , g (ξ, ξ) = η (ξ) = 1,

for all vector field U .
We call η as associated 1-form and ξ as generator of the manifold, which is also an
unit vector field. The study of quasi-Einstein manifolds was further continued by
Guha [11], De and Ghosh [8], Bejan [2], De and De [6], Debnath and Konar [9] and
many others.
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Let R denotes the Riemannian curvature tensor of a Riemannian manifold M . The
k-nullity distribution N (k) [17] of a Riemannian manifold M is defined by

N (k) : p −→ Np (k) = {W ∈ TpM : R (U, V )W = k [g (V,W )U − g (U,W )V ]} ,
where k is a smooth function.
M. M. Tripathi and Jeong Sik-Kim [18] introduced the notion of N (k)-quasi Einstein
manifolds which is defined as follows: If the generator ξ belongs to the k-nullity dis-
tribution N (k), then a quasi-Einstein manifold (Mn, g) is called N (k)-quasi Einstein
manifold. Here k is not arbitrary.

Lemma 1.1. [15] In an n-dimensional N (k)-quasi Einstein manifold it follows that

(3) k =
a+ b

n− 1
.

So we note that in an N (k)-quasi Einstein manifold [15]

(4) R (U, V ) ξ =
a+ b

n− 1
[η (V )U − η (U)V ] ,

which is same as

(5) R (ξ, U)V =
a+ b

n− 1
[g (U, V ) ξ − η (V )U ] .

In [18], Tripathi and Kim proved that an n-dimensional conformally flat quasi-Einstein

manifold is an N

(
a+ b

n− 1

)
-quasi Einstein manifold and in particular a 3-dimensional

quasi-Einstein manifold is an N

(
a+ b

2

)
-quasi Einstein manifold. Various geomet-

rical properties of N (k)-quasi Einstein manifolds have been discussed by Taleshian
and Hosseinzadeh [12, 16], De, De and Gazi [7], Crasmareanu [5], Yildiz, De and
Cetinkaya [20], Mallick and De [13] and many others. The above works inspired me
to write up a study on this type of manifold.

In 1968, Yano and Sawaki [19] defined the quasi-conformal curvature tensor C∗ on
a Riemannian manifold (Mn, g) as

C∗ (U, V )W = a0R (U, V )W + a1 [S (V,W )U

−S (U,W )V + g (V,W )QU − g (U,W )QV ]

− ρ

n

(
a0

n− 1
+ 2a1

)
[g (V,W )U − g (U,W )V ] ,(6)

where S (U, V ) = g (QU, V ), ρ is the scalar curvature, a0 and a1 are arbitrary con-

stants, which are not simultaneously zero. If a0 = 1 and a1 = − 1

n− 2
, then (6)

reduces to the conformal curvature tensor. Thus the conformal curvature tensor is
a particular case of the tensor C∗. A Riemannian or a semi-Riemannian manifold is
called quasi-conformally flat if C∗ = 0 for n > 3.

The derivation conditions R (ξ, U) · R = 0 and R (ξ, U) · S = 0 have been dis-
cussed in [18], where R and S denotes the curvature tensor and Ricci tensor of the
manifold respectively. In 2008, Özgür and Sular [14] studied the derivation conditions
R (ξ, U) · C = 0 and R (ξ, U) · C∗ = 0 on N (k)-quasi Einstein manifolds, where C and
C∗ denotes the Weyl conformal and quasi-conformal curvature tensors, respectively.

After studying and analyzing the above papers, we got motivated to work in this
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area. In the present work we have tried to develop a new concept. This paper is orga-
nized as follows: Section 2 is preliminaries that covers various concepts and results of
N (k)-quasi Einstein manifold and quasi-conformal curvature tensor. Section 3 deals
with study of quasi-conformal curvature tensor of an N (k)-quasi Einstein manifold.
Section 4 is concerned with an N (k)-quasi Einstein manifold satisfies S (U, ξ) ·C∗ = 0.
The properties of C∗-pseudosymmetric N (k)-quasi Einstein manifolds had been ana-
lyzed in section 5. Finally, we give an example of N (k)-quasi Einstein manifold.

2. Preliminaries

From (1) and (2) it follows that

(7) ρ = an+ b

and

(8) S (U, ξ) = (a+ b) η (U) ,

where ρ is the scalar curvature and Q is the Ricci operator.
In an n-dimensional N (k)-quasi Einstein manifold M, the quasi-conformal curva-

ture tensor C∗ takes the form

C∗ (U, V )W =
b

n
(a0 − 2a1) [g (V,W )U − g (U,W )V ]

+ ba1 [η (V ) η (W )U − η (U) η (W )V

+g (V,W ) η (U) ξ − g (U,W ) η (V ) ξ] .(9)

Consequently, we have

(10) C∗ (ξ, U)V =
b

n
[a0 + (n− 2) a1] [g (U, V ) ξ − η (V )U ] ,

(11) η (C∗ (U, V )W ) =
b

n
[a0 + (n− 2) a1] [g (V,W ) η (U)− g (U,W ) η (V )] ,

(12) η (C∗ (U, V ) ξ) = 0

and

(13) η (C∗ (U, ξ)V ) =
b

n
[a0 + (n− 2) a1] [η (V ) η (U)− g (U, V )] = −η (C∗ (ξ, U)V ) ,

for all vector fields U, V,W on M.

3. The quasi-conformal curvature tensor of an N (k)-quasi Einstein man-
ifold

In this section we consider an n-dimensional N (k)-quasi Einstein manifold M sat-
isfying the condition (C∗ (ξ, U) · C∗) (V,W )G = 0. Then we have

C∗ (ξ, U)C∗ (V,W )G− C∗ (C∗ (ξ, U)V,W )G

−C∗ (V,C∗ (ξ, U)W )G− C∗ (V,W )C∗ (ξ, U)G = 0.(14)
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Using (10) in (14) we have

b

n
[a0 + (n− 2) a1] [g (U,C∗ (V,W )G) ξ − η (C∗ (V,W )G)U

−g (U, V )C∗ (ξ,W )G+ η (V )C∗ (U,W )G

−g (U,W )C∗ (V, ξ)G+ η (W )C∗ (V, U)G

−g (U,G)C∗ (V,W ) ξ + η (G)C∗ (V,W )U ] = 0.

In an N (k)-quasi Einstein manifold b 6= 0. So we obtain the following:

[a0 + (n− 2) a1] [g (U,C∗ (V,W )G) ξ − η (C∗ (V,W )G)U

−g (U, V )C∗ (ξ,W )G+ η (V )C∗ (U,W )G

−g (U,W )C∗ (V, ξ)G+ η (W )C∗ (V, U)G

−g (U,G)C∗ (V,W ) ξ + η (G)C∗ (V,W )U ] = 0.

Then either a0 + (n− 2) a1 = 0 or,

g (U,C∗ (V,W )G) ξ − η (C∗ (V,W )G)U

− g (U, V )C∗ (ξ,W )G+ η (V )C∗ (U,W )G

− g (U,W )C∗ (V, ξ)G+ η (W )C∗ (V, U)G

− g (U,G)C∗ (V,W ) ξ + η (G)C∗ (V,W )U = 0.(15)

Assume that a0 + (n− 2) a1 6= 0. Taking the inner product on both sides of (15) with
ξ we get

g (U,C∗ (V,W )G)− η (C∗ (V,W )G) η (U)

− g (U, V ) η (C∗ (ξ,W )G) + η (V ) η (C∗ (U,W )G)

− g (U,W ) η (C∗ (V, ξ)G) + η (W ) η (C∗ (V, U)G)

− g (U,G) η (C∗ (V,W ) ξ) + η (G) η (C∗ (V,W )U) = 0.(16)

Now using the equations (11) - (13) in (16) we have

g (U,C∗ (V,W )G) =
b

n
[a0 + (n− 2) a1] [g (U, V ) g (W,G)− g (U,W ) g (V,G)] .

Then using (6) and (7) we can write

a0R (V,W,G,U) + a1 [S (W,G) g (V, U)

−S (V,G) g (W,U) + g (W,G)S (V, U)− g (V,G)S (W,U)]

− an+ b

n

(
a0

n− 1
+ 2a1

)
[g (W,G) g (V, U)− g (V,G) g (W,U)]

=
b

n
[a0 + (n− 2) a1] [g (U, V ) g (W,G)− g (U,W ) g (V,G)] .(17)

Contracting (17) over U and V we obtain

S (W,G) = (a+ b) g (W,G) .

This is a contradiction as Mn is not Einstein. Thus we have a0 + (n− 2) a1 = 0.
Conversely, if a0 +(n− 2) a1 = 0, then in view of (10) the manifold satisfies C∗ (ξ, U) ·
C∗ = 0.
Thus we can state the following theorem:
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Theorem 3.1. Let M be an n-dimensional N (k)-quasi Einstein manifold. Then
M satisfies the condition C∗ (ξ, U) · C∗ = 0 if and only if a0 + (n− 2) a1 = 0.

4. N (k)-quasi Einstein manifold satisfying S (U, ξ) · C∗ = 0

Let us suppose that an N (k)-quasi Einstein manifold (Mn, g) satisfying the con-
dition

(18) (S (U, ξ) · C∗) (V,W )G = 0.

Now, (S (U, ξ) · C∗) (V,W )G = ((U ∧S ξ) .C∗) (V,W )G, where the endomorphism (U∧S
V )W is defined by

(19) (U ∧S V )W = S (V,W )U − S (U,W )V.

Then (18) takes the form,

(U ∧S ξ)C∗ (V,W )G− C∗ ((U ∧S ξ)V,W )G

−C∗ (V, (U ∧S ξ)W )G− C∗ (V,W ) (U ∧S ξ)G = 0.(20)

From (19) and (20), we get

S (ξ,C∗ (V,W )G)U − S (U,C∗ (V,W )G) ξ

− S (ξ, V )C∗ (U,W )G+ S (U, V )C∗ (ξ,W )G

− S (ξ,W )C∗ (V, U)G+ S (U,W )C∗ (V, ξ)G

− S (ξ,G)C∗ (V,W )U + S (U,G)C∗ (V,W ) ξ = 0.(21)

Using (1) and (8) in (21), we have

(a+ b) η (C∗ (V,W )G)U − ag (U,C∗ (V,W )G) ξ − bη (U) η (C∗ (V,W )G) ξ

− (a+ b) η (V )C∗ (U,W )G+ [ag (U, V ) + bη (U) η (V )]C∗ (ξ,W )G

− (a+ b) η (W )C∗ (V, U)G+ [ag (U,W ) + bη (U) η (W )]C∗ (V, ξ)G

− (a+ b) η (G)C∗ (V,W )U + [ag (U,G) + bη (U) η (G)]C∗ (V,W ) ξ = 0.(22)

Taking the inner product on both sides of (22) with ξ, we obtain

aη (C∗ (V,W )G) η (U)− ag (U,C∗ (V,W )G)− (a+ b) η (V ) η (C∗ (U,W )G)

+ [ag (U, V ) + bη (U) η (V )] η (C∗ (ξ,W )G)− (a+ b) η (W ) η (C∗ (V, U)G)

+ [ag (U,W ) + bη (U) η (W )] η (C∗ (V, ξ)G)− (a+ b) η (G) η (C∗ (V,W )U)

+ [ag (U,G) + bη (U) η (G)] η (C∗ (V,W ) ξ) = 0.(23)

Using (9) and (11) - (13) in (23) we get

aba1 [g (U, V ) g (W,G)− g (U,W ) g (V,G)− g (U, V ) η (W ) η (G)

+g (W,U) η (V ) η (G)− g (W,G) η (V ) η (U) + g (V,G) η (W ) η (U)]

− b2

n
[a0 + (n− 2) a1] [g (W,U) η (V ) η (G)− g (V, U) η (W ) η (G)] = 0.(24)

Putting W = ξ in (24), we obtain

(25)
b2

n
[a0 + (n− 2) a1] η (G) [η (U) η (V )− g (U, V )] = 0.
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Since in an N (k)-quasi Einstein manifold b 6= 0, the 1-form η is non-zero and
g (U, V ) 6= η (U) η (V ), from equation (25) it follows that a0 + (n− 2) a1 = 0. Again,
if we take a0 + (n− 2) a1 = 0, then the converse is trivial.
This leads to the following theorem:

Theorem 4.1. An n-dimensionalN (k)-quasi Einstein manifoldM satisfies S (U, ξ)·
C∗ = 0 if and only if a0 + (n− 2) a1 = 0.

Therefore, by Theorem 3.1. and 4.1. we can state the following corollary:

Corollary 4.2. Let (Mn, g) be an n-dimensional N (k)-quasi Einstein manifold.
Then the following statements are equivalent:

(i) C∗ (ξ, U) · C∗ = 0,
(ii) S (U, ξ) · C∗ = 0,
(iii) a0 + (n− 2) a1 = 0,

for every vector field U on (Mn, g).

5. C∗-pseudosymmetric N (k)-quasi Einstein manifolds

In [14], Özgür and Sular studied the condition R (ξ, U) · C∗ = 0 for an N (k)-quasi
Einstein manifolds, where C∗ is the quasi-conformal curvature tensor and R is the
curvature tensor of the manifold. In this section we generalize this condition.

An n-dimensional Riemannian or a semi-Riemannian manifold (Mn, g) is said to
be C∗-pseudosymmetric [10] if and only if the tensors R · C∗ and Q̃ (g,C∗) defined by

(R (U, V ) · C∗) (W,G)H = R (U, V )C∗ (W,G)H − C∗ (R (U, V )W,G)H

− C∗ (W,R (U, V )G)H − C∗ (W,G)R (U, V )H(26)

and

Q̃ (g,C∗) (W,G,H;U, V ) = ((U ∧ V ) · C∗) (W,G)H

= (U ∧ V )C∗ (W,G)H − C∗ ((U ∧ V )W,G)H

− C∗ (W, (U ∧ V )G)H − C∗ (W,G) (U ∧ V )H(27)

are linearly dependent, i.e.,

(28) (R (U, V ) · C∗) (W,G)H = fQ̃ (g,C∗) (W,G,H;U, V ) ,

for arbitrary vector fields U, V,W,G,H on Mn and the endomorphism (U ∧ V ) is
defined by

(29) (U ∧ V )W = g (V,W )U − g (U,W )V

and f is a smooth function on ΩC∗ = {x ∈Mn : C∗ 6= 0 at x}.
If f = 0, then the manifold (Mn, g) reduces to a quasi-conformally semisymmetric
manifold (i.e. R · C∗ = 0).
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From (26), (27) and (28) we have

R (U, V )C∗ (W,G)H − C∗ (R (U, V )W,G)H

− C∗ (W,R (U, V )G)H − C∗ (W,G)R (U, V )H

= f [(U ∧ V )C∗ (W,G)H − C∗ ((U ∧ V )W,G)H

−C∗ (W, (U ∧ V )G)H − C∗ (W,G) (U ∧ V )H] .(30)

Putting U = ξ in (30) and then using (2), (5) and (29), we obtain that

(k − f) [g (V,C∗ (W,G)H) ξ − η (C∗ (W,G)H)V

−g (V,W )C∗ (ξ,G)H + η (W )C∗ (V,G)H

−g (V,G)C∗ (W, ξ)H + η (G)C∗ (W,V )H

−g (V,H)C∗ (W,G) ξ + η (H)C∗ (W,G)V ] = 0,

which implies either f = k or

g (V,C∗ (W,G)H) ξ − η (C∗ (W,G)H)V

− g (V,W )C∗ (ξ,G)H + η (W )C∗ (V,G)H

− g (V,G)C∗ (W, ξ)H + η (G)C∗ (W,V )H

− g (V,H)C∗ (W,G) ξ + η (H)C∗ (W,G)V = 0.(31)

Taking the inner product on both sides of (31) with ξ, we get

g (V,C∗ (W,G)H)− η (C∗ (W,G)H) η (V )

− g (V,W ) η (C∗ (ξ,G)H) + η (W ) η (C∗ (V,G)H)

− g (V,G) η (C∗ (W, ξ)H) + η (G) η (C∗ (W,V )H)

− g (V,H) η (C∗ (W,G) ξ) + η (H) η (C∗ (W,G)V ) = 0.(32)

By virtue of (11) - (13) we obtain from (32) that

(33) g (V,C∗ (W,G)H) =
b

n
[a0 + (n− 2) a1] [g (V,W ) g (G,H)− g (V,G) g (W,H)] .

Using (6) and (7), (33) can be written as

a0R (W,G,H, V ) + a1 [S (G,H) g (W,V )

−S (W,H) g (G, V ) + g (G,H)S (W,V )− g (W,H)S (G, V )]

− an+ b

n

(
a0

n− 1
+ 2a1

)
[g (G,H) g (W,V )− g (W,H) g (G, V )]

=
b

n
[a0 + (n− 2) a1] [g (V,W ) g (G,H)− g (V,G) g (W,H)] .(34)

Putting V = W = ei in (34), where {ei}, i = 1, 2, . . . , n be an orthonormal basis of
the tangent space at any point of the manifold (Mn, g) and taking summation over i,
1 ≤ i ≤ n, we have

[a0 + (n− 2) a1] [S (G,H)− (a+ b) g (G,H)] = 0.

Since Mn is an N (k)-quasi Einstein manifold, S (G,H) 6= (a+ b) g (G,H). So we
obtain

a0 + (n− 2) a1 = 0.
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Therefore, from (11)

(35) η (C∗ (U, V )W ) = 0.

Using (35) in (32) yields
g (V,C∗ (W,G)H) = 0.

This implies that the manifold is quasi-conformally flat. But, in this case C∗ 6= 0.

Hence f = k, i.e., f =
a+ b

n− 1
.

Thus we conclude the following theorem:

Theorem 5.1. In a C∗-pseudosymmetric N (k)-quasi Einstein manifold f =
a+ b

n− 1
.

We know that [1] a quasi-conformally flat manifold is either conformally flat or
Einstein.
In [14], authors proved the following corollary:

Corollary 5.2. An N (k)-quasi Einstein manifold is quasi-conformally semisym-
metric if and only if either a + b = 0 or the manifold is conformally flat with
a0 = (2− n) a1.

Now if we take f 6= k, then in view of (1) and (34) we have

R (W,G,H, V ) = λ [g (G,H) g (W,V )− g (W,H) g (G, V )]

+ µ [g (W,V ) η (G) η (H)− g (G, V ) η (W ) η (H)

+g (G,H) η (W ) η (V )− g (W,H) η (G) η (V )] ,(36)

where λ =

(
k +

ba1
a0

)
and µ = −ba1

a0
.

A Riemannian or semi-Riemannian manifold is said to be a manifold of quasi-
constant curvature [4] if the curvature tensor R of type (0, 4) satisfies the following
condition

R (U, V,W,G) = p [g (V,W ) g (U,G)− g (U,W ) g (V,G)]

+ q [g (U,G) η (V ) η (W )− g (U,W ) η (V ) η (G)

+g (V,W ) η (U) η (G)− g (V,G) η (U) η (W )] ,(37)

where p, q are scalar functions of which q 6= 0 and η is a non-zero 1-form defined by

g (U, ξ) = η (U) ,

for all U and ξ being a unit vector field.
From (36) and (37), we can state the following theorem:

Theorem 5.3. An n-dimensional C∗-pseudosymmetric N (k)-quasi Einstein man-
ifold (Mn, g), (n > 2) with f 6= k is a manifold of quasi-constant curvature.

6. Example of N (k)-quasi Einstein manifolds

Let (x1, x2, . . . , xn) ∈ Rn, where Rn is an n-dimensional real number space. We
consider a Riemannian metric g on R4 = (x1, x2, x3, x4) , by

(38) ds2 = gijdx
idxj =

(
dx1
)2

+
(
x1
)2 (

dx2
)2

+
(
x2
)2 (

dx3
)2

+
(
dx4
)2
,
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where i, j = 1, 2, 3, 4. Using (38), we see the non-vanishing components of Riemannian
metric are

(39) g11 = 1, g22 =
(
x1
)2
, g33 =

(
x2
)2
, g44 = 1

and its associated components are

(40) g11 = 1, g22 =
1

(x1)2
, g33 =

1

(x2)2
, g44 = 1.

Using (39) and (40), we can calculate that the non-vanishing components of Christoffel
symbols, curvature tensor and Ricci tensor are given by

Γ1
22 = −x1, Γ2

33 = − x2

(x1)2
, Γ2

12 =
1

x1
, Γ3

23 =
1

x2
, R1332 = −x

2

x1
, S12 = − 1

x1x2

and the other components are obtained by the symmetric properties. It can be easily
shown that the scalar curvature r of the resulting manifold (R4, g) is zero. We shall
now show that this (R4, g) is an N (k)-quasi Einstein manifold.
Let us consider the associated scalars as follows:

(41) a =
1

x1 (x2)2
, b = − 2

(x1)2 x2
.

We choose the 1-form as follows:

(42) ηi (x) =


1√
2
, when i = 1

x1√
2
, when i = 2

0, otherwise

at any point x ∈ R4. Now the equation (1) reduces to the equation

(43) S12 = ag12 + bη1η2,

since, for the other cases (1) holds trivially.
From the equations (41), (42) and (43) we get

Right hand side of (43) = ag12 + bη1η2

=
1

x1 (x2)2
· 0 +

(
− 2

(x1)2 x2

)
·
(

1√
2

)
·
(
x1√

2

)
= − 1

x1x2
= S12.

By Lemma 1.1., here we see that k =
x1 − 2x2

3 (x1)2 (x2)2
.

We shall now show that the 1-form ηi are unit.
Here,

gijηiηj = 1.

So, (R4, g) is an N

(
x1 − 2x2

3 (x1)2 (x2)2

)
-quasi Einstein manifold.
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Abstract
The prime goal of this article is to characterize spacetimes endowedwith-flat curvature tensor. It is
demonstrated that a 4-dimensional-flat perfectfluid spacetime is either a de-Sitter spacetime or
locally isometric toMinkowski spacetime under certain energy condition.Moreover, it is established
that a Ricci simple-flat spacetime becomes a Robertson-Walker spacetime. In addition, we shown
that a Ricci simple spacetimewith harmonic-curvature tensor is a generalized Robertson-Walker
spacetime. Also, we explain several conclusions based on-flat generalized Robertson-Walker
spacetimes. Finally, we investigate-flat spacetimes that satisfy the rf , ( )-gravity and

rf , m( )-gravity.

1. Introduction

The subclass of a semi-Riemannianmanifold is a LorentzianmanifoldMn. The signature of themetric g of a
Lorentzianmanifold is , , , ,- + + ¼ +( ), that is, the index of g is 1. A spacetime is a LorentzianmanifoldMn

n 4( )which admits a globally timelike vector field. Different types of spacetimes have been studied in various
ways, such as [1–7] andmany others.

Let themetric assume the appropriate local structure

ds d q g dx dx , 1
u u

u u2 2 2
1 2

1 2z z= - + *( ) ( ) ( )

then a Lorentzianmanifold of dimension n n 2>( ) is named a generalized Robertson-Walker (GRW) [8]
spacetime, where g g x

u u u u
u

1 2 1 2
3=* * ( ) are only functions of xu3 u u u n, , 2, 3, ,1 2 3 = ¼( ) and q is a function

dependent on ζ. So, q M2- ´ ¯ can be used to representGRWspacetime inwhich  Í is an open interval
and M̄ is an n 1-( )-dimensional Riemannianmanifold. TheGRWspacetime transforms to a Robertson-
Walker spacetime (RW) if dimension of M̄ is three and of constant sectional curvature.

A LorentzianmanifoldMn is referred to as a perfect fluid spacetime (PFS) if the Ricci tensor  takes the form

g A A, 21 2 a a= + Ä ( )

whereα1,α2 are scalars andρ is a unit timelike vector corresponding to the non-vanishing one-formA, that is,
A g , 1.r r r= = -( ) ( ) Throughout this article, we considerρ is a unit timelike vector, which is called velocity
vector orflow vector.

In general relativity theory, thematter content of the spacetimes is represented by the energy-momentum
tensor (EMT)  and thefluid is termed perfect fluid, since it does not have the heat conduction terms [9]. The
formof the EMT [10] for a PFS is

p pg A A, 3 s= + + Ä( ) ( )

where p denotes isotropic pressure andσ denotes energy density. The non-vanishing one-formA ismetrically
equivalent to the velocity vectorρ, which is a unit timelike vector. If p p s= ( ) holds for the equation of state
(EoS), a PFS is termed to be isentropic [9].
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The Einstein’sfield equations (EFE) are as follows:

r
g

2
, 4 k- = ( )

 denotes the Ricci tensor, the gravitational constant isκ and r denotes the scalar curvature. In Einsteins general
relativity theory, perfect fluids are of great importance for being special solutions of the Einsteins field equations
having vanishing shear stresses, viscosity and heat conduction compatible with Bianchi identities. In cosmology,
they represent the behaviour of theHubble flow ranging from inflation to dark energy periods. Perfect fluids
model thematter content of the interior of a star or an isotropic universe. For these reasons, the geometric
studies of perfect fluids onmodified gravity theories are very important areas of study that need to be explored.
There aremany different ways tomodify the general relativity; Einstein-Hilbert gravitational action in some
manner or another, specifically, rf( )-gravity [11, 12]which is themost straightforward generalization of general
relativity, Gauss-Bonnet gravity [13], f ( ) theory [14] and rf , ( )-gravity [15, 16] and rf , m( ) gravity [17–19].
In this paper, we consider PFS on themodified rf , ( )-gravity and rf , m( )-gravity of general relativity.
Equation (2) can bewritten as

g A A, , . 52 3 1 2 3 2 2 3      a a= +( ) ( ) ( ) ( ) ( )

Nowputting ei2 3 = = in (5), where ei{ } is an orthonormal basis of the tangent space at any point of the
Lorentzianmanifold and taking summation on i, 1� i� n, we obtain

r n . 61 2a a= - ( )
Using the equations (3), (5) and (6) in the equation (4), we infer that

p p

n
g A A

g A A

2

2
,

, . 7

1 2
2 3 2 2 3

2 3 2 3

   

   k k s

a a
a

- +
+

= + +

⎡
⎣

⎤
⎦

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

Putting 2 3  r= = in the equation (7), we have

n 2 2 . 81 2 ksa a- + =( ) ( )
Contracting the equation (7), we get

pn n n n2 2 2 1 2 . 91 2 k ksa a- - + - = - -( ) ( ) ( ) ( )

From the equations (8) and (9), we reach

p
p

n2
and . 101 2k

s
k sa a=

-
-

= +⎛
⎝

⎞
⎠

( ) ( )

 must fulfill the following energy conditions to be a physically reasonable exact solution:

• A spacetime obeys theweak energy condition (WEC) if for every timelike vector field ,2 , 02 2  ( ) holds.

• TheWECwith the condition that the pressure does not exceed the energy densitymakes the dominant energy
condition (DEC).

• If for any timelike vector field ,2 , 02 2  ( ) holds, then a spacetime fulfills the strong energy
condition (SEC).

TheWeyl curvature tensor  and the projective curvature tensor  for a LorentzianmanifoldMn (n� 4) are
written by

r

n
g g

n n
g g

, ,
1

2
, ,

, ,

2 1
, , 11

2 3 1 2 3 1 3 1 2 2 1 3

3 1 2 2 1 3

3 1 2 2 1 3

               

     

     

= -
-

-

+ -

+
- -

-

( ) ( ) [ ( ) ( )

( ) ( ) ]

( )( )
[ ( ) ( ) ] ( )

and

n
, ,

1

1
, , , 122 3 1 2 3 1 3 1 2 2 1 3               = -

-
-( ) ( ) [ ( ) ( ) ] ( )

 denotes the curvature tensor, r denotes the scalar curvature and, the Ricci operator fulfills the
relation g, ,2 3 2 3    =( ) ( ).

De et al [20] introduced-curvature tensor of 1, 3( ) typewhich is the linear combination of  and 
defined by

2
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a a n b, , 2 , , 132 3 1 1 2 3 1 1 1 2 3 1           = + + -( ) ( ) [ ( ) ] ( ) ( )

where a1 and b1 are real numbers (not simultaneously zero). If a1= 1 and b
n

1

2
1 = -

-
, then º , also if

a1= 0 and b
n

1

2
1 =

-
, then º . Since the conformal curvature tensor vanishes for n= 3, we consider the

dimension of themanifold n> 3.

Definition 1.1. [21]Avector field r on a Lorentzianmanifold M g,n( ) is named torse-forming if

A A g , ,3 2 3 2 32      j = W +( )( ) ( ) ( ) ( )

beingΩ a non-vanishing one-form,A is a non-vanishing one-form such that g A,2 2 r =( ) ( ), for all 2 and
j is a scalar function.

Ifρ is a unit timelike, the above equation takes the form

A g A A, . 143 2 3 2 32      j = +( )( ) [ ( ) ( ) ( )] ( )

Definition 1.2. [22] If the Ricci tensor has the following form

rA A, 15 = - Ä ( )

then a Lorentzianmanifold is called Ricci simple, whereA is a non-vanishing one-form.

In a series of recent studies, different curvature conditionswerewidely studied in spacetimes. In [23], the
authors studied spacetimeswith pseudo-projective curvature tensor. Spacetimes admitting quasi-conformal
curvature tensor were considered in [24, 25].Motivated by these studies andmany others, this article ismainly
organized to study spacetimeswith-flat curvature tensor. The structure of the paper is as follows:

After a brief introduction in sect. 2, we characterize spacetimes with-flat curvature tensor. The physical
properties of PFS admitting-flat curvature tensor are examined in the next section. The analysis of Ricci
simple spacetimeswith-curvature tensor is presented in the section 4. Section 5 examines GRWspacetimes
with-flat curvature tensor. In the last section, we explore-flat spacetimes in rf , ( )-gravity and

rf , m( )-gravity theories.

2.-flat spacetimes

Herewe consider-flat spacetime of general relativity. The equations (11), (12) and (13) implies

r

H a n b R

n a n b

n n
g g

a

n
g g

a

n n
g g g g

, , , 2 2 , , ,

2 3 2

1 2
, , , ,

2
, , , ,

2 1
, , , , , 16

2 3 1 1 1 1 2 3 1 1

1
2

1
3 1 2 1 2 1 3 1

1
3 1 2 1 2 1 3 1

1
3 1 2 1 2 1 3 1

       

         

         

       

= + -

-
- + -

- -
-

-
-

-

+
- -

-

( ) [ ( ) ] ( )
( ) ( )

( )( )
[ ( ) ( ) ( ) ( )]

[ ( ) ( ) ( ) ( )]

( )( )
[ ( ) ( ) ( ) ( )] ( )

where H g, , , , ,2 3 1 1 2 3 1 1        =( ) ( ( ) ) is the-curvature tensor of 0, 4( ) type
and R g, , , , ,2 3 1 1 2 3 1 1        =( ) ( ( ) ).

For-flat curvature tensor, the equation (16) leads to

r

a n b R

n a n b

n n
g g

a

n
g g

a

n n
g g g g

2 2 , , ,

2 3 2

2 1
, , , ,

2
, , , ,

2 1
, , , , 0. 17

1 1 2 3 1 1

1
2

1
3 1 2 1 2 1 3 1

1
3 1 2 1 2 1 3 1

1
3 1 2 1 2 1 3 1

   

         

         

       

+ -

-
- + -

- -
-

-
-

-

+
- -

- =

[ ( ) ] ( )
( ) ( )

( )( )
[ ( ) ( ) ( ) ( )]

[ ( ) ( ) ( ) ( )]

( )( )
[ ( ) ( ) ( ) ( )] ( )

Assume an orthonormal framefield at any point on themanifold and contracting 3 and 1 in (17), yields
r

n
g, , . 181 2 1 2    =( ) ( ) ( )

Hence, we can assert the result:

Theorem2.1.A-flat spacetime is an Einstein spacetime.

3
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Using (18) in (17) infers

r

a n b R

a n b

n n
g g g g

2 2 , , ,

2 2

1
, , , , . 19

1 1 2 3 1 1

1 1
3 1 2 1 2 1 3 1

   

       

+ -

=
+ -

-
-

[ ( ) ] ( )
[ ( ) ]

( )
[ ( ) ( ) ( ) ( )] ( )

Thus, wemight conclude that

Theorem2.2.A-flat spacetime is a spacetime of constant curvature, provided a n b2 2 0.1 1+ - ¹( )

3. Perfectfluid spacetimeswith-flat curvature tensor

In this section, we take a PFSwith-flat curvature tensor obeying EFE.
From (3), (4) and (18), it follows that

p
r r

p
n

g A A
2

, 0. 202 3 2 3   k k s+ - + + =⎛
⎝

⎞
⎠

( ) ( ) ( ) ( ) ( )

Contracting the equation (20) entails that

r pn n2 2 1 2 0. 21k ks- + - - =( ) ( ) ( )

Setting 2 3  r= = in (20), wefind

rn n2 2 . 22ks- =( ) ( )
Therefore by the equations (21) and (22)we conclude that

p 0. 23s+ = ( )

This represents a darkmatter era [26]. Thuswe conclude:

Theorem3.1.A-flat perfect fluid spacetime satisfying Einstein’s field equations represents a darkmatter era.

Nowwe suppose that the spacetime is of dimension 4. Equations (3) and (4) together yield

r
p pg A A,

2
, . 242 3 2 3 2 3      k k s= + + +⎛

⎝
⎞
⎠

( ) ( ) ( ) ( ) ( ) ( )

Setting 2 3  r= = in (24) and using (22), we deduce that

, . 25 r r ks= -( ) ( )
Suppose the spacetime under studymeets the strong energy condition. Thenwe obtain

 0. 26ks ( )
Sinceκ> 0 and the energy density cannot be negative, the equations (22) and (26) gives us

r 0. 27= ( )
Then (19) infers a b R , , , 0.1 1 2 3 1 1   + =( ) ( ) This represents that the spacetime is of zero sectional
curvature, provided a1+ b1≠ 0. Therefore a 4-dimensional-flat spacetime is locally isometric toMinkowski
spacetime ([27], p. 67), provided a1+ b1≠ 0.

This observation leads us to the following conclusion:

Theorem3.2.A4-dimensional-flat perfect fluid spacetime obeying the strong energy condition is locally isometric
toMinkowski spacetime, provided a b 0.1 1+ ¹

As the energy density cannot be negative, from (22) it follows that

r 0, 28( )

that is, r= 0 or, r> 0.
Case 1. If r= 0, then (19) infers a b R , , , 0,1 1 2 3 1 1   + =( ) ( ) whichmeans that the spacetime is locally

isometric toMinkowski spacetime, provided a1+ b1≠ 0.
Case 2. If r> 0, then the equation (19) indicates that the constant curvature is positive, provided

a1+ b1≠ 0. Note that the spacetimewith constant positive curvature is a de-Sitter spacetime [27].
Consequently, the following can be stated:

Theorem3.3.A4-dimensional-flat perfect fluid spacetime is either a de-Sitter spacetime or locally isometric to
Minkowski spacetime, provided a b 0.1 1+ ¹

4
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The de-Sitter spacetime is known to be conformally flat and, as a result, is of Petrov typeO.
These facts lead us to the following result:

Corollary 3.1.A4-dimensional-flat perfect fluid spacetime is of Petrov type O, provided a b 0.1 1+ ¹

4. Ricci simple spacetimeswith-curvature tensor

In this section, we assume that Ricci simple spacetimewith-flat curvature tensor and harmonic-curvature
tensor.

Firstly, we consider Ricci simple-flat spacetime. Utilizing (15) in (17), we reach

r r

r

r

a n b R
n a n b

n n
A A g A A g
a

n
A A g A A g

a

n n
g g g g

2 2 , , ,
2 3 2

1 2
, ,

2
, ,

2 1
, , , , 0. 29

1 1 2 3 1 1
1

2
1

2 1 3 1 3 1 2 1

1
3 1 2 1 2 1 3 1

1
3 1 2 1 2 1 3 1

   

       

       

       

+ - -
- + -

- -
´ -

-
-

-

+
- -

- =

[ ( ) ] ( ) ( ) ( )
( )( )

[ ( ) ( ) ( ) ( ) ( ) ( )]

[ ( ) ( ) ( ) ( ) ( ) ( )]

( )( )
[ ( ) ( ) ( ) ( )] ( )

Contracting 3 and 1 in (29) reveals that

r

r

a n b

n a n b
g

a b n

n a n b
A A

,
2

1 2 2
,

2

1 2 2
, 30

1 2
1 1

1 1
1 2

1 1

1 1
1 2

    

 

=
+ -

- + -

-
- -

- + -

( ) [ ( ) ]
( )[ ( ) ]

( )

( )( )
( )[ ( ) ]

( ) ( ) ( )

provided a n b2 2 0,1 1+ - ¹( ) which is the formof a PFS.
Combining the equations (15) and (30), we acquire

r r
r

n b a

n a n b

a b n

n a n b

2

1 2 2
0 and

2

1 2 2
, 311 1

1 1

1 1

1 1

- +
- + -

=
- -

- + -
=

[( ) ]
( )[ ( ) ]

( )( )
( )[ ( ) ]

( )

both the equation gives the same result

a n b2 0. 321 1+ - =( ) ( )

Equations (32) and (13) turns into

a, , . 332 3 1 1 2 3 1       =( ) ( ) ( )

Since by hypothesis the spacetime is-flat, therefore (33) infers the spacetime is conformallyflat.
In [28], the authors established that a Ricci simple conformallyflat PFS of dimension n n 4( ) is a RW

spacetime.
Hence from (30) and the foregoing observation, we get to the following conclusion:

Theorem4.1.ARicci simple-flat spacetime becomes a RW spacetime, provided a n b2 2 0.1 1+ - ¹( )

For a 4-dimensional Ricci simple-flat spacetime, the equation (30) becomes

r ra b

a b
g

a b

a b
A A,

2

6
,

3
. 341 2

1 1

1 1
1 2

1 1

1 1
1 2      =

+
+

-
-
+

( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )

For n= 4, from (5) and (10)we can derive

p pg A A,
2

, . 351 2 1 2 1 2      
k s k s= - + +( ) ( ) ( ) ( ) ( ) ( ) ( )

From (34) and (35), we infer that

r
p

r
p

a b

a b
g

a b

a b
A A

2

6 2
,

3
0. 361 1

1 1
1 2

1 1

1 1
1 2   

k s k s+
+

- - -
-
+

+ + =⎧
⎨⎩

⎫
⎬⎭

⎧
⎨⎩

⎫
⎬⎭

( )
( )

( ) ( ) ( )
( )

( ) ( ) ( ) ( )

Contracting the equation (36), we get

p r3 . 37ks k- = ( )

5
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Setting 1 2  r= = in the equation (36), we have

p
ra

a b
3 . 381

1 1

ks k+ = -
+( )

( )

Adding (37) and (38), we find

rb

a b2
. 391

1 1

ks =
+( )

( )

Subtracting (37) from (38), we acquire

p
ra b

a b

2

6
. 401 1

1 1

k = -
+
+

( )
( )

( )

From the equations (39) and (40), we reach

p
r

p
ra b

a b

b a

a b

2

3
and

3
. 411 1

1 1

1 1

1 1

k s k s- =
+
+

+ =
-
+

( ) ( )
( )

( ) ( )
( )

( )

From the above equation, we notice that the equation of state is of the form p
a b

b

2

3
1 1

1

s= -
+

⎜ ⎟
⎛
⎝

⎞
⎠

, that is, the

fluid is isentropic.
Hence, we conclude the result as:

Corollary 4.1.A4-dimensional Ricci simple-flat spacetime represents an isentropic perfect fluid spacetimewith

the equation of state is given by p a b

b

2

3
1 1

1
s= - +( ) .

ALorentzianmanifold is referred to as a Yang pure space [29] if themetric fulfills the Yang’s equation:

, , .3 1 2 12 3       = ( )( ) ( )( )

From (41), we obtain that p+σ≠ 0 for a1+ b1≠ 0. Guilfoyle andNolan [29] established that a PFSwith
σ+ p≠ 0 of dimension 4 is a Yang pure space if and only if it is a RW spacetime.

Therefore, we can conclude as follows:

Corollary 4.2.A4-dimensional Ricci simple-flat spacetime is a Yang pure space for b a 0.1 1+ ¹

If b1= a1, then from (41)we infer that p+σ= 0. This represents a darkmatter era. Consequently, we get
the following conclusion:

Corollary 4.3.A4-dimensional Ricci simple-flat spacetime represents a darkmatter era for a b1 1= .

Mantica andMolinari [30]proved that the subsequent theorem:

TheoremA.ALorentzianmanifold of dimensionn n 3( ) is a GRW spacetime if and only if it admits a unit
timelike torse-forming vector field r: A g A A,3 2 3 2 32

     j = +( )( ) [ ( ) ( ) ( )]and r is an eigenvector of the
Ricci tensor.

Using the definition of-curvature tensor, we acquire that

r r
n a

n n
g d g d

n n a n b

n n

div ,
3

2 1 2
, ,

2 8 7 2

1 2
, , . 42

2 3 1
1

3 1 2 2 1 3

2
1

3
1

3 1 2 12 3

         

      

=
-

- -
-

+
- + + -

- -
 - 

( )( ) ( )
( )( )

[ ( ) ( ) ( ) ( )]

( ) ( )
( )( )

[( )( ) ( )( )] ( )

If the-curvature tensor is harmonic, i.e., div , 0,2 3 1    =( )( ) then (42) reduces to

r r

n n a n b

n a
g d g d

2 8 7 2 , ,

3

2
, , 0. 43

2
1

3
1 3 1 2 1

1
3 1 2 2 1 3

2 3     

     

 - + + -  - 

-
-

- =

[( ) ( ) ][( )( ) ( )( )]
( ) [ ( ) ( ) ( ) ( )] ( )
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Differentiating (15) covariantly and applying in (43)we reach

r
r r

r r r

r r

n n a n b d A A
A A A A

d A A A A A A

n a
g d g d

2 8 7 2

3

2
, , 0. 44

2
1

3
1 2 3 1

3 1 3 1

3 2 1 2 1 2 1

1
3 1 2 2 1 3

2 2

3 3

  
   

      

     

 

 

- + + - -
-  - 
+ +  + 

-
-

- =

[( ) ( ) ][ ( ) ( ) ( )
( )( ) ( ) ( )( )( )

( ) ( ) ( ) ( )( ) ( ) ( )( )( )]
( ) [ ( ) ( ) ( ) ( )] ( )

Contracting 3 and 1 in (44) reveals that

r r r

r

n n a n b d A A A

n n
a n b d

2 8 7 2 div

3 12 11

2
2 0. 45

2
1

3
1 2 2 2

2

1
3

1 2

  



r r- + + - +  +

+
- +

+ - =

r

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

[( ) ( ) ][ ( ) ( ) ( )( ) ( ) ]

( ) ( ) ( )

Setting 1 r= in (44), wefind

r r

r r

r r

n n a n b d A A

d A A

n a
d A d A

2 8 7 2

3

2
0. 46

2
1

3
1 2 3 3

3 2 2

1
2 3 3 2

2

3

  

  

   





- + + - + 
- - 

-
-

- =

[( ) ( ) ][ ( ) ( ) ( )( )
( ) ( ) ( )( )]

( ) [ ( ) ( ) ( ) ( )] ( )

Setting 3 r= in (46), we deduce that

r

r r

n n a n b A

n n a n b
d d A

2 8 7 2

17 4 17 2 2

2
. 47

2
1

3
1 2

2
1

3
1

2 2



 r

- + + - 

=
- - - -

+

r

⎡
⎣⎢

⎤
⎦⎥

[( ) ( ) ] ( )( )
( ) ( ) [ ( ) ( ) ( )] ( )

In light of (45) and (47)wehave

r r

r

a n
d A

a n n
d

n n a n b A

3

2

2 3

2
2 8 7 2 div 0. 48

1
2

1
2

2
1

3
1 2

 



r

r

-
-

- -

+ - + + - =

( ) ( ) ( ) ( )( ) ( )

[( ) ( ) ] ( ) ( )

Putting 2 r= in (48), we obtain

r rn b n n a
a n n

d2 2 8 7 div
1 3

2
. 493

1
2

1
1r r- + - + = -

- -[( ) ( ) ] ( )( ) ( ) ( )

The equations (48) and (49) reflects that

r rd d A . 502 2 r= -( ) ( ) ( ) ( )

Adopting (46) and (50), we can derive

rn n a n b A A2 8 7 2 0. 512
1

3
1 3 22 3  - + + -  -  =[( ) ( ) ][( )( ) ( )( )] ( )

By virtue of (44), (50) and (51)we arrive at

r

r r

n n a n b A A A A

n a
d A g d A g

2 8 7 2

3

2
, , 0. 52

2
1

3
1 2 1 3 1

1
3 2 1 2 3 1

3 2   

     

 

r r

- + + -  - 

-
-

- =

[( ) ( ) ][ ( )( )( ) ( )( )( )]
( ) [ ( ) ( ) ( ) ( ) ( ) ( )] ( )

Substituting 3 byρ in (52), we acquire that

r

r

n n a n b A A A

a n d
A A g

2 8 7 2

3

2
, 0. 53

2
1

3
1 1 2 1

1
2 1 2 1

2   

   



r
- + + -  + 

+
-

+ =

r[( ) ( ) ][( )( ) ( )( )( )]
( ) ( ) [ ( ) ( ) ( )] ( )

In virtue of (47) and (53), we get

r r

r

r

n n a n b
d d A A

n n a n b A

a n d
A A g

17 4 17 2 2

2

2 8 7 2

3

2
, 0. 54

2
1

3
1

1 1 2

2
1

3
1 1

1
2 1 2 1

2

  



   



r

r

- - - -
+

+ - + + - 

+
-

+ =

⎡
⎣⎢

⎤
⎦⎥

( ) ( ) [ ( ) ( ) ( )] ( )

[( ) ( ) ] ( )( )
( ) ( ) [ ( ) ( ) ( )] ( )

The equations (50) and (54) entails that

r

r
A

a n d

n n a n b
g A A

3

2 2 8 7 2
, , 551

1
2

1
3

1
2 1 2 12     

r
 = -

-
- + + -

+( )( ) ( ) ( )
[( ) ( ) ]

[ ( ) ( ) ( )] ( )

provided n n a n b2 8 7 2 0.2
1

3
1- + + - ¹( ) ( ) Thismeans thatρ is torse-forming.
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Putting 3 r= in (15), we infer that

rg, , , 562 2  r r=( ) ( ) ( )

which reflects that r is an eigenvalue corresponding to the eigenvectorρ.
In view of this observation and theoremA,we conclude the following:

Theorem4.2.ARicci simple spacetimewith harmonic-curvature tensor is a GRW spacetime, pro-
vided n n a n b2 8 7 2 0.2

1
3

1- + + - ¹( ) ( )

In a Lorentzianmanifold, the Raychaudhuri equation [31] for thefluid can be expressed as

A g A A, , , , 573 2 3 2 3 2 3 2 32          w t j = + + +( )( ) ( ) ( ) [ ( ) ( ) ( )] ( )

ωstands for the vorticity tensor, τ stands for the shear tensor andj is a scalar function. The equation (51)
provides us the one-formA is closed, provided n n a n b2 8 7 2 0.2

1
3

1- + + - ¹( ) ( ) Henceρ is irrotational.
Consequently, thefluid has zero vorticity, that is, , 0.2 3 w =( ) Therefore the foregoing equation reduces to

A g A A, , . 583 2 3 2 3 2 32        t j = + +( )( ) ( ) [ ( ) ( ) ( )] ( )

Sinceρ is a torse-forming vector field, the equations (14) and (58) turns into

, 0. 592 3 t =( ) ( )

Thuswe can state:

Corollary 4.4.ARicci simple spacetimewith harmonic-curvature tensor is vorticity-free and shear-free,
provided n n a n b2 8 7 2 0.2

1
3

1- + + - ¹( ) ( )

5.GRWspacetimeswith-flat curvature tensor

For this section, we need the following result which is important for the subsequent results.

TheoremB. [32]ALorentzianmanifold of dimension n n 3( ) is aGRW spacetime if and only if it admits a
timelike vector field 1 such that f ,1 22

  = f being a scalar.

From the above theoremBwe acquire that

f f, . 602 3 1 2 3 3 2       = -( ) ( ) ( ) ( )

Contracting (60)with 2 provides

n f, 1 . 613 1 3   = -( ) ( )( ) ( )

Replacing 1 byρ in (61)we infer

n f, 1 . 623 3  r = -( ) ( )( ) ( )

Since by hypothesis theGRWspacetime is-flat, from (18)wededuce that
r

n
A, . 632 2  r =( ) ( ) ( )

In view of (62) and (63)we reach

r
f

n n
A

1
. 643 3 =

-( )
( ) ( )

For theflow vector fieldρ, equation (60) gives us

f f, . 652 3 2 3 3 2      r = -( ) ( ) ( ) ( )

Equations (64) and (65) turns into

r

n n
A A,

1
. 662 3 2 3 3 2      r =

-
-( )

( )
[ ( ) ( ) ] ( )
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Now the equation (11) implies

r

C R
n

A A

g g

n n
g A g A

, , , , , ,
1

2
, ,

, , , ,

1 2
, , . 67

2 3 1 2 3 1 3 1 2 2 1 3

3 1 2 2 1 3

3 1 2 2 1 3

             

       

     

r r

r r

= -
-

-

+ -

+
- -

-

( ) ( ) [ ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )]

( )( )
[ ( ) ( ) ( ) ( )] ( )

Adopting (18), (63), (66) and (67)we arrive at C , , , 0,2 3 1   r =( ) that is, , 0,2 3   r =( ) whichmeans
that theWeyl curvature tensor is purely electric [33]. It is noted that in aGRWspacetime, , 02 3   r =( ) if and
only if div 0 = [30].Moreover, it is well known

n

n

n
g dr g dr

div ,
3

2
, ,

1

2 1
, , . 68

2 3 1 3 1 2 1

3 1 2 2 1 3

2 3         

     

 =
-
-

 - 

-
-

-

⎛
⎝

⎞
⎠

⎤
⎦⎥

( )( ) [{( )( ) ( )( )}

( )
{ ( ) ( ) ( ) ( )} ( )

Since the-flat spacetime is Einstein, therefore obviously div 0. =
Thuswe can state:

Theorem5.1. In a-flat GRW spacetime theWeyl curvature tensor is purely electric and harmonic.

For n= 4, , 02 3   r =( ) is similar to

A C A C A C, , , , , , , , , 0, 694 2 3 1 1 2 3 4 1 1 3 4 2 1 1              + + =( ) ( ) ( ) ( ) ( ) ( ) ( )

A g ,4 4  r=( ) ( ). Substituting 4 byρ in (69)we have C , , , 02 3 1 1    =( ) [34]. In [35], the authors
proved that aGRWspacetime is a RW spacetime if and only if it is conformally flat.

Hencewewrite:

Corollary 5.1.A4-dimensional-flat GRW spacetime is a RW spacetime.

It is known ([36], p. 73) that if a spacetime admits a unit timelike vector field inwhich theWeyl curvature
tensor is purely electric, then it is of Petrov type I,D orO.

Consequently, the following is our conclusion:

Corollary 5.2.A-flat GRW spacetime is of Petrov type I , D or O.

6.-flat spacetimes obeying f r, ( )-gravity and rf , m( )-gravity

In this section, we characterize-flat spacetimes satisfying rf , ( )-gravity and rf , m( )-gravity.
Firstly, we consider-flat spacetimes obeying f r, ( )-gravity. The generalization of rf( )-gravity, which

provides the physical aspect of thematter distribution in order to formulate a theoreticalmodel, is termed
rf , ( )-gravity. Thismodified gravity theorywas first presented byHarko et al [16]. For a number of unique

cases of rf , ( )-gravity, the relatedfield equations have been studied inmetric formalism.Here, we select [16]

r rf f, 2 , 70 = +( ) ( ) ( )

f ( ) be a function of trace  of the EMT and rf , ( ) be a function of the trace  of the EMT and the scalar
curvature r.

According to themodified Einstein-Hilbert action term,

r
E g d x

f16 ,

16
, 71m 4 

ò
p

p
=

+
-⎡

⎣
⎤
⎦

( ) ( )

where m denotes thematter Lagrangian of the scalar field. The stress energy tensor of thematter is presented as

g

g

2
. 72ij

m

ij


d

d
=

- -

-

( )
( )

Consider that m depends solely on g and not its derivatives.
The followingfield equations of rf , ( )-gravity are obtained from the variation of action (71)with respect to

themetric tensor g:
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r r r

r

g gf f f

f

, ,
1

2
, , , ,

8 , , , , , 73

r r2 3 2 3 2 3

2 3 2 3 2 3

2 3          

        

 

p

- + -  

= - + Q

( ) ( ) ( ) ( ) [ ( ) ] ( )

( ) [ ( ) ( )] ( ) ( )

r
r

r
f

f
,

,
r 


=

¶
¶

( ) { ( )}
, r

r
f

f
,

,





 =

¶
¶

( ) { ( )}
,, indicates the d’Alembert operator and

g g
g g

, 2 , , 2 . 74m
lk m

ab lk2 3 2 3 2 3

2

       


Q = - + -
¶

¶ ¶
( ) ( ) ( ) ( )

If rf , ( ) equals rf( ), then (73)provides thefield equations of rf( )-gravity.
Since the Lagrangian has no single value, we suppose that m is equal to−p and utilizing (3), we infer that

p pg A A, , , 752 3 2 3 2 3      s= - + +( ) ( ) ( ) ( ) ( ) ( )

where A g ,2 2  r=( ) ( ) and g , 1.r r = -( ) In view of (75), the variation of stress energy can be simply
obtained in the following form:

pg, 2 , , . 762 3 2 3 2 3      Q = - -( ) ( ) ( ) ( )

Equations (70) and (73) together yield

r
g gf

f

,
2

, 8 , ,

2 , , . 77

2 3 2 3 2 3 2 3

2 3 2 3

          

     

p= + +

- + Q ¢

( ) ( ) ( ) ( ) ( )

[ ( ) ( )] ( ) ( )

Harko et al [16] did not take the conservation of the EMT in the derivation of thefield equations. But in [15], the
author assumed the conservation of the EMT. This section examines the PFS solution to the rf , ( )-gravity
equation under the assumption that the EMT is conserved.

Adopting (75), (76) and (77), we reach

r
p

p

g

A A

f

f

,
2

8 ,

2 8 . 78

2 3 2 3

2 3

     

  s

p

p

= - +

+ + ¢ +

⎡
⎣

⎤
⎦

( ) ( ) ( )

( ){ ( ) } ( ) ( ) ( )

It indicates that the Ricci tensor of the PFS in rf , ( )-gravity theory takes the form (78). Equations (18) and (78)
reflects that

r
p pg A Af f

4
8 , 2 8 0. 792 3 2 3     sp p- + + + ¢ + =⎡

⎣
⎤
⎦

( ) ( ) ( ){ ( ) } ( ) ( ) ( )

Contracting (79), reveals that

r p pf f4 32 8 2 0. 80 sp p+ - - + + ¢ =( ) ( ){ ( )} ( )

Replacing 2 and 3 byρ in (79), we acquire that

r p pf f4 32 4 8 2 0. 81 sp p- - + + + + ¢ =( ) ( ){ ( )} ( )

Equations (80) and (81) turns into

pf4 0, 82 sp + ¢ + ={ ( )}( ) ( )

whichmeans that either p+σ= 0 or, p+σ≠ 0.
Case 1. If p+σ= 0, then a darkmatter era is represented in spacetime.
Case 2. If p+σ≠ 0, then f4 0.p + ¢ =( ) Thus the equation (78) reflects that it is an Einstein spacetime.
The result is as follows:

Theorem6.1.A-flat spacetime obeying rf , ( )-gravity for themodel r rf f, 2 = +( ) ( ) represents either a
darkmatter era or an Einstein spacetime.

Equations (80) and (81) infers

p
r f4

32
. 83



p
=

+ ( ) ( )

For dustmatter era, that is, p is equal to zero, the foregoing equation reduces to
r

f
4

 = -( ) . Consequently, we

can say that:

Corollary 6.1.A-flat spacetime is unable to illustrate dustmatter era for any viable rf , ( ).

Remark 6.1. rf , ( )-gravity reduces to rf( )-gravity for f ( ) equals zero. Therefore by theorem6.1, for
rf( )-gravity a darkmatter era is represented in-flat spacetime. The equation of state is p 0,s+ = that is,
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p ,s = -∣ ∣ ∣ ∣ that is, ps = ∣ ∣as the energy density cannot be negative. Hence in rf( )-gravity a-flat spacetime
satisfies the DEC. Thus in a-flat spacetime satisfying rf( )-gravity the speed of light is the faster than the speed
ofmatter [27].

Nowwe consider-flat spacetimes in the context of rf , m( )-gravity, which is the another extension of
rf( )-gravity, proposed byHarko and Lobo [18]. As a result of the coupling themotion of themassive particles is

non-geodesic, and an extra force, orthogonal to the four-velocity, arises. The connectionswithMONDand the
Pioneer anomaly were also explored. Thismodel was extended to the case of the arbitrary couplings in both
geometry andmatter in [17].We assume that the action term for themodified theories of gravity takes the
following form:

rS g d xf , , 84m
4ò= -( ) ( )

where rf , m( ) is an arbitrary function of the scalar curvature r, and of the Lagrangian density corresponding to
matter, m .We define the energy-momentum tensor of thematter as

g

g g

2
. 85ij

m

ij


d

d
=

- -

-

( )
( )

Assuming that m depends on themetric tensor g and not on its derivatives.
The followingfield equations of rf , m( )-gravity are obtained from the variation of action (84)with respect

to themetric tensor g:

r r

r r r

g

g

f f

f f f

, , , ,

1

2
, , ,

1

2
, , . 86

r rm m

m m m m

2 3 2 3

2 3 2 3m m

2 3       

        

 

 

+ -  

- - =

( ) ( ) [ ( ) ] ( )

[ ( ) ( ) ] ( ) ( ) ( ) ( )

Contracting the field equation (86), we get

r r r r r r tf f f f f, 3 , 2 , ,
1

2
, , 87r rm m m m m mm m       + - - =( ) ( ) [ ( ) ( ) ] ( ) ( )

where t is the trace of the energy-momentum tensor  . Eliminating the term rf ,r m ( ) from (86) and (87), we
obtain themodified formof the gravitational field equations as [18]

r
r r r

r r

g g

t
g

f f f

f f

,
3

, ,
1

6
, , ,

1

2
,

3
, , , . 88

r

r

m m m m

m m

2 3 2 3 2 3

2 3 2 3

m

m 2 3

          

      



  

- + -

= - +  

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

( ) ( ) ( ) [ ( ) ( ) ] ( )

( ) ( ) ( ) ( ) ( )

Weconsider the followingmodel [18] for our investigations:

r
r

f ,
2

. 89m m = +( ) ( )

Then for this particular rf , m( )model with m s= [19], the equation (88) becomes

rt
g,

3 6
, , . 902 3 2 3 2 3       + - =⎛

⎝
⎞
⎠

( ) ( ) ( ) ( )

In this case, we consider PFS solution of rf , m( )-gravity equation assuming the EMT is of the form (3).
Contracting the equation (3), we have

pt 3 . 91s= - ( )

Equations (3), (18), (90) and (91) gives us

r
pg A A

3 12
, 0. 922 3 2 3   

s s- + + =⎛
⎝

⎞
⎠

( ) ( ) ( ) ( ) ( )

Contracting the equation (92), we obtain

r p3 . 93s= - ( )

Putting 2 3  r= = in the equation (92), we find

r p12 8 . 94s- = + ( )

From the equations (93) and (94), we reach

p 0. 95s+ = ( )

Thuswe conclude:
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Theorem6.2.A-flat perfect fluid spacetime satisfying rf , m( )-gravity for themodel r
r

f ,
2

m s= +( )
represents a darkmatter era.
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In this study, we analyze almost pseudo-Ricci symmetric spacetimes endowed with Gray’s
decomposition, as well as generalized Robertson–Walker spacetimes. For almost pseudo-Ricci
symmetric spacetimes, we determine the form of the Ricci tensor in all the O (𝑛)-invariant
subspaces provided by Gray’s decomposition of the gradient of the Ricci tensor. In three cases
we obtain that the Ricci tensor is in the form of perfect fluid and in one case the spacetime
becomes a generalized Robertson–Walker spacetime. In other cases we obtain some algebraic
results. Finally, it is shown that an almost pseudo-Ricci symmetric generalized Robertson–Walker
spacetime is a perfect fluid spacetime.

Keywords: almost pseudo-Ricci symmetric spacetime, Gray’s decomposition, perfect fluid space-
time, generalized Robertson–Walker spacetime.

1. Introduction
Lorentzian geometry is the mathematical framework that supports some of the

most important theories in modern physics, general relativity and string theory.
From a purely mathematical point of view, a Lorentzian manifold 𝑀 is a smooth
manifold endowed with a symmetric nondegenerate bilinear form 𝑔, called the metric
of signature (−, +, +, +, . . . , +), that is, index of 𝑔 is 1. In general, a Lorentzian
manifold (𝑀, 𝑔) may not have a globally timelike vector field. If (𝑀, 𝑔) admits
a globally timelike vector field, it is called a time-oriented Lorentzian manifold,

*Corresponding author.

[29]
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physically known as spacetime. Several authors have explored spacetimes in various
ways, such as [1–3] and also numerous others.

A nonflat semi-Riemannian manifold is named pseudo-Ricci symmetric [4] and
indicated by (PRS)𝑛 if the Ricci tensor S of type (0, 2) of the manifold is nonzero
and satisfies the relation

(∇𝑋S) (𝑌, 𝑍) = 2𝜔 (𝑋) S (𝑌, 𝑍) + 𝜔 (𝑌 ) S (𝑋, 𝑍) + 𝜔 (𝑍) S (𝑋,𝑌 ) ,
where ∇ signifies the covariant differentiation with respect to the metric 𝑔, 𝜔 is
a nonvanishing one-form and �̃� is a vector field metrically equivalent to the one-form
𝜔, that is,

𝜔 (𝑋) = 𝑔 (𝑋, �̃�)
for all 𝑋 . The manifold reduces to a Ricci symmetric manifold if 𝜔 = 0. Several
authors [4, 5] have investigated pseudo-Ricci symmetric manifolds as well as pseudo-
Ricci symmetric spacetimes.

Thus, in general theory of relativity, the pseudo-Ricci symmetric manifolds have
some applications. In view of this, Chaki and Kawaguchi [6] were inspired to
generalize pseudo-Ricci symmetric manifolds and introduced the notion of a new
manifold called almost pseudo-Ricci symmetric.

A semi-Riemannian manifold (𝑀𝑛, 𝑔) is called an almost pseudo-Ricci symmetric
(denoted by A (PRS)𝑛) if the covariant derivative of the Ricci tensor satisfies

(∇𝑋S) (𝑌, 𝑍) = [𝜔 (𝑋) + [ (𝑋)] S (𝑌, 𝑍) + 𝜔 (𝑌 ) S (𝑋, 𝑍) + 𝜔 (𝑍) S (𝑋,𝑌 ) , (1)

where S is the nonvanishing Ricci tensor, 𝜔 and [ are nonvanishing one-forms
such that 𝑔 (𝑋, �̃�) = 𝜔 (𝑋) and 𝑔 (𝑋, 𝜌) = [ (𝑋), for all 𝑋 and �̃�, 𝜌 are called the
basic vector fields of the manifold corresponding to the associated one-forms 𝜔 and
[, respectively.

If 𝜔 = [, then A (PRS)𝑛 yields (PRS)𝑛. Almost pseudo-Ricci symmetric manifolds
have been investigated by several authors [7, 8] and many others.

Changing 𝑋 and 𝑌 in (1) and subtracting these two equations, we obtain

(∇𝑋S) (𝑌, 𝑍) − (∇𝑌S) (𝑋, 𝑍) = [ (𝑋) S (𝑌, 𝑍) − [ (𝑌 ) S (𝑋, 𝑍) . (2)

Considering a frame field and contracting 𝑌 and 𝑍 in (2), yields

𝑑𝑟 (𝑋) = 2𝑟[ (𝑋) − 2S (𝑋, 𝜌) , (3)

where 𝑟 =
𝑛∑
𝑖=1

Y𝑖S (𝑒𝑖, 𝑒𝑖) is the scalar curvature and Y𝑖 = 𝑔 (𝑒𝑖, 𝑒𝑖) = ±1.

The conformal curvature tensor in a Lorentzian manifold (𝑀𝑛, 𝑔) (𝑛 > 3) is
given by

C (𝑋,𝑌 ) 𝑍 = R (𝑋,𝑌 ) 𝑍− 1
𝑛−2

[𝑔 (𝑌, 𝑍) Q𝑋−𝑔 (𝑋, 𝑍) Q𝑌+S (𝑌, 𝑍) 𝑋−S (𝑋, 𝑍)𝑌 ]

+ 𝑟

(𝑛−1) (𝑛−2) [𝑔 (𝑌, 𝑍) 𝑋−𝑔 (𝑋, 𝑍)𝑌 ] , (4)
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Q is the Ricci operator defined as S (𝑋,𝑌 ) = 𝑔 (Q𝑋,𝑌 ) and 𝑟 is the scalar curvature.
De, Özgür and De [9] proved that a conformally flat A (PRS)4 spacetime is the
Robertson–Walker spacetime.

In cosmology, the observation that the space is isotropic and homogeneous in
the large scale one chooses the Robertson–Walker (briefly, RW) metric. In 1995,
Alı́as, Romero and Sánchez [10] generalized the notion of RW metric to the
generalized Robertson–Walker (briefly, GRW) metric. A Lorentzian manifold 𝑀 of
dimension 𝑛 ≥ 3 endowed with the Lorentzian metric 𝑔 defined by

𝑑𝑠2 = − (𝑑𝑡)2 + 𝜑2 (𝑡) 𝑔∗𝑙𝑚 (𝑥) 𝑑𝑥𝑙𝑑𝑥𝑚, (5)
where 𝑡 is the time and 𝑔∗

𝑙𝑚
(𝑥) is the metric tensor of a Riemannian manifold

𝑀∗, is a GRW spacetime. In other words, a GRW spacetime is the warped product
−𝐼 × 𝜑2𝑀∗, where 𝐼 is an open interval of the real line, 𝜑 is a smooth warping
function or scale factor such that 𝜑 > 0 and 𝑀∗ is an (𝑛 − 1)-dimensional Riemannian
manifold. In particular, if 𝑀∗ is a 3-dimensional Riemannian manifold of constant
sectional curvature, then the warped product −𝐼 × 𝜑2𝑀∗ is said to be a RW
spacetime. A Robertson–Walker spacetime compiles the cosmological principle, that
is, the spacetime is locally spatially isotropic and locally spatially homogeneous,
although the GRW spacetime is not necessarily spatially homogeneous [3].

Lorentzian manifolds with the Ricci tensor
S (𝑋,𝑌 ) = 𝛼𝑔 (𝑋,𝑌 ) + 𝛽[ (𝑋) [ (𝑌 ) , (6)

where 𝛼 and 𝛽 are scalars and 𝜌 is a unit timelike vector field corresponding to
the one-form [, are called perfect fluid spacetimes.

The energy momentum tensor T represents the matter content of the spacetime,
which is considered to be fluid. The energy momentum tensor for a perfect fluid
spacetime has the form [11]

T (𝑋,𝑌 ) = 𝑝𝑔 (𝑋,𝑌 ) + (𝑝 + 𝜎) [ (𝑋) [ (𝑌 ) , (7)
where 𝜎 represents the energy density and 𝑝 represents the isotropic pressure. The
velocity vector field 𝜌 is a unit timelike vector field that is metrically equivalent
to the nonzero one-form [. The perfect fluid is known as isentropic for 𝑝 = 𝑝 (𝜎)
and for 𝑝 = 𝜎, the fluid is called stiff matter fluid ([12], p. 66).

Einstein’s field equation (briefly, EFE) without cosmological constant is as
follows:

S (𝑋,𝑌 ) − 𝑟

2
𝑔 (𝑋,𝑌 ) = ^T (𝑋,𝑌 ) , (8)

S and 𝑟 being the Ricci tensor and scalar curvature, respectively, ^ is the gravitational
constant. According to EFE, the geometry of spacetime is determined by matter,
whereas the motion of matter is dictated by the nonflat metric of the spacetime.
The above form (6) of the Ricci tensor is derived from Einstein’s equation using
Eq. (7).

In this paper, we consider almost pseudo-Ricci symmetric spacetimes. The
Lorentzian setting supports the results obtained for almost pseudo-Ricci symmetric
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manifolds. An 𝑛-dimensional Lorentzian manifold (𝑀, 𝑔) is said to be an almost
pseudo-Ricci symmetric spacetime if the Ricci tensor satisfies (1). Almost pseudo-
Ricci symmetric spacetimes have been investigated by several authors [9, 13] and
many others. The existence of such a spacetime has been proved by De et al. [9].
In this case, the associated vector field corresponding to the one-form [ is treated
as a unit timelike velocity vector field or flow vector field, i.e. 𝑔 (𝜌, 𝜌) = −1.

The present paper is structured as follows. In Section 2, we investigate all the
seven cases of Gray’s decomposition of A (PRS)𝑛. The study of A (PRS)𝑛 with
GRW spacetime is presented in Section 3.

2. Gray’s decomposition and almost pseudo-Ricci symmetric spacetimes
Considering the action of the orthogonal group on the space of tensors with the

symmetries of the covariant derivative of the Ricci curvature, Gray decomposed such
space into irreducible components [14]. Gray proposed that the covariant derivative
of the Ricci tensor, that is ∇S, can be decomposed into O (𝑛)-invariant terms (for
additional information, see [15]). According to [14], the covariant derivative of the
Ricci tensor (∇𝑋S) (𝑌, 𝑍) can be converted into O (𝑛)-invariant term as follows [16]:

(∇𝑋S) (𝑌, 𝑍) = R̃ (𝑋,𝑌 ) 𝑍 + 𝛾 (𝑋) 𝑔 (𝑌, 𝑍) + 𝛿 (𝑌 ) 𝑔 (𝑋, 𝑍) + 𝛿 (𝑍) 𝑔 (𝑋,𝑌 ) , (9)
for all vector fields 𝑋 , 𝑌 , 𝑍 , where

𝛾 (𝑋) = 𝑛

(𝑛 − 1) (𝑛 + 2) ∇𝑋𝑟, 𝛿 (𝑋) = 𝑛 − 2
2 (𝑛 − 1) (𝑛 + 2) ∇𝑋𝑟,

and R̃ (𝑋,𝑌 ) 𝑍 = R̃ (𝑋, 𝑍)𝑌 is a tensor with zero trace that can be written as a sum
of its orthogonal components

R̃ (𝑋,𝑌 ) 𝑍 =
1
3
[
R̃ (𝑋,𝑌 ) 𝑍 + R̃ (𝑌, 𝑍) 𝑋 + R̃ (𝑍, 𝑋)𝑌

]
+ 1

3
[
R̃ (𝑋,𝑌 ) 𝑍 − R̃ (𝑌, 𝑋) 𝑍

]
+ 1

3
[
R̃ (𝑋,𝑌 ) 𝑍 − R̃ (𝑍, 𝑋)𝑌

]
. (10)

The decompositions (9) and (10) yield O (𝑛)-invariant subspace, which is character-
ized by linear invariant equations in (∇𝑋S) (𝑌, 𝑍).

Therefore, the relation between ∇S and the divergence of the Weyl conformal
curvature tensor C can be given by the equation [16]

(div C) (𝑋,𝑌 ) 𝑍 =
𝑛 − 3
𝑛 − 2

[
R̃ (𝑋,𝑌 ) 𝑍 − R̃ (𝑌, 𝑋) 𝑍

]
. (11)

The subspaces in Gray’s decomposition are as follows:
(i) The trivial subspace is characterized by ∇S = 0.

(ii) The subspace J is characterized by R̃ (𝑋,𝑌 )𝑍 = 0, i.e.
(∇𝑋S)(𝑌, 𝑍) = 𝛾 (𝑋) 𝑔 (𝑌, 𝑍) + 𝛿 (𝑌 ) 𝑔 (𝑋, 𝑍) + 𝛿 (𝑍) 𝑔 (𝑋,𝑌 ) , (12)

where 𝛾, 𝛿 are one-forms. Manifolds satisfying this requirement (12) are called
Sinyukov manifolds [17, 18].
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(iii) The orthogonal complements J ′ (also referred to as the subspace A) are
characterized by

(∇𝑋S)(𝑌, 𝑍) + (∇𝑌S)(𝑍, 𝑋) + (∇𝑍S)(𝑋,𝑌 ) = 0. (13)

which yields that the scalar curvature 𝑟 is constant. Also, the Ricci tensor is
Killing [19] if Eq. (13) holds.

(iv) In the subspaces B and B′ the Ricci tensor is of Codazzi type, i.e.

(∇𝑋S)(𝑌, 𝑍) = (∇𝑌S)(𝑋, 𝑍). (14)

(v) The Ricci tensor fulfills the following cyclic condition in the subspace J ⊕A,

(∇𝑋S) (𝑌, 𝑍) + (∇𝑌S) (𝑍, 𝑋) + (∇𝑍S) (𝑋,𝑌 )

= 2
𝑑𝑟 (𝑋)
(𝑛 + 2) 𝑔 (𝑌, 𝑍) + 2

𝑑𝑟 (𝑌 )
(𝑛 + 2) 𝑔 (𝑍, 𝑋) + 2

𝑑𝑟 (𝑍)
(𝑛 + 2) 𝑔 (𝑋,𝑌 ) , (15)

that is, the Ricci tensor is conformal Killing [19].
(vi) The Ricci tensor fulfills the following Codazzi condition in the subspace

J ⊕ B,

∇𝑋

[
S (𝑌, 𝑍) − 𝑟

2 (𝑛 − 1) 𝑔 (𝑌, 𝑍)
]
= ∇𝑌

[
S (𝑋, 𝑍) − 𝑟

2 (𝑛 − 1) 𝑔 (𝑋, 𝑍)
]
, (16)

which gives div C = 0.
(vii) In the subspace A ⊕ B, the scalar curvature is covariant constant.

Let us consider each of these seven cases separately.

Case (i): The trivial subspace ∇S = 0.

Theorem 1. An A (PRS)𝑛 spacetime does not belong to the trivial subspace.

Proof: Since ∇S = 0, then from the definition of A (PRS)𝑛 the one-forms 𝜔

and [ must vanish at any point of the manifold, which contradicts the definition of
A (PRS)𝑛. □

Case (ii): The subspace J where R̃ (𝑋,𝑌 ) 𝑍 = 0.

Theorem 2. If an A (PRS)𝑛 spacetime belongs to the subspace J , then the
spacetime is a perfect fluid spacetime.

Proof: The Ricci tensor satisfies the relation R̃ (𝑋,𝑌 ) 𝑍 = 0 in the subspace J
and hence from the relation (11) we obtain div C = 0. So we have

(∇𝑋S) (𝑌, 𝑍) − (∇𝑍S) (𝑋,𝑌 ) =
1

2 (𝑛 − 1) [𝑑𝑟 (𝑋) 𝑔 (𝑌, 𝑍) − 𝑑𝑟 (𝑍) 𝑔 (𝑋,𝑌 )] . (17)
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Using (1) and (3) in (17) we get

[ (𝑋) S (𝑌, 𝑍) − [ (𝑍) S (𝑋,𝑌 ) = 𝑟

(𝑛 − 1) [𝑔 (𝑌, 𝑍) [ (𝑋) − 𝑔 (𝑋,𝑌 ) [ (𝑍)]

− 1
(𝑛 − 1) [𝑔 (𝑌, 𝑍) S (𝑋, 𝜌) − 𝑔 (𝑋,𝑌 ) S (𝑍, 𝜌)] .

(18)

Now, putting 𝑋 = 𝑌 = 𝜌 in (18) and using [ (𝜌) = −1, we observe that

S (𝑍, 𝜌) = −𝑡[ (𝑍) , (19)

where 𝑡 = S (𝜌, 𝜌).
Again setting 𝑋 = 𝜌 in (18) and using (19) we arrive at

S (𝑌, 𝑍) = (𝑟 + 𝑡)
(𝑛 − 1) 𝑔 (𝑌, 𝑍) +

(𝑟 + 𝑛𝑡)
(𝑛 − 1) [ (𝑌 ) [ (𝑍) . (20)

This implies that an A (PRS)𝑛 spacetime is a perfect fluid spacetime. □

Corollary 1. If an A (PRS)4 spacetime belongs to the subspace J , then the
spacetime represents a dark matter era for 𝑟 = −4𝑡.

Proof: According to EFE without cosmological constant, the Ricci tensor becomes

S (𝑌, 𝑍) = ^

(
𝑝 − 𝜎

2 − 𝑛

)
𝑔 (𝑌, 𝑍) + ^ (𝑝 + 𝜎) [ (𝑌 ) [ (𝑍) .

In contrast to Eq. (20) we notice that

^

(
𝑝 − 𝜎

2 − 𝑛

)
=

𝑟 + 𝑡

𝑛 − 1

and
^ (𝑝 + 𝜎) = 𝑟 + 𝑛𝑡

𝑛 − 1
.

Now, for 𝑛 = 4, 𝑝 +𝜎 = 0, provided 𝑟 = −4𝑡. Hence the spacetime represents a dark
matter era [20]. □

Case (iii): The subspace A is characterized by the condition (13).

Theorem 3. If an A (PRS)𝑛 spacetime belongs to the subspace A, then the
associated one-forms are related by 3𝜔 (𝑋) + [ (𝑋) = 0.

Proof: From (1) and (13) we obtain

[3𝜔 (𝑋) + [ (𝑋)] S (𝑌, 𝑍) + [3𝜔 (𝑌 ) + [ (𝑌 )] S (𝑍, 𝑋) + [3𝜔 (𝑍) + [ (𝑍)] S (𝑋,𝑌 ) = 0.
(21)

Walker’s Lemma [21] is now listed as follows.
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Lemma 1. If 𝛼𝑖 𝑗 , 𝛽𝑖 are numbers satisfying 𝛼𝑖 𝑗 = 𝛼 𝑗𝑖, 𝛼𝑖 𝑗𝛽𝑘 + 𝛼 𝑗𝑘𝛽𝑖 + 𝛼𝑘𝑖𝛽 𝑗 = 0
for 𝑖, 𝑗 , 𝑘 = 1, 2, 3, . . . , 𝑛, then either all 𝛼𝑖 𝑗 are zero or all 𝛽𝑖 are zero.

As S ≠ 0, according to Walker’s Lemma, from (21) we have 3𝜔 (𝑋) + [ (𝑋) = 0.
□

Case (iv): In this subspace, the Ricci tensor is of Codazzi type.

Proposition 1. If an A (PRS)𝑛 spacetime belongs to the subspaces B and B′,
then the spacetime is a Ricci simple spacetime.

Proof: If an A (PRS)𝑛 belongs to B and B′, then
(∇𝑋S) (𝑌, 𝑍) = (∇𝑌S) (𝑋, 𝑍) . (22)

Using (1) in (22) reveals that
[ (𝑋) S (𝑌, 𝑍) = [ (𝑌 ) S (𝑋, 𝑍) . (23)

Putting 𝑋 = 𝜌 in (23), we infer that
S (𝑌, 𝑍) = −[ (𝑌 ) S (𝜌, 𝑍) . (24)

Contracting 𝑌 and 𝑍 in (23) reveals that
[ (𝑋) 𝑟 = S (𝑋, 𝜌) . (25)

Using (25) in (24) we deduce that
S (𝑌, 𝑍) = −𝑟[ (𝑌 ) [ (𝑍) ,

which implies the spacetime is Ricci simple [22]. □

Remark 1. The physical interpretation of a Ricci simple spacetime is explored
in [22]. The authors proved that a Ricci simple spacetime becomes a stiff matter
fluid [12]. Thus we conclude that if an A (PRS)𝑛 spacetime belongs to the subspaces
B and B′, then the spacetime becomes a stiff matter fluid.

It is known that

(div C) (𝑋,𝑌 ) 𝑍 =

(
𝑛 − 3
𝑛 − 2

) [
{(∇𝑋S) (𝑌, 𝑍) − (∇𝑌S) (𝑋, 𝑍)}

− 1
2 (𝑛 − 1) {𝑔 (𝑌, 𝑍) 𝑑𝑟 (𝑋) − 𝑔 (𝑋, 𝑍) 𝑑𝑟 (𝑌 )}

]
. (26)

Since in our case S satisfies (22), this implies that the scalar curvature 𝑟 is constant.
Hence, from (26) we get (div C) (𝑋,𝑌 ) 𝑍 = 0.

Mantica, Suh and De [22] proved the following theorem.
Theorem A. If an 𝑛-dimensional (𝑛 > 3) Lorentzian manifold (𝑀𝑛, 𝑔) with the

Ricci tensor of the form S (𝑋,𝑌 ) = −𝑟[ (𝑋) [ (𝑌 ) satisfies the curvature condition
div C = 0, where “ div ” denotes the divergence, then (𝑀𝑛, 𝑔) is a GRW spacetime.
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Theorem 4. If an A (PRS)𝑛 spacetime belongs to the class B and B′, then the
spacetime becomes a GRW spacetime.

Proof: Since the Ricci tensor is of Codazzi type, div C = 0. Hence, from
Proposition 1, and Theorem A, we conclude that the spacetime is a GRW spacetime.

□

Case (v): In this subspace, the Ricci tensor satisfies Eq. (15). Mantica et al. [16]
showed that the subspaces J ⊕ A and J are equivalent. In this circumstances, we
reach div C = 0. Consequently, the result is the same as in Theorem 2.

Case (vi): Let the A (PRS)𝑛 belong to J ⊕ B. In this case, we get div C = 0. So
we can state the same result as in Theorem 2.

Case (vii): In the subspace A ⊕ B, the scalar curvature is covariant constant.

Theorem 5. If an A (PRS)𝑛 spacetime belongs to the subspace A ⊕B, then the
velocity vector field 𝜌 is an eigenvector corresponding to the eigenvalue 𝑟.

Proof: Since the scalar curvature 𝑟 is covariant constant, then from Eq. (3) we
get

S (𝑋, 𝜌) = 𝑟𝑔 (𝑋, 𝜌) .
This completes the proof. □

3. A (PRS)𝑛 GRW spacetimes
In this section, we characterize almost pseudo-Ricci symmetric GRW spacetimes.

Mantica and Molinari [23] proved that a Lorentzian manifold of dimension 𝑛 ≥ 3
is a GRW spacetime if and only if it admits a unit timelike torse forming vector
field: ∇𝑘𝑢 𝑗 = 𝜙

(
𝑔𝑘 𝑗 + 𝑢𝑘𝑢 𝑗

)
, that is also an eigenvector of the Ricci tensor.

Theorem 6. An A (PRS)𝑛 GRW spacetime is a perfect fluid spacetime.

Proof: We assume that the A (PRS)𝑛 spacetime be a GRW spacetime. Then we
have

(∇𝑋[) (𝑌 ) = 𝜓 [𝑔 (𝑋,𝑌 ) + [ (𝑋) [ (𝑌 )] and S (𝑋, 𝜌) = `𝑔 (𝑋, 𝜌) , (27)

for some smooth functions 𝜓 (≠ 0) and ` on 𝑀 .
Now,

(∇𝑋S) (𝑌, 𝜌) = 𝑋S (𝑌, 𝜌) − S (∇𝑋𝑌, 𝜌) − S (𝑌,∇𝑋𝜌) . (28)

Using (27) in (28), we arrive at

(∇𝑋S) (𝑌, 𝜌) = 𝑋 (`) [ (𝑌 ) + `𝜓𝑔 (𝑋,𝑌 ) − 𝜓S (𝑌, 𝑋) , (29)

where 𝑋 (`) = 𝑔 (𝑋, grad`).
Combining Eqs. (1) and (27), we reveal

(∇𝑋S) (𝑌, 𝜌) = ` [𝜔 (𝑋) [ (𝑌 ) + [ (𝑋) [ (𝑌 ) + 𝜔 (𝑌 ) [ (𝑋)] + 𝜔 (𝜌) S (𝑋,𝑌 ) . (30)
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Comparing Eqs. (29) and (30), we obtain

` [𝜔 (𝑋) [ (𝑌 ) + [ (𝑋) [ (𝑌 ) + 𝜔 (𝑌 ) [ (𝑋)] + 𝜔 (𝜌) S (𝑋,𝑌 )
= 𝑋 (`) [ (𝑌 ) + `𝜓𝑔 (𝑋,𝑌 ) − 𝜓S (𝑌, 𝑋) . (31)

Setting 𝑌 = 𝜌 in (31) and using [ (𝜌) = −1, we infer that
𝑋 (`) = ` [𝜔 (𝑋) + [ (𝑋)] − 2`𝜔 (𝜌) [ (𝑋) . (32)

Contracting 𝑋 and 𝑌 in (31) reveals that
𝜌 (`) + 𝑛`𝜓 − 𝑟𝜓 = ` [2𝜔 (𝜌) − 1] + 𝑟𝜔 (𝜌) . (33)

Eqs. (32) and (33) imply
` =

𝑟 [𝜔 (𝜌) + 𝜓]
𝜔 (𝜌) + 𝑛𝜓

. (34)

From (27) and (34), we can derive

S (𝑋, 𝜌) = 𝑟 [𝜔 (𝜌) + 𝜓]
𝜔 (𝜌) + 𝑛𝜓

𝑔 (𝑋, 𝜌) . (35)

This means that 𝜌 is an eigenvector corresponding to the eigenvalue
𝑟 [𝜔 (𝜌) + 𝜓]
𝜔 (𝜌) + 𝑛𝜓

.

In view of Eqs. (31) and (32), we obtain

S (𝑋,𝑌 ) = `

𝜔 (𝜌) + 𝜓
[𝜓𝑔 (𝑋,𝑌 ) − 2𝜔 (𝜌) [ (𝑋) [ (𝑌 ) − 𝜔 (𝑌 ) [ (𝑋)] . (36)

Using (34) in (36), we reach

S (𝑋,𝑌 ) = 𝑟

𝜔 (𝜌) + 𝑛𝜓
[𝜓𝑔 (𝑋,𝑌 ) − 2𝜔 (𝜌) [ (𝑋) [ (𝑌 ) − [ (𝑋) 𝜔 (𝑌 )] . (37)

Switching 𝑋 and 𝑌 in (37) and subtracting these two equations, we obtain
either 𝑟 = 0, or

𝜔 (𝑌 ) [ (𝑋) = 𝜔 (𝑋) [ (𝑌 ) . (38)
Substituting 𝑋 = 𝜌 in (38) gives

𝜔 (𝑌 ) = −𝜔 (𝜌) [ (𝑌 ) . (39)
Using (39) in (37) we infer that

S (𝑋,𝑌 ) = 𝑟

𝜔 (𝜌) + 𝑛𝜓
[𝜓𝑔 (𝑋,𝑌 ) − 𝜔 (𝜌) [ (𝑋) [ (𝑌 )] .

If 𝑟 = 0, then (34) gives us ` = 0.
Since ` cannot be zero, 𝑟 ≠ 0. Hence an A (PRS)𝑛 GRW spacetime is a perfect
fluid spacetime. □
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Abstract: 

Security in the world of the internet has become very important in all aspects of social life. One of the methods of securing the 

information on the internet is public-key cryptography or asymmetric cryptography. Public key cryptography is not only a 

process of encrypting information, it also provides confidentiality, data integrity and authentication. RSA and ElGamal are 

two very important public-key cryptosystems. These two cryptosystems are also used for digital signature scheme because of 

their high level of security. 

In this paper, we discussed RSA algorithm in details with example. RSA is one of the most widely used public-key cryptography 

in various application. Then we discussed the ElGamal algorithm in details with example. ElGamal public-key cryptography 

is also used in many applications nowadays. In the next section, we discussed digital signature using RSA algorithm and 

ElGamal algorithm as digital signature is one of the important application of public-key cryptography. Therefore, Reader will 

have a good understanding of public-key cryptography. In this paper we have also included a relative study between RSA and 

ElGamal. 

Keywords: Public-key cryptography, Digital signature, RSA, ElGamal  

 

 

Introduction: 

With the increased use of computers and communication systems, information security has become the 

biggest concern. Cryptography provides for secure communication in the presence of adversaries 

through encryption. Two forms of encryption are common in use symmetric and asymmetric or public-

key encryption. In public-key cryptography [1][2], two different keys are used for encryption and 

decryption, one is the public key and the other is the private key. Each receiver has its own set of public 

and private keys. Public keys are kept public and any person can encrypt a message using the intended 

receiver’s public key, but only by the receiver’s private key, the message can be decrypted.  

Digital signature [1] is a mathematical scheme to verify the authenticity of digital message or document. 

In this process, the sender attaches a code with the message that acts as a signature. Digital signature is 

based on asymmetric cryptography or public cryptography. It ensures the source and authenticity of the 

message. The signer creates the digital signature using a private key to encrypt signature-related data, 

while the only way to decrypt that data is the signer’s public key. Now how it works, when a signer 

digitally signs a document, a cryptographic hash is generated for the document. The cryptographic hash 

is then encrypted using the sender’s private key which creates the digital signature. Then It is appended 

to the document and sent to the receiver side along with the signer’s public key. The recipient can 

decrypt the Digital signature with the signer’s public key. A cryptographic hash is again generated on 

the receiver’s side from the document. Then both cryptographic hashes are compared to check its 

mailto:malabika.mail@gamil.com
mailto:rajdeep.chak@gmail.com
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authenticity. If they match, the document considered valid. Fig 1 gives the block diagram of Public-key 

cryptography. 

Section 2 describes the RSA cryptosystem with example and used as digital signature, Section 3 

describes the ElGamal cryptosystem with example and used as digital signature, Section 4 gives the 

study in details as literature review. Section 5 draws the conclusion and references are given at last. 

 

 

 

 

 

 

 

 

Fig.1: Block diagram of public key cryptography 

 

RSA cryptosystem  

RSA cryptosystem [1] is a public key cryptosystem algorithm based on exponentiation in modular 

arithmetic. The system was invented by Ron Rivest, Adi Shamir, and Len Adleman in 1978 and hence, 

it is termed as RSA Cryptosystem. RSA Cryptosystem involves three steps: Key generation, Encryption, 

and Decryption. 

Section 2.1 gives key generation, section 2.2 gives encryption method, section 2.3 gives decryption 

method, section 2.4 gives an example and section 2.5 illustrates digital signature algorithm using RSA. 

Key generation:        

Each participant needs to generate public and private keys. 

● Select two large prime numbers, p, and q. 

● Calculate N=p×q, For strong encryption N must be large, a minimum of 1024 bits. 

● Calculate totient function ϕ(N)=(p−1)(q−1). 

● Select an integer e such that e is co-prime to ϕ(N), and 1< e< ϕ(N). 

● The pair of (N,e) is RSA public key and made public. 

● Calculate d such that ed ≡1 mod ϕ(N). 

● The pair (N,d) makes the private key. 

 

Encryption: 

 

Encryptio

n 
Decryption 

Sender’s public 

key 

Sender’s 

private key 

Plaintex

t 

Ciphertext 

Plaintex

t 
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Suppose the sender wish to send some text message to someone whose public key is (N, e). The sender 

then represents the plaintext as a numbers less than N. To encrypt the plaintext P, which is a number 

modulo N. The Ciphertext C Calculated as- 

                            C ≡  𝑃𝑒  mod N. 

Decryption: 

Using private key (N,d), Plaintext can be found- 

                                             P ≡ Cd mod N. 

Example using small numbers: 

Let the  plaintext be P=9. 

● First, Select two large prime numbers p = 7 and q = 11. 

● Calculate N = p × q =7 ×11=77. 

● Calculate φ (N) = (p - 1) x (q-1) = (7 - 1) x (11 - 1)=6×10=60. 

● Let us now choose relative prime e Such that e is co-prime to φ (N) = 60.Say, e=7. 

● Thus the public key is (N, e) = ( 77, 7). 

● A plaintext message P=9 is encrypted using public key (N, e). To find ciphertext from the plain 

text following formula is used to get ciphertext C. C ≡ Pe mod N = 97 mod 77=37. 

● The private key is (N,d). To determine the private key, we use the following formula d such 

that: ed mod φ (N)=1,  7d mod 60 = 1, which gives d = 43. 

● The private key is (N,d)= (77,43). 

● A ciphertext message C is decrypted using private key (N,d). To calculate plain text P from the 

ciphertext C following formula is used. P = cd mod N = 3743 mod 77= 9 

In this example, Plain text P = 9 and the ciphertext C= 37. 

 

Digital siganature with RSA Algorithm: 

 

The RSA public-key cryptosystem is also used to sign and verify messages. Since it is based on the 

math of the modular exponentiations and discrete logarithms and it’s computational difficulty provides 

a strong security. RSA is an asymmetric digital signature [1] such that one key is used for signing a 

message and only by the other key the message can be verified.  

Where section 2.51 gives key generation, 2.5.2 illustrates signing method and section 2.5.3 illustrates 

verifying method of digital signature using RSA. 

 

 

Key generation: 

The RSA key-pair consists of: 

● public key (N e) 

● private key (N,d) 

 

 

RSA Sign 

To Sign a message ‘m’ with the private key exponent d: 
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● Compute the message hash: h = hash(m) 

● Encrypt h to calculate the signature:  s = ℎ𝑑(mod N). 

● The hash h should be in the range [0...N-1). The signature s is in the range [0...N-1). 

RSA Verify Signature 

Signature s for the message ‘m’ is verified with the public key exponent e. 

● Compute the message hash: h = hash(m) 

● Decrypt the signature: h′=𝑠𝑒(mod N)  

● Compare h with h' to find whether the signature is valid or not.  

If h′=𝑠𝑒(mod N)  = ( ℎ^𝑑)𝑒  (mod N) =h, then signature is correct. 

 

Elgamal  Cryptosystem: 

 

Elgamal encryption [2][3] is a public key cryptosystem. It is based on the difficulty of finding discrete 

logarithm in a cyclic group. 

Section 3.1 gives key generation, section 3.2 gives encryption method, section 3.3 gives decryption 

method, section 3.4 gives an example and section 3.5 illustrates digital signature algorithm using RSA. 

Key generation: 

Participant generates the public and private key pair. 

● Select a large number p and a generator g of the multiplicative group 𝐹𝑝 of integers modulo p. 

● Select a random integer b, 1 ≤ b ≤ p-2, and compute 𝑔𝑏mod p. 

● Now public key is (p, g, 𝑔𝑏) and  private key is b. 

 

Encryption: 

To encrypts a message M, the sender represent  M as integers in the range {1,.., p-1}. 

● Then sender obtain receiver’s  public key (p,g,𝑔𝑏). 

● Select a random integer k, 1≤  k ≤  p-2. 

● Compute  c1= 𝑔𝑘 mod p,  c2=M × (𝑔^𝑏)𝑘. 

● Send ciphertext C = (c1,c2). 

 

 

Decryption: 

● Use private key b to compute ( 𝑐1𝑝−1−𝑏) mod p. Note 𝑐1𝑝−1−𝑏  = 𝑐1−𝑏. 

● Recover M by  computing   𝑐1−𝑏 × 𝑐2  𝑚𝑜𝑑𝑝 

Example Using Small Numbers: 

This is a simple example of ElGamal cryptosystem. 

Let Participant A wants to send a message to Participant B. First A needs B’s public keys. 

Now, B choses a number p=17 (In practical this number is very large). 

Then B Selects a random number b=5 and a generator g =6. Then B calculates 𝑔𝑏=7 and makes (17,6,7) 

to public. And keep b=5 as private key. 

 

A encrypts a message M=13 (in the range of {1,2,…16} ). Then A chooses a random number k=10 (1≤ 

k ≤ 15 ). He calculates c1=610 (mod17) =15. He encrypts c2 =13× 710=9 and sends (15,9) to B. 
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B receives (15 9) from A. 

B’s public key is (17,6,7) and private key is b=5,  

B now decrypts the message by using the private key. 

Decryption : M= 9× 1511 (mod 17)=13     [1517−1−5 =1511] 

 

B now decrypted the message and received 13, which is the original message. 

Digital Signature with ElGamal Algoirthm: 

The ElGamal signature [6] scheme was described by Taher ElGamal in 1985.It involves following 

steps- 

Where section 3.5.1 illustrates system parameters, section 3.5.2 illustrates key generation, section 3.5.3 

illustrates signature generation and section 3.5.4 illustrates verification. 

Sytem parameters 

● Let H be a collision resistant hash function. 

● Let p be a large prime such that computing discrete logarithm modulo p is difficult. 

● Let g<p be a randomly chosen generator of the multiplicative group of integers modulo p. 

● The algorithm parameters are (p,g).these system parameters may be shared between users. 

Key generation: 

● Choose randomly a select key x with 1<x<p-1. 

● Compute y=𝑔𝑥 mod p. 

● The public key is (p,g,y). 

● The secret key is x. 

● These steps are performed by the signer. 

Signature generation: 

● To sign a message the signers performs the following steps. 

● Choose a random k such that 0<k<p-1 and gcd (k,p-1)=1. 

● Compute  r = 𝑔𝑘mod p. 

● Compute  s = (H(m)-xr) 𝑘−1( mod p-1) 

● If s=0, start over again. 

Then the pair (r,s) is the digital signature of m. The signer repeats these steps for every signature. 

Verification: 

● A signature (r,s) of a message m is verified as follows. 

● 0<r<p and 0<s<p-1. 

● 𝑔𝐻(𝑚)=𝑦𝑟 𝑟𝑠(mod p). 

The verifier accepts a signature if all conditions are satisfied and rejects it otherwise. 

  

Literature Review and Relative Study 
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Section 1 gives analysis of RSA cryptosystem, section 4.2 gives disadvantages of RSA algorithm, and 

section 4.3 shows attack on RSA cryptosystem. 

 

Section 4 gives analysis of ElGamal cryptosystem, section 4.5 gives disadvantages of ELGamal 

algorithm, and section 4.6 shows comparison between RSA and Elgamal.  

 

Analysis Of RSA Cryptosystem: 

 

RSA algorithm is the first algorithm which can be used both for data encryption and digital signatures. 

It’s security depends on the difficulty of decomposition of large prime numbers. It uses Public-key 

Cryptosystem that have two different keys, called the key pair for the encryption and decryption. It is 

estimated that the difficulty of guessing the plaintext from single key and the ciphertext equals to the 

decomposition of product of two large prime numbers. 

 

Disadvantages of RSA algorithm: 

 

In [4] this paper The author mentions some of the limitations associated with RSA. If any of p,q,e and 

d is known, then the other values are can be calculated and therefore secrecy is needed. Also, In  RSA 

the message length should be less than bit length, otherwise the algorithm may  fail. Another limitation 

of RSA is that it is much slower than other symmetric cryptosystems since it uses the public key. Also, 

in RSA the length of plain text that can be encrypted is required within the size of N=p*q. 

 

Attacks on RSA Cryptosystem: 

In [13] this paper author discussed some of the attacks on RSA 

1. Factoring RSA Modulus: Factoring the public modulus is the most evident way to attack RSA 

cryptosystem. It is assumed that By 2020 1024 bits number will be factored and will not be 

secured. As a result 2024 bit key should be more secured. 

2. Timing Attacks: It has been observed that the RSA algorithm takes different amount of time to 

perform its crypto operations according to the key’s value, so based on the time required to 

apply the private key to some information, some estimate can be made of the private key. 

3. Chosen Cipher text Attack: In this attacker is able to find out plain text based on cipher text 

using to extended Euclidean Algorithm. 

 

 Analysis of ElGamal Algorithm 

 

ElGamal encryption scheme is based on the difficulty of finding discrete logarithm in a cyclic group. 

One of the strength of ElGamal is its non-deterministic encrypting the same plaintext multiple times 

will result in different ciphertext, since a random k is chosen each time. 

In [15] this paper points out that ElGamal is used in the free GNU privacy Guard Soft-Ware, and other 

cryptosystems. 

 

Disadvantages of Elgamal 

In [15] this paper the author point out that the main disadvantages of El-Gamal is its need for 

randomness and its slower speed especially for signing. Another disadvantage is that the message 

expansion by a factor of two takes place during encryption that means the ciphertext is twice as long as 

the plain text. 

 

Comparison Between RSA and ElGamal cryptosystem 
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RSA and ElGamal Both are implementation of Public-key cryptosystem. The strength of this algorithm 

lies in the bit length used. The difficulty level in RSA lies in the factorization of large primes whereas 

in ElGamal lies in the calculation of discrete logarithms. RSA is a deterministic algorithm while 

ElGamal is a probabilistic algorithm.  

The [6] author in this paper compared the two algorithms RSA and ElGamal. After testing it is 

concluded that RSA and ElGamal took the same time in the key generation. Though it takes longer time 

to generate 2048 bit keys as the calculation result have modular expression. It’s also concluded that the 

encryption and decryption time of RSA algorithm is better than ElGamal algorithm.  RSA algorithm is 

faster than ElGamal algorithm. Security wise, The ElGamal algorithm will be more difficult to solve 

than the RSA algorithm because ElGamal has a complicated calculation to solve discrete logarithms. 

 

Table 1 illustrates the summary between RSA and ElGamal. 

 

 

Factors RSA El-Gamal 

Developed 1978 1985 

Key-length >1024 bits 1024 bits 

Type of Algorithm Asymmetric Asymmetric 

Power Consumption High low 

Key used Different key for encryption 

and decryption 

Different key for encryption 

and decryption 

Hardware and software 

implementation 

Not very efficient  Faster and efficient 

 

Table 1.Summery Table of RSA and ElGamal:[16] 

 

Conclusion: 

 

In this paper, we have discussed public-key cryptography, which is based on a pair of keys, a public 

key and a private key. The use of public-key cryptography in digital signature ensures the authenticity 

and integrity of a message. RSA and ElGamal cryptosystems are implementation of public-key 

cryptosystem. Both cryptosystems can be used for encryption and signing a message without direct 

interaction. Also, we have discussed the strengths and weaknesses of RSA and ElGamal algorithms. 

Finally, through a better understanding of their strengths and weaknesses, further research can be 

conducted effectively. 

  

Reference 

 

[1] Stalling, W. (2005).  Cryptography and Network Security: Principles and Practices.India: Pearson. 

 

[2] Meier, A. (2005). The ElGamal Cryptosystem. Retrieved from  

http://wwwmayr.in.tum.de/konferenzen/Jass05/courses/1/papers/meier_paper.pdf 

 

[3] Grewal, J. (2015). ElGamal:Public-Key Cryptosystem. Retrieved from  

http://cs.indstate.edu/~jgrewal/steps.pdf 

 

http://wwwmayr.in.tum.de/konferenzen/Jass05/courses/1/papers/meier_paper.pdf


Brainwave: A Multidisciplinary Journal (ISSN: 2582-659X), Vol. 3, Special Issue, March 2022, pp. 104-

111, © Brainware University 

111 

[4] Gupta, S., & Sharma, J. (2012). A hybrid encryption algorithm based on RSA and Diffie-Hellman. 2012 IEEE 

International Conference on Computational Intelligence and Computing Research, 1-4. 

 

[5] Mansour, A. H.(2017). Analysis of RSA Digital Signature Key Generation using Strong Prime. International 

Journal of Computer (IJC), 24(1),28-36. 

 

[6] Andysah Putera Utama Siahaan, E Elviwani, and Boni Oktaviana. (2018). Comparative Analysis of RSA and 

ElGamal Cryptographic Public-key Algorithms. In Proceedings of the Joint Workshop KO2PI and the 1st 

International Conference on Advance & Scientific Innovation (ICASI'18). ICST (Institute for Computer Sciences, 

Social-Informatics and Telecommunications Engineering), Brussels, BEL 

 

[7]. Haraty, R. A., Otrok, H., & El-Kassar, A. N. (2004, April). A Comparative Study of Elgamal Based 

Cryptographic Algorithms. In ICEIS 3,79-84. 

 

[8] Satake, K. & Kasahara,M.(1997) Fast RSA-Type Cryptosystem with Public Data of small Size. Electronics 

and Communication I Japan,80(2).  

 

[9] Daeri, A. Zerek,A.R. & Abuinjam,M.A.(2014). ElGamla Punlic-key Encryption. International Conference on 

Control, Engineering & Information Technology (CEIT’14). 

 

[10] Zhou, X. & Tang, X. (2011).Research and Implementation of RSA Algorithm for Encryption and Decryption. 

The 6th International Forum on Strategic Technology.  

 

[11] Aryanti A. & Mekongga, I.  (2018). Implementation of Rivest Shamir Adleman Algorithm (RSA) and 

Vigenere Cipher In Web Based Information System. E3S Web of Conference 31, 10007 

 

[12] Jamgekar, S.R & Joshi, G.S.(2013). File Encryption and Decryption Using Secure RSA. International 

Journal of Emerging science and Engineering (IJESE),1(4) . 

 

[13] Al-Kaabi, S.S & Belhaouari, S.B.(2019).A Survey On Enhanced RSA Algorithms.Computer Science & 

Information Technology,123-142,  

 

[14] Shetty, A. Shetty K, S. & K,K.(2014). A Review on Asymmetric Cryptography – RSA and ElGamal 

Algorithm. International Journal of Innovative Research in Computer and Communication Engineering,.2(5) . 

 

[15] Khalaf, E.F &Kadi, M.M. ( 2017). A Survey of Acess control and Data Encryption for Database Security. 

JKAU: Eng.Sci.,28 (1),19-30  

 

 

 

 

  

  


